

GeoNode Training Documentation

Welcome to the GeoNode Training Documentation.

From here you can browse the documentation relative to the GeoNode Training Documentation.

Hint

An Ubuntu 18.04 Desktop 64-bit based Live ISO, containing the base packages and data for the execution of the workshop exercises, is available for download here [https://goo.gl/ynKhuV]
The Virtual Machine can also be launched through VirtualBox [http://download.virtualbox.org/virtualbox/5.2.14/] binaries.

Note

The ISO should be mounted ad Live CD and the Virtual Machine must enable EFI Boot options

The users to be used with the Virtual Machine are:

geo/geo # principal user whith suoders privileges
/home/geo/ # is the location where you can find sources, binaries and training data
/home/geo/my_geonode # is the location of a materialized `geonode-project <https://github.com/geosolutions-it/geonode-project.git>`_ Django template
/home/geo/Envs/geonode/src/geonode # is the location of the GeoNode core sources
postgres/postgres # system user for the management of the DBMS

The Documentation is divided in six main sections:

Hint

The whole documentation for offline reading as a ZIP archive can be donwloaded here [https://goo.gl/Z2fh4i]. The official GeoNode 2.8 documentation is also available for offline reading as a ZIP here [https://goo.gl/Unxcq2].

	GeoNode Overview & Reference

	This module guides the user to an overview of GeoNode and its main components.

At the end of this section you will have a clear view of what GeoNode is and can do.
You will be able also to use the GeoNode main functionalities and understand some of
the basic concepts of the system infrastructure.

	Installation & Admin

	This module is more oriented to users having some System Administrator background.

At the end of this section you will be able to setup from scratch the whole GeoNode infrastructure and understand how to the different pieces are interconnected and which are their dependencies.

	Prerequisites

	Before proceeding with the reading, it is strongly recommended to be sure having clear the following concepts:

	GeoNode and Django framework basic concepts

	What is Python

	What is a DBMS

	What is a Java Virtual Machine and the JDK

	Linux OS basic shell and maintenance commands

	Basic TCP/IP and networking concepts

	Apache HTTPD Server and WSGI Python bindings

	Users Workshop

	This workshop will teach how to use the GeoNode going in depth into what we can do with software application.
At the end of this section you will master all the GeoNode sections and entities from a user perspective.

You will know how to:

	Manage users accounts and how to modify them.

	Use and manage the different GeoNode basic resouces.

	Use the GeoNode searching tools to find your resources.

	Manage Layers and Maps, update the styles and publish them.

	Load datasets into GeoNode and keep them synchronized with GeoServer.

	Prerequisites

	Before proceeding with the reading, it is strongly recommended to be sure having clear the following concepts:

	GeoNode and Django framework basic concepts

	What is Python

	What is a geospatial server and a basic knowledge of the geospatial web services.

	What is a metadata and a catalog.

	What is a map and a legend.

	Administrators Workshop

	This workshop will teach how to install and manage a deployment of the GeoNode [http://geonode.org/] software application.
At the end of this section you will master all the GeoNode sections and entities from an administrator perspective.

You will know how to:

	Use the GeoNode’s Django Administration Panel.

	Use the console Management Commands for GeoNode.

	Configure and customize your GeoNode installation.

	Prerequisites

	Before proceeding with the reading, it is strongly recommended to be sure having clear the following concepts:

	GeoNode and Django framework concepts

	Good knowledge of Python

	Good knowledge of what is a geospatial server and geospatial web services.

	Good knowledge of what is metadata and catalog.

	Good knowledge of HTML and CSS.

	Developers Workshop

	This workshop will teach how to develop with and for the GeoNode [http://geonode.org] software application.
This module will introduce you to the components that GeoNode is built with, the standards that it supports and the services it provides based on those standards, and an overview its architecture.

	Prerequisites

	GeoNode is a web based GIS tool, and as such, in order to do development on GeoNode itself or to integrate it into your own application, you should be familiar with basic web development concepts as well as with general GIS concepts.

	Advanced Workshop

	This module introduces advanced tecquinques and metodologies for the management of the geospatial data and the maintenance and tuning of the servers on Production Environments.

The last sections of the module will teach also you how to add brand new classes and functionalities to your GeoNode installation.

	Prerequisites

	You should be familiar with GeoNode, GeoServer, Python framework and development concepts other than with system administrator and caching concepts and tecnquiques.

Editing the documentation

This documentation is written in reStructuredText [https://en.wikipedia.org/wiki/ReStructuredText] format
and automatically build from this GitHub repository [https://github.com/geosolutions-it/doc-geonode]
To edit the documentation you’ll need the following tools:

	Git [http://en.wikipedia.org/wiki/Git_(software)]

	Python [https://www.python.org/] and pip [https://en.wikipedia.org/wiki/Pip_(package_manager)] (recent versions of Python come bundled with pip)

	Sphinx [http://sphinx-doc.org/index.html]

For installation and basic usage of the tools follow these instructions

License Information

Documentation

Documentation is released under a Creative Commons license with the following conditions.

You are free to Share (to copy, distribute and transmit) and to Remix (to adapt) the documentation under the following conditions:

	Attribution. You must attribute the documentation to the author.

	Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only under the same or similar license to this one.

With the understanding that:

	Any of the above conditions can be waived if you get permission from the copyright holder.

	Public Domain. Where the work or any of its elements is in the public domain under applicable law, that status is in no way affected by the license.

Other Rights. In no way are any of the following rights affected by the license:

	Your fair dealing or fair use rights, or other applicable copyright exceptions and limitations;

	The author’s moral rights;

	Rights other persons may have either in the work itself or in how the work is used, such as publicity or privacy rights.

Notice: For any reuse or distribution, you must make clear to others the license terms of this work. The best way to do this is with a link to this web page.

You may obtain a copy of the License at Creative Commons Attribution-ShareAlike 3.0 Unported License [http://creativecommons.org/licenses/by-sa/3.0/]

The document is written in reStructuredText format for consistency and portability.

Author Information

This documentation was written by GeoSolutions.

The layout for the reStructuredText based documentation is based on the work done by the GeoNode [http://geonode.org/] project and the Sphinx [http://sphinx.pocoo.org/] framework.

If you have questions, found a bug or have enhancements, please contact us through info@geosolutions.it

	Creative Commons

	Creative Commons Attribution-ShareAlike 3.0 Unported License [http://creativecommons.org/licenses/by-sa/3.0/]
Creative Commons (CC) is a non-profit organization devoted to
expanding the range of creative works available for others to build
upon legally and to share. The organization has released several
copyright-licenses known as Creative Commons licenses free of charge
to the public. These licenses allow creators to communicate which
rights they reserve, and which rights they waive for the benefit of
recipients or other creators. An easy-to-understand one-page
explanation of rights, with associated visual symbols, explains the
specifics of each Creative Commons license. Creative Commons licenses
do not replace copyright, but are based upon it. They replace
individual negotiations for specific rights between copyright owne
(licensor) and licensee, which are necessary under an “all rights
reserved” copyright management, with a “some rights reserved”
management employing standardized licenses for re-use cases where no
commercial compensation is sought by the copyright owner. The result
is an agile, low-overhead and low-cost copyright-management regime,
profiting both copyright owners and licensees.

GeoNode Overview & Reference

Welcome to the GeoNode Training Overview & Reference documentation vlatest.

This module guides the user to an overview of GeoNode and its main components.

At the end of this section you will have a clear view of what GeoNode is and can do.
You will be able also to use the GeoNode main functionalities and understand some of
the basic concepts of the system infrastructure.

	Users’ Features

	Open Source Geospatial Content Management System

GeoNode is a web-based application and platform for developing geospatial information systems (GIS) and for deploying spatial data infrastructures (SDI).

What GeoNode can be used for…
GeoNode Demo [http://demo.geonode.org/]
(admin/admin)

	Introduction

	This section introduces the GeoNode GUI and functionalities through a step-by-step workshop.

At the end of this module the users will be familiar with the GeoNode default GUI and objects.

	Reference Doc

	In this section, you will find information about each and every component of GeoNode, for example GeoServer, GeoNode Settings, Security, etc.

Users’ Features

Open Source Geospatial Content Management System

GeoNode is a web-based application and platform for developing geospatial information systems (GIS) and for deploying spatial data infrastructures (SDI).

What GeoNode can be used for…
GeoNode Demo [http://demo.geonode.org/]
(admin/admin)

	Spatial Data Discovery

	Import and Manage

	Interactive Mapping

Spatial Data Discovery

GeoNode allows users to browse and search for geospatial data.
By combining collaboration found in social networks with specialized geospatial tools, GeoNode makes it easy to explore, process, style, and share maps and geospatial data.
Spatial datasets can be imported and shared, all through a non-technical user interface.

Features include:

	Powerful spatial search engine (Elasticsearch)

	Federated OGC services (OGC W*S)

	Metadata catalogue (OGC CSW)

Import and Manage

GeoNode allows users to upload and share geospatial data, securely.
GeoNode makes it easy to upload and manage geospatial data on the web. Any user can upload and make content available via standard OGC protocols such as Web Map Service (WMS) and Web Feature Service (WFS). Data is available for browsing, searching, styling, and processing to generate maps which can be shared publicly or restricted to specific users only.
Supported upload formats include ShapeFile, GeoTIFF, ASCII, ImageMosaics, KML and CSV. In addition, it is possible to connect to existing external spatial databases and services.

Features include:

	Publish raster, vector, and tabular data

	Manage metadata and associated documents

	Securely or publicly share data

Interactive Mapping

GeoNode allows users to create and share interactive web maps.
GeoNode comes with helpful cartography tools for styling and composing maps graphically. These tools make it easy for anyone to assemble a web-based mapping application with functionality traditionally found in desktop GIS applications.
Users can gain enhanced interactivity with GIS-specific tools such as querying and measuring.

Features include:

	GeoExplorer GIS client by default / Several pluggable clients available (Leaflet, REACT, …)

	Graphical style editor

	Create multi-layer interactive maps

	Share and embed maps in web pages

Introduction

This section introduces the GeoNode GUI and functionalities through a step-by-step workshop.

At the end of this module the users will be familiar with the GeoNode default GUI and objects.

	A Tour Of GeoNode

	GeoNode Quickstart
	1. Register a new account

	2. Add a new layer

	3. Create a new map

	4. Share your map

	To be continued

A Tour Of GeoNode

In order to get started, let’s look at the GeoNode interface and get a feel for how to navigate around it.

The GeoNode web interface is the primary method of interacting with GeoNode as a user.
From this interface, one can view and modify existing spatial layers and maps, as well as find information on other GeoNode users.

Without being logged in, you are limited to read-only access of public layers.

	Navigate to your GeoNode instance (online demo available here [http://demo.geonode.org/]):

[image: Welcome page]
Welcome page

This page shows a variety of information about the current GeoNode instance.
At the top of the page is a toolbar showing quick links to view layers [http://docs.geonode.org/en/latest/tutorials/users/layers/index.html#layers],
maps [http://docs.geonode.org/en/latest/tutorials/users/maps/index.html#maps], documents (metadata),
people [http://docs.geonode.org/en/latest/tutorials/users/accounts/index.html#accounts], and a search field. Below this is a listing of recently updated layers,
including abstract, owner, rating, and download button (if available).

	Click Explore button and choose Preview. Table data could be visualized as: Grid, Graph or Map.

[image: Explore Layers page]
Explore Layers page

This page shows all layers known to GeoNode, available in either List or Grid viewing.
Layers can be sorted by Most Recent, Most Popular, or Most Shared.
Also available are a list of categories, with which layers can be connected with.

	Find a layer and click on its name.

[image: Viewing a layer]
Viewing a layer

	A layer viewing page will display, with the layer itself superimposed on a hosted base layer (in this case MapQuest OpenStreetMap [http://open.mapquest.com/]). Explore this page, noting the various options available to you.

	Now click the Maps link in the tool bar to go to the Explore Maps page.

[image: Explore Maps page]
Explore Maps page

This page shows all maps known to GeoNode, available with similar viewing options as with the layers.
Currently, there are no maps here, but we will create one later on in the workshop.

	Click the Search link in the toolbar to bring up the Search page.

[image: Search page]
Search page

This page contains a wealth of options for customizing a search for various information on this GeoNode instance.
While a simple search box is available at the top of every page, this search form allows for much more fine-tuned searches.

Now that you are familiar with the basic interface, the next step is to create your own account so you manage some GeoNode resources of your own.

GeoNode Quickstart

Open Source Geospatial Content Management System

GeoNode is a web-based application and platform for developing geospatial information systems (GIS) and for deploying spatial data infrastructures (SDI).

In this Quickstart guide you will learn the following:

	to register a new account to get started

	add a new layer

	create a map using your new layer

	share your map with others

Start GeoNode on your Live DVD or local VM and redirect your browser at http://localhost/ (this is the default port).
The page will look like shown in the image below.

Warning

If GeoNode isn’t available by default, you will need to start Apache2 HTTPD and Tomcat8 Web Servers

$> sudo service apache2 restart
$> sudo service tomcat8 restart

[image: Services Start]
Services Start

[image: Welcome page]
Welcome page

1. Register a new account

From the interface shown above, one can view and modify existing spatial layers and maps, as well as find information on other GeoNode users.
But, without being logged in, you are limited to read-only access of public layers.
In order to create a map and add layers to it, you have to have create an account first.

	From any page in the web interface, you will see a Sign in link. Click that link, and in the dialog that displays, click the Register now link.

[image: Sign in Form]
Sign in Form

	On the next page, fill out the form. Enter a user name and password in the fields. Also, enter your email address for verification.

[image: Register Form]
Register Form

	By clicking Sign up you will be returned to the homepage. Now you’ve registered an account, you are able to add layers to it as well as create maps and share those with other users.

Note

In case e-mail confirmation has been enabled by configuration (see Advnaced Tutorial and GeoNode documentation for that), you will be returned to the welcome page. An email will be sent confirming that you have signed up. While you are now logged in, you will need to confirm your account. Navigate to the link that was sent in the email.

2. Add a new layer

Layers are a published resource representing a raster or vector spatial data source. Layers also can be associated with metadata, ratings, and comments.

	To add a layer to your account, navigate to the welcome page. There the following toolbar can be seen:

[image: Toolbar]
Toolbar

	By clicking the Layers link you will be brought to the Layers menu where a new subtoolbar can be seen. This toolbar allows you to Explore, Search and Upload layers.

[image: Upload Button]
Upload Button

	Now click Upload Layers and you’ll see the upload form.

[image: Upload Form]
Upload Form

	You have two possibilities to add your files. You can either do that by using drag & drop or you choose to browse them. Be aware that you have to upload a complete set of files, consisting of a shp, a prj, a dbf and a shx file. If one of them is missing, GeoNode will warn you before you upload them.

	You shold now be able to see all the files you want to upload.

[image: Files to be Uploaded]
Files to be Uploaded

	GeoNode has the ability to restrict who can view, edit, and manage layers. On the right side of the page you can see the Permission section, where you can limit the access on your layer. Under Who can view and download this data, select Any registered user. This will ensure that Anonymous view access is disabled. In the same area, under Who can edit this data, select your username. This will ensure that Only You are able to edit the data in the layer.

[image: Permissions]
Permissions

	To upload data, click the Upload button at the bottom.

Warning

If the upload fails due to an e-mail issue, that means that the GeoNode Notifications subsystem must be disabled, since your VM most probably is not connected to the Internet and/or it is not able to send e-mail.

$> cd /home/geonode/my_geonode/
$> vim my_geonode/local_settings.py

 ...
 # notification settings
 NOTIFICATION_ENABLED = False
 ...
 # INSTALLED_APPS += (NOTIFICATIONS_MODULE,)
 ...
 #Define email service on GeoNode
 EMAIL_ENABLE = False
 ...

$> sudo service apache2 restart

3. Create a new map

The next step for you is to create a map and add the newly created layers to this map.

	Click the Maps link on the top toolbar. This will bring up the list of maps.

[image: Create new Map Button]
Create new Map Button

	Currently, there aren’t any maps here. To add one click the Create a New Map button and a map composition interface will display.

[image: Maps Editor]
Maps Editor

In this interface there is a toolbar, layer list, and map window. The map window contains the MapQuest OpenStreetMap layer by default.
There are other service layers available here as well: Blue Marble, Bing Aerial With Labels, MapQuest, and OpenStreetMap.

	Click on the New Layers button and select Add Layers.

[image: Add Layers]
Add Layers

	Now you should be able to see all the availabel layers. In your case, this should only be the ones you’ve added before (San Andreas?).

	Select all of the layers by clicking the top entry and Shift-clicking the bottom one. Click Add Layers to add them all to the map.

[image: Add Layers]
Add Layers

	The layers will be added to the map. Click Done (right next to Add Layers at the bottom) to return to the main layers list.

	To save the map click on the Map button in the toolbar, and select Save Map.

[image: Save Map]
Save Map

	Enter a title and abstract for your map.

[image: Edit Map Metadata]
Edit Map Metadata

	Click Save. Notice that the link on the top right of the page changed to reflect the map’s name.

[image: Save Map]
Save Map

This link contains a permalink to your map. If you open this link in a new window, your map will appear exactly as it was saved.

4. Share your map

Now let’s publish our map and make it available to the world.

	Click the Maps link on the top toolbar. This will bring up the list of maps.

[image: Explore Maps Button]
Create new Map Button

	Click on the Map To publish. Make any final adjustments to the map composition as desired, including zoom and pan settings.

	To save the map click on the Map button in the toolbar, and select Publish Map.

[image: Publish Map]
Publish Map

	The title and abstract as previously created should still be there. Make any adjustments as necessary, and click Save.

[image: Edit Map Metadata]
Edit Map Metadata

	A new dialog will appear with instructions on how to embed this map in a web page, including a code snippet. You can adjust the parameters as necessary.

[image: Embed the Map]
Embed the Map

Your map can now be shared by embedding it on any HTML!

Note

Notice that you can easily retrieve the full page link of your Map by simply attaching the keyword embed at the end of the URL.

As an instance if you open a Map and click on View Map, by just changing the URL

from (this is just an example)

http://localhost/maps/22/view

to

http://localhost/maps/22/embed

You will get the full page view of your map

[image: Full Page View of the Map]
Full Page View of the Map

Try a small Exercise with HTML

	Open a text editor like shown in the figure below

[image: GEdit Text Editor]
GEdit Text Editor

	Write some very basic HTML code using the snippet provided by the Publish Map action above

[image: HTML Embedding the Map]
HTML Embedding the Map

<html>
 <body>
 <H1>This is my new Map!</H1>
 <p align="center">
 <iframe
 src="http://localhost/maps/22/embed"
 width=800
 height=450
 style="border:0">
 </iframe>

 <i>This is cool, isn't it?</i>
 </p>
 </body>
</html>

	Click on Save As like shown in the figure below

[image: GEdit Text Editor - Save As]
GEdit Text Editor - Save As

	Save it to the Desktop by specifying a name and the extension .html

[image: GEdit Text Editor - Save to Desktop]
GEdit Text Editor - Save to Desktop

	Click the *Show Desktop” button on the side bar, like shown below

[image: Show Desktop]
Show Desktop

	Double-Click on the file you just saved

[image: Double-Click on the HTML File]
Double-Click on the HTML File

	Look the results on the Web Browser, which will be automatically opened

[image: HTML Embedded Map]
HTML Embedded Map

To be continued

Now you’ve gotten a quick insight in the possibilities of GeoNode. To learn more about GeoNode and its features, visit the official webpage www.geonode.org.

Stay in touch with the GeoNode community through the #geonode IRC channel using http://webchat.freenode.net/ or by asking your question in our google group [https://groups.google.com/forum/#!forum/geonode-users]!

Reference Doc

In this section, you will find information about each and every component of GeoNode, for example GeoServer, GeoNode Settings, Security, etc.

	The Big Picture
	Architecture

	Django Architecture

	WSGI

	GeoNode and GeoServer

	GeoNode and PostgreSQL/PostGIS

	GeoNode and pycsw

	Publishing

	Discovery

	Javascript in GeoNode

	Components
	Django

	GeoServer

	GeoExplorer

	PostgreSQL and PostGIS

	pycsw

	Geospatial Python Libraries

	Django Pluggables

	jQuery

	Bootstrap

The Big Picture

Architecture

[image: GeoNode Component Architecture]
GeoNode Component Architecture

GeoNode core is based on DJango web framework with few more dependencies necessary for the communication with the geospatial servers (GeoServer, pyCSW)

On the left side you can see the list of Entities defined in GeoNode and managed by the DJango ORM framework. Those objects will be detailed in a future section.

On the right side the list of Services available allowing GeoNode to communicate with the social world.

The GeoNode catalog is strictly connected to the GeoServer one (see the bottom of the figure). The geospatial dataset and the OGC Services are implemented and managed by GeoServer.
GeoNode acts as a broker for the geospatial layers, adding metdata information and tools that make easier the management, cataloging, mapping and searching of the datasets.

Thanks to the ORM framework and the auxiliary Python libraries, GeoNode is constantly aligned with the GeoServer catalog. An ad-hoc security module allows the two modules to strictly
interact and share security and permissions rules.

In the advanced sections of this documentation we will go through GeoNode commands allowing administrators to re-sync the catalogs and keep them consistently aligned.

Django Architecture

GeoNode is based on Django which is a high level Python web development framework that encourages rapid development and clean pragmatic design.
Django is based on the Model View Controller (MVC [http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller]) architecture pattern, and as such,
GeoNode models layers, maps and other modules with Django’s Model [https://docs.djangoproject.com/en/1.4/topics/db/models/] module and and these models are used via
Django’s ORM [http://en.wikipedia.org/wiki/Object-relational_mapping] in views which contain the business logic of the GeoNode application and are used to drive
HTML templates to display the web pages within the application.

Django explained with model/view/controller (MVC [http://reinout.vanrees.org/weblog/2011/12/13/django-mvc-explanation.html])

	Model represents application data and provides rich ORM functionality.

	Views are a rendering of a Model most often using the Django template engine.

	In Django, the controller part of this commonly discussed, layered architecture is a subject of discussion. According to the standard definition, the controller is the layer or component through which the user interacts and model changes occur.

MVP/MVC

MVP

Model, View, Presenter

In MVP, the Presenter contains the UI business logic for the View. All invocations from the View delegate directly to the Presenter.
The Presenter is also decoupled directly from the View and talks to it through an interface.
This is to allow mocking of the View in a unit test. One common attribute of MVP is that there has to be a lot of two-way dispatching.
For example, when someone clicks the Save button, the event handler delegates to the Presenter’s OnSave method.
Once the save is completed, the Presenter will then call back the View through its interface so that the View can display that the save has completed.

MVP tends to be a very natural pattern for achieving separated presentation in Web Forms.

Two primary variations (You can find out more about both variants [http://www.codeplex.com/websf/Wiki/View.aspx?title=MVPDocumentation&referringTitle=bundles].)

Passive View: The View is as dumb as possible and contains almost zero logic. The Presenter is a middle man that talks to the View and the Model. The View and Model are completely shielded from one another. The Model may raise events, but the Presenter subscribes to them for updating the View. In Passive View there is no direct data binding, instead the View exposes setter properties which the Presenter uses to set the data. All state is managed in the Presenter and not the View.

	Pro: maximum testability surface; clean separation of the View and Model

	Con: more work (for example all the setter properties) as you are doing all the data binding yourself.

Supervising Controller: The Presenter handles user gestures. The View binds to the Model directly through data binding. In this case it’s the Presenter’s job to pass off the Model to the View so that it can bind to it. The Presenter will also contain logic for gestures like pressing a button, navigation, etc.

	Pro: by leveraging databinding the amount of code is reduced.

	Con: there’s less testable surface (because of data binding), and there’s less encapsulation in the View since it talks directly to the Model.

MVC

Model, View, Controller

In the MVC, the Controller is responsible for determining which View is displayed in response to any action including when the application loads.

This differs from MVP where actions route through the View to the Presenter.
In MVC, every action in the View correlates with a call to a Controller along with an action. In the web each action involves a call to a URL on the other side of which there is a Controller who responds. Once that Controller has completed its processing, it will return the correct View.
The sequence continues in that manner throughout the life of the application:

	1
2
3
4

	Action in the View
 -> Call to Controller
 -> Controller Logic
 -> Controller returns the View.

One other big difference about MVC is that the View does not directly bind to the Model. The view simply renders, and is completely stateless. In implementations of MVC the View usually will not have any logic in the code behind. This is contrary to MVP where it is absolutely necessary as if the View does not delegate to the Presenter, it will never get called.

Presentation Model

One other pattern to look at is the Presentation Model pattern. In this pattern there is no Presenter. Instead the View binds directly to a Presentation Model.
The Presentation Model is a Model crafted specifically for the View. This means this Model can expose properties that one would never put on a domain model as it would be a violation of separation-of-concerns.
In this case, the Presentation Model binds to the domain model, and may subscribe to events coming from that Model.
The View then subscribes to events coming from the Presentation Model and updates itself accordingly.
The Presentation Model can expose commands which the view uses for invoking actions.
The advantage of this approach is that you can essentially remove the code-behind altogether as the PM completely encapsulates all of the behaviour for the view.

This pattern is a very strong candidate for use in WPF applications and is also called Model-View-ViewModel [http://msdn.microsoft.com/en-us/magazine/dd419663.aspx].

More: http://reinout.vanrees.org/weblog/2011/12/13/django-mvc-explanation.html

WSGI

Web Server Gateway Interface (whis-gey)

	This is a python specification for supporting a common interface between all of the various web frameworks and an application (Apache, for example) that is ‘serving’.

	This allows any WSGI compliant framework to be hosted in any WSGI compliant server.

	For most GeoNode development, the details of this specification may be ignored.

More: http://en.wikipedia.org/wiki/Wsgi

GeoNode and GeoServer

GeoNode uses GeoServer for providing OGC services.

At its core, GeoNode provides a standards-based platform to enable integrated, programmatic access to your data via OGC Web Services, which are essential building blocks required to deploy an OGC-compliant spatial data infrastructure (SDI). These Web Services enable discovery, visualization and access your data, all without necessarily having to interact directly with your GeoNode website, look and feel/UI, etc.

	GeoNode configures GeoServer via the REST API

	GeoNode retrieves and caches spatial information from GeoServer. This includes relevant OGC service links, spatial metadata, and attribute information.

In summary, GeoServer contains the layer data, and GeoNode’s layer model extends the metadata present in GeoServer with its own.

	GeoNode can discover existing layers published in a GeoServer via the WMS capabilities document.

	GeoServer delegates authentication and authorization to GeoNode.

	Data uploaded to GeoNode is first processed in GeoNode and finally published to GeoServer (or ingested into the spatial database).

OGC Web Services:

	operate over HTTP (GET, POST)

	provide a formalized, accepted API

	provide formalized, accepted formats

The OGC Web Services provided by GeoNode have a mature implementation base and provide an multi-application approach to integration. This means, as a developer, there are already numerous off-the-shelf GIS packages, tools and webapps (proprietary, free, open source) that natively support OGC Web Services.

There are numerous ways to leverage OGC Web Services from GeoNode:

	desktop GIS

	web-based application

	client libraries / toolkits

	custom development

Your GeoNode lists OGC Web Services and their URLs at http://localhost:8000/developer. You can use these APIs directly to interact with your GeoNode.

The following sections briefly describe the OGC Web Services provided by GeoNode.

Web Map Service (WMS)

WMS provides an API to retrieve map images (PNG, JPEG, etc.) of geospatial data. WMS is suitable for visualization and when access to raw data is not a requirement.

WFS

WFS provides provides an API to retrieve raw geospatial vector data directly. WFS is suitable for direct query and access to geographic features.

WCS

WCS provides provides an API to retrieve raw geospatial raster data directly. WCS is suitable for direct access to satellite imagery, DEMs, etc.

CSW

CSW provides an interface to publish and search metadata (data about data). CSW is suitable for cataloguing geospatial data and making it discoverable to enable visualization and access.

WMTS

WMTS provides an API to retrive pre-rendered map tiles of geospatial data.

WMC

WMC provides a format to save and load map views and application state via XML. This allows, for example, a user to save their web mapping application in WMC and share it with others, viewing the same content.

More: http://geoserver.org

GeoNode and PostgreSQL/PostGIS

In production, GeoNode is configured to use PostgreSQL/PostGIS for it’s persistent store. In development and testing mode, often an embedded sqlite database is used. The latter is not suggested for production.

	The database stores configuration and application information. This includes users, layers, maps, etc.

	It is recommended that GeoNode be configured to use PostgresSQL/PostGIS for storing vector data as well. While serving layers directly from shapefile allows for adequate performance in many cases, storing features in the database allows for better performance especially when using complex style rules based on attributes.

GeoNode and pycsw

GeoNode is built with pycsw embedded as the default CSW server component.

Publishing

Since pycsw is embedded in GeoNode, layers published within GeoNode are automatically published to pycsw and discoverable via CSW. No additional configuration or actions are required to publish layers, maps or documents to pycsw.

Discovery

GeoNode’s CSW endpoint is deployed available at http://localhost:8000/catalogue/csw and is available for clients to use for standards-based discovery. See http://docs.pycsw.org/en/latest/tools.html for a list of CSW clients and tools.

Javascript in GeoNode

GeoNode provides a number of facilities for interactivity in the web browser built on top of several high-quality JavaScript frameworks:

	Bootstrap [http://getbootstrap.com/] for GeoNode’s front-end user interface and common user interaction.

	Bower [http://bower.io/] for GeoNode’s front-end package management.

	ExtJS [http://extjs.com/] for component-based UI construction and data access

	OpenLayers [http://openlayers.org/] for interactive mapping and other geospatial operations

	GeoExt [http://geoext.org/] for integrating ExtJS with OpenLayers

	Grunt [http://gruntjs.com/] for front-end task automation.

	GXP [http://projects.opengeo.org/gxp] for providing some higher-level application building facilities on top of GeoExt, as well
as improving integration with GeoServer.

	jQuery [http://jquery.com] to abstract javascript manipulation, event handling, animation and Ajax.

GeoNode uses application-specific modules to handle pages and services that are unique to GeoNode. This framework includes:

	A GeoNode mixin [https://github.com/GeoNode/geonode/blob/master/geonode/static/geonode/js/extjs/GeoNode-mixin.js] class
that provides GeoExplorer with the methods needed to properly function in GeoNode. The class
is responsible for checking permissions, retrieving and submitting the CSRF token [https://docs.djangoproject.com/en/dev/ref/contrib/csrf/],
and user authentication.

	A search module [https://github.com/GeoNode/geonode/tree/master/geonode/static/geonode/js/search] responsible for the GeoNode’s site-wide search functionality.

	An upload and status module [https://github.com/GeoNode/geonode/tree/master/geonode/static/geonode/js/upload] to support file uploads.

	Template files [https://github.com/GeoNode/geonode/tree/master/geonode/static/geonode/js/templates] for generating commonly used html sections.

	A front-end testing module [https://github.com/GeoNode/geonode/tree/master/geonode/static/geonode/js/tests] to test GeoNode javascript.

The following concepts are particularly important for developing on top of the
GeoNode’s JavaScript framework.

	
	Components

	Ext components handle most interactive functionality in
“regular” web pages. For example, the scrollable/sortable/filterable table
on the default Search page is a Grid component. While GeoNode does use some
custom components, familiarity with the idea of Components used by ExtJS is
applicable in GeoNode development.

	
	Viewers

	Viewers display interactive maps in web pages, optionally decorated
with Ext controls for toolbars, layer selection, etc. Viewers in GeoNode use
the GeoExplorer base class, which builds on top of GXP’s Viewer to provide
some common functionality such as respecting site-wide settings for
background layers. Viewers can be used as components embedded in pages, or
they can be full-page JavaScript applications.

	
	Controls

	Controls are tools for use in OpenLayers maps (such as a freehand
control for drawing new geometries onto a map, or an identify control for
getting information about individual features on a map.) GeoExt provides
tools for using these controls as ExtJS “Actions” - operations that can be
invoked as buttons or menu options or associated with other events.

Components

architecture is based on a set of core tools and libraries that provide the building blocks on which the application is built. Having a basic understanding of each of these components is critical to your success as a developer working with GeoNode.

Lets look at each of these components and discuss how they are used within the GeoNode application.

Django

GeoNode is based on Django [https://www.djangoproject.com/] which is a high level Python web development framework that encourages rapid development and clean pragmatic design. Django is based on the Model View Controller (MVC [http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller]) architecture pattern, and as such, GeoNode models layers, maps and other modules with Django’s Model [https://docs.djangoproject.com/en/1.4/topics/db/models/] module and and these models are used via Django’s ORM [http://en.wikipedia.org/wiki/Object-relational_mapping] in views which contain the business logic of the GeoNode application and are used to drive HTML templates to display the web pages within the application.

GeoServer

GeoServer [http://geoserver.org/display/GEOS/Welcome] is a an open source software server written in Java that provides OGC compliant services which publish data from many spatial data sources. GeoServer is used as the core GIS component inside GeoNode and is used to render the layers in a GeoNode instance, create map tiles from the layers, provide for downloading those layers in various formats and to allow for transactional editing of those layers.

GeoExplorer

GeoExplorer [http://suite.opengeo.org/opengeo-docs/geoexplorer/] is a web application, based on the GeoExt [http://geoext.org/] framework, for composing and publishing web maps with OGC and other web based GIS Services. GeoExplorer is used inside GeoNode to provide many of the GIS and cartography functions that are a core part of the application.

PostgreSQL and PostGIS

PostgreSQL [http://www.postgresql.org/] and PostGIS [http://postgis.net/] are the database components that store and manage spatial data and information for GeoNode and the django modules that it is composed of, pycsw and GeoServer. All of these tables and data are stored within a geonode database in PostgreSQL. GeoServer uses PostGIS to store and manage spatial vector data for each layer which are stored as a separate table in the database.

pycsw

pycsw [http://pycsw.org] is an OGC CSW server implementation written in Python. GeoNode uses pycsw to provide an OGC compliant standards-based CSW metadata and catalogue component of spatial data infrastructures, supporting popular geospatial metadata standards such as Dublin Core, ISO 19115, FGDC and DIF.

Geospatial Python Libraries

GeoNode leverages several geospatial python libraries including gsconfig [https://github.com/dwins/gsconfig.py] and OWSLib [http://geopython.github.io/OWSLib/]. gsconfig is used to communicates with GeoServer’s REST Configuration API to configure GeoNode layers in GeoServer. OWSLib is used to communicate with GeoServer’s OGC services and can be used to communicate with other OGC services.

Django Pluggables

GeoNode uses a set of Django plugins which are usually referred to as pluggables. Each of these pluggables provides a particular set of functionality inside the application from things like Registration and Profiles to interactivity with external sites. Being based on Django enables GeoNode to take advantage of the large ecosystem of these pluggables out there, and while a specific set is included in GeoNode itself, many more are available for use in applications based on GeoNode.

jQuery

jQuery [http://jquery.com/] is a feature-rich javascript library that is used within GeoNode to provide an interactive and responsive user interface as part of the application. GeoNode uses several jQuery plugins to provide specific pieces of functionality, and the GeoNode development team often adds new features to the interface by adding additional plugins.

Bootstrap

Bootstrap [http://www.getbootstrap.com] is a front-end framework for laying out and styling the pages that make up the GeoNode application. It is designed to ensure that the pages render and look and behave the same across all browsers. GeoNode customizes bootstraps default style and its relatively easy for developers to customize their own GeoNode based site using existing Boostrap themes or by customizing the styles directly.

Installation & Admin

Welcome to the GeoNode Training Installation & Admin documentation vlatest.

This module is more oriented to users having some System Administrator background.

At the end of this section you will be able to setup from scratch the whole GeoNode infrastructure and understand how to the different pieces are interconnected and which are their dependencies.

Prerequisites

Before proceeding with the reading, it is strongly recommended to be sure having clear the following concepts:

	GeoNode and Django framework basic concepts

	What is Python

	What is a DBMS

	What is a Java Virtual Machine and the JDK

	Basic TCP/IP and networking concepts

	Linux OS basic shell and maintenance commands

	Apache HTTPD Server and WSGI Python bindings

	Linux Admin Intro

	This section describes how to setup a Virtual Machine running Ubuntu.

	GeoNode (vlatest) installation on Ubuntu 16.04

	This section will guide the user through the steps necessary to install GeoNode on Ubuntu.

	GeoNode (vlatest) update from older versions

	This section will guide the user through the steps necessary to update GeoNode from old versions.

Linux Admin Intro

This part of the documentation contains basic instruction on how to setup
and manages Virtual Machine.

	Ubuntu Basic Tutorial
	User Login

	User Interface Walkthrough

	Launch an application

	Install new software

	Launch the terminal emulator

	Basic commands

Ubuntu Basic Tutorial

Ubuntu [https://en.wikipedia.org/wiki/Ubuntu_(operating_system)] is one of the most
widespread Linux [https://en.wikipedia.org/wiki/Linux] Distributions [https://en.wikipedia.org/wiki/Linux_distribution]
.

In this section of the documentation you will learn how to do basic operations in
Ubuntu such as Log inand Log out, Launch applications and Install new software.

User Login

When you first start Ubuntu, at the end of the boot process you see the Ubuntu
login screen

[image: Ubuntu login screen]
Select the user you want to login as, enter the password and press Enter. In a
few second the user’s desktop will appear.

[image: Ubuntu Desktop]

User Interface Walkthrough

The panel on the left side of the screen contains shortcuts to frequently used
application. From dark grey bar at the top you can reach network settings
(the icon with two arrows pointing in opposite directions) system language (the icon
with En written inside it), audio volume, system date and time and power menu
(top right corner with an icon half way between a gear and power buttom).

From the power menu you can switch to a different user, logout, power off the system
or access system settings.

In `system setting ` menu you can set several different parameters for the system

[image: Ubuntu System settings]

Launch an application

You can launch the applications listed in the Favourites panel simply by clicking on them.

If the application you want to launch is not in the favourites panel, use the Ubuntu
Launcher. Click on the Ubuntu Launcher icon in the top left corner of the screen

[image: Ubuntu Launcher]
Write down the name of the application. A list of applications matching the name you
are searching will show up, for and press Enter or click on the icon of the
application.

Install new software

To install new software, open the Ubuntu software Center (you will find it in the
favourite applications panel).

Enter the name of the application you are looking for in the search bar

[image: Ubuntu Software Center]
A list of candidate applications will appear. Click on the one you want to install,
then click install to install it. You will be prompted for administrative password

[image: Ubuntu Software Center]
And your application will be installed in the system.

Launch the terminal emulator

Click on the Ubuntu Launcher icon in the top left corner of the screen, and type
gnome-terminal in the search box

[image: Ubuntu Software Center]
And launch the terminal emulator.

[image: Ubuntu Software Center]
Terminal emulator will open and will be ready for your commands.

Basic commands

Current working directory

$ pwd
/home/geo

The pwd command will show you your working directory, that is the directory
you are inside of and running your commands in.

Create a directory

$ mkdir test

To create a new directory inside your working directory use the mkdir command
followed by the folder name argument

Delete a directory

$ rmdir test

To delete an empty directory type rmdir followed by the folder name argument

Create an empty file

$ touch testfile

To create an empty file in your current working directory use the touch command
followed by the name of the file

Delete a file

$ rm filename

To delete a file use the rm command followed by the file name

Change working directory

$ cd /home

To change your current working directory use the cd command followed by the path
(location) you want to change to

List content of a folder

$ ls

The ls command will list the content of your current working directory. You can
optionally provide a path to a directory as argument, in that case ls will show
you the content of that directory

$ ls /home
geo geonode

Home folder

A user’s home folder is the folder where he or she will do most of the operations
in. Inside your home folder you can freely create or delete file and folders.

To switch to your home folder you can use the tilde ~ character as a shortcut

$ cd ~
$ pwd
/home/geo

For more information on Ubuntu refer to the Ubuntu user manual [http://ubuntu-manual.org/?lang=en]

For more terminal commands read the Using the terminal [https://help.ubuntu.com/community/UsingTheTerminal] guide

VM Setup with VirtualBox

In this section you will find instructions on how to setup an Ubuntu 16.04 [http://releases.ubuntu.com/16.04/] VM in
VirtualBox [http://download.virtualbox.org/virtualbox/5.1.22/]

VirtualBox Setup

Download VirtualBox from official [http://download.virtualbox.org/virtualbox/5.1.22/] web site. Choose the installer matching your
operating system and architecture.

Installation process is straightforward, refer to VirtualBox official documentation [https://www.virtualbox.org/manual/ch01.html#intro-installing] if you encounter
any problem.

Windows

After you downloaded executable, double click on it to launch the installer.

[image: VirtualBox installation - Windows]
Customize VirtualBox features an paths if you need to or leave default ones

[image: VirtualBox installation - Windows]
And start the installation process

[image: VirtualBox installation - Windows]
[image: VirtualBox installation - Windows]
Click on “Finish”

[image: VirtualBox installation - Windows]
VirtualBox is now installed. And will automatically be launched

Ubuntu

After you downloaded the package, double click on it. The “Ubuntu Software Center”
will pop up, click on “Install” to start the installation process

[image: VirtualBox installation - Ubuntu]
You will be prompted for administrator password.

At the end of the installation process, launch VirtualBox.

[image: VirtualBox installation - Windows]

Virtual Machine Setup

Now that VirtualBox is installed on the system it is time to setup our Ubuntu VM.

Click the light blue New button in VirtualBox user interface.

Choose a name for the Virtual Machine and select the appropriate VM type and version

[image: Ubuntu VM setup]
Then select the amount of memory you want to assign to the VM,
Ubuntu recommends [https://help.ubuntu.com/community/Installation/SystemRequirements]
at least 512 MB of memory but we are going to need more than that to run GeoNode
refer to System Preparation & Prerequisites sections for details.

[image: Ubuntu VM setup]
Create a new virtual disk for the VM. Againg, refer to System Preparation & Prerequisites
section for details about disk size, for testing purposes 30 GB will be enought.

Now edit the Virtual Machine settigs

[image: Ubuntu VM setup]
Under “Storage” select the empty DVD drive, click on Live CD/DVD as shown below

[image: Ubuntu VM setup]
Click on the DVD icon next to the Optical Drive drop down menu and select the Ubuntu 14.04 .iso
file from your file system

[image: Ubuntu VM setup]
Edit other VM setting if you need to, then click OK.

We are ready to start our Ubuntu VM for the first time. Select it from the main
menu and click on Start

[image: Ubuntu VM start]
Ubuntu will start the boot process

[image: Ubuntu VM boot]
At the end of the boot process you will be asked if you want to Try Ubuntu or Install Ubuntu.
Select the language in the left panel and click on Install Ubuntu

[image: Ubuntu VM install]
The installer will check your internet connection and available disk space. If you
are connected to the internet check the Download updates while installing checkbox.

[image: Ubuntu VM install]
Click on continue. In the page you will configure the partitioning of the disks.
If you recall we have created a new virtual disk during the VM configuration
process for Ubuntu. We are going to assign the entire disk to it. Select
Erase disk and install Ubuntu, then Install Now

[image: Ubuntu VM install]
You will be prompted for confirmation.

Now select the correct time zone for your location, then select the language for the VM
and enter the details for the administrator user.

[image: Ubuntu VM install]
[image: Ubuntu VM install]
[image: Ubuntu VM install]
[image: Ubuntu VM install]
The installation will continue automatically. At the end of the installation process
a pop up window will ask you to restart the system to start using Ubuntu.
Click on Restart Now

[image: Ubuntu VM install]
[image: Ubuntu VM install]
[image: Ubuntu VM install]

Running a VM with Vagrant

In this section you will find instructions on how to setup an Ubuntu 16.04 VM using
`Vagrant`_

Vagrant Setup

	Download and install latest version of VirtualBox [http://download.virtualbox.org/virtualbox/5.1.22/]

	Download Vagrant [https://www.vagrantup.com/downloads] from the official web site [https://www.vagrantup.com/downloads]. Choose the installer matching your operating system and architecture.

Installation process is straightforward, refer to Vagrant official documentation [https://docs.vagrantup.com/v2/installation/index.html] if you encounter any problem.

At the end of the installation process log out your system and log back
in.

Vagrant is going to need a provider [https://docs.vagrantup.com/v2/providers/]
in order to setup the Virtual Machines. VirtualBox is supported out of the box.
Just make sure you install one of the supported versions of VirtualBox [https://docs.vagrantup.com/v2/virtualbox]

Open a terminal and type vagrant version. A message containing the installed
version of Vagrant will be printed on the terminal

Installed Version: 1.7.2
Latest Version: 1.7.4
...

Virtual Machine Setup

Setup of a VM with a Vagrantfile assuming you are on unix.

Starting from a provided Vagrant BOX

$ mkdir geonode && cd geonode
$ vagrant box add geonode-ws.box --name ubuntu/geonode-ws
$ vagrant init ubuntu/geonode-ws

Edit the vagrantfile for more memory (see issue #2076 [https://github.com/GeoNode/geonode/issues/2076]):

config.ssh.username = "ubuntu"
config.ssh.password = "ubuntu"
config.vm.provider "virtualbox" do |vb|
 vb.memory = "4092"
end

Starting from a Vagrant online image

$ mkdir geonode && cd geonode && vagrant init ubuntu/xenial64
Create a working directory and initialize the vagrantfile within

This will create a configuration file called Vagrantfile containing the settings
for the virtual machine, notably the config.vm.box variable set to “ubuntu/xenial64”
will tell Vagrant the specific VM we want to run (Ubuntu 16.04 “Xenial”, 64 bit version)

Edit the vagrantfile for more memory (see issue #2076 [https://github.com/GeoNode/geonode/issues/2076]):

config.vm.provider "virtualbox" do |vb|
 vb.memory = "4092"
end
Uncomment the section related to memory settings and edit that to at least

Vagrant needs a VirtualBox installed on your system to start. Download it and install from VirtualBox.

With the latest bersions of VirtualBox, you may also need to update your Vagrant system. Download and install the latest version from Vagrant.

To start the VM, run

$ vagrant up --provider=virtualbox
Start the virtual machine as defined into the vagrantfile

The first time you run the command it is going to take some since you do not have a
locally available image of the VM. Vagrant will download the VM from the Vagrant
Could [https://vagrantcloud.com/] to your local system.

Bringing machine 'default' up with 'virtualbox' provider...
==> default: Box 'ubuntu/trusty32' could not be found. Attempting to find and install...
default: Box Provider: virtualbox
default: Box Version: >= 0
==> default: Loading metadata for box 'ubuntu/trusty32'
default: URL: https://atlas.hashicorp.com/ubuntu/trusty32
==> default: Adding box 'ubuntu/trusty32' (v20150928.0.0) for provider: virtualbox
default: Downloading: https://atlas.hashicorp.com/ubuntu/boxes/trusty32/versions/20150928.0.0/providers/virtualbox.b
ox
default: Progress: 3% (Rate: 489k/s, Estimated time remaining: 0:11:11)))

At the end of the download process Vagrant will start the VM.

To access the Virtual machine, run

$ vagrant ssh
Get into the box with the vagrant user

Note

You need an SSH client for the previous command to work. Most Linux distributions
come with an SSH installed. If you are using Windows as the guest operating system
install MinGW or Cygwin or Git to obtain a command line SSH client. More information
available here [http://docs-v1.vagrantup.com/v1/docs/getting-started/ssh.html]

You will be connected to the guest Virtual Machine over SSH as user vagrant.

Install GeoNode into Ubuntu

From the GeoNode documentation [http://docs.geonode.org/en/master/tutorials/install_and_admin/quick_install.html#linux]

$ sudo add-apt-repository ppa:geonode/testing #only for workshop
vagrant is already into sudoers

$ sudo apt-get update
update packages

$ sudo apt-get install geonode
download of all required dependencies for installing GeoNode

Warning

The command sudo apt-get install geonode may create issues if your system locale is not correctly configured.

In order to fix this, please follow the procedures below. If everything went well, you can skip those passages

$ sudo locale-gen en_US
$ sudo locale-gen en_US.UTF-8
$ sudo locale-gen it_IT.ISO-8859-1
$ sudo locale-gen it_IT.UTF-8
$ sudo locale-gen it_IT.ISO-8859-15@euro
$ sudo update-locale
Update Locale

$ export LC_ALL=en_US.UTF-8
$ export LANG=en_US.UTF-8
$ export LANGUAGE=en_US.UTF-8
$ sudo dpkg-reconfigure geonode
Export locale env vars and reconfigure geonode

Initialize GeoNode systemwide

$ geonode createsuperuser
a commandline toolkit has been installed systemwide so let's create the superuser of the GeoNode instance
use username: 'geonode' and password: 'geonode'

$ sudo geonode-updateip localhost:8001
tell geonode which is its trusted address.

The geonode-updateip command will automatically fix GeoNode and GeoServer settings using the correct host and port.

You have installed GeoNode! Congratulations!!!

Anyway you don’t have GeoNode available from your local browser. So we have to set a new forwarding port in the vagrantfile:

config.vm.network "forwarded_port", guest: 80, host: 8001
This port has to be the same of that before and equal between guest and host. You can understand this later on.
Again don't use a port lower than 1024 on your host machine (not privileged)!!!

After this you have to reload the vagrant configuration:

$ vagrant reload
reload vagrantfile with the new configuration

Behind the magic

Security hints and tricks

Security in GeoServer is hugely changed with the introduction of OAuth2 [http://docs.geonode.org/en/master/tutorials/admin/geoserver_geonode_security/]

	Be sure that the ports are available to your host machine

config.vm.network "forwarded_port", guest: 80, host: 8001
config.vm.network "forwarded_port", guest: 8080, host: 8080 # Optional,
enable if you don't need to reproduce a fully GeoNode proxied use case
forward another port to the host. You need to 'vagrant reload' to apply the changes

	Double check that the correct GeoNode Base Url has been configure on GeoServer

$ sudo vi /usr/share/geoserver/data/security/role/geonode\ REST\ role\ service/config.xml
edit the configuration of geonode REST role service

Must contain the following value:

<baseUrl>http://localhost:80/</baseUrl>
<!-- base url of geonode web server -->

	Set the correct OAuth2 server FQDN to GeoServer

$ sudo vi /usr/share/geoserver/data/security/filter/geonode-oauth2/config.xml
edit the configuration of GeoServer security for the oauth2 provider

Make sure it contains these values:

<!-- GeoNode accessTokenUri -->
<accessTokenUri>http://localhost/o/token/</accessTokenUri>
<!-- GeoNode userAuthorizationUri -->
<userAuthorizationUri>http://localhost:8001/o/authorize/</userAuthorizationUri>
<!-- GeoServer Public URL -->
<redirectUri>http://localhost:8001/geoserver</redirectUri>
<!-- GeoNode checkTokenEndpointUrl -->
<checkTokenEndpointUrl>http://localhost/api/o/v4/tokeninfo/</checkTokenEndpointUrl>
<!-- GeoNode logoutUri -->
<logoutUri>http://localhost:8001/account/logout/</logoutUri>

	Set the correct OAuth2 Keys to GeoServer

$ sudo vi /usr/share/geoserver/data/security/filter/geonode-oauth2/config.xml
edit the configuration of GeoServer security for the oauth2 provider

Make sure the clientId and clientSecret keys are the same of the GeoNode ones:

<!-- GeoNode OAuth2 Client ID -->
<cliendId>the_geonode_oauth_client_id</cliendId>
<!-- GeoNode OAuth2 Client Secret -->
<clientSecret>the_geonode_oauth_client_secret</clientSecret>

	Check the settings of GeoServer Global Proxy Base and Default Authentication Provider

$ sudo vi /usr/share/geoserver/data/security/auth/geonodeAuthProvider/config.xml
edit configuration of default GeoServer authentication provider
$ sudo vi /usr/share/geoserver/data/global.xml
edit configuration of default GeoServer proxy base url

Change with these values:

<baseUrl>http://localhost:8001/</baseUrl>
<!-- base url of geonode web server -->

Leave the default for this vagrant configuration:

<proxyBaseUrl>http://localhost:80/geoserver</proxyBaseUrl>
<!-- proxy base url of geonode web server -->
<!-- set the port to 8080 if you are forwarding that to the host -->

	Restart the server:

$ sudo service tomcat7 restart
restart Tomcat

Open GeoNode GUI at http://localhost:8001/

GeoNode (vlatest) installation on Ubuntu 16.04

This part of the documentation describes the complete setup process for GeoNode
on an Ubuntu 16.04 machine.

	Install GeoNode Application
	Login

	Packages Installation

	GeoNode Setup

	Create GeoNode DB & Finalize GeoNode Setup
	Databases and Permissions

	Finalize GeoNode Setup

	Setup & Configure HTTPD
	Preliminary Steps & Checks

	Apache Configuration

	Postfix Configuration

	Finalize GeoNode Setup

	Finalize HTTPD Setup

	Install GeoServer Application
	Setup GeoServer

	Test GeoServer

	GeoNode authentication integration

	Finish installation
	Test the installation

Install GeoNode Application

In this section you are going to install all the basic packages and tools needed
for a complete GeoNode installation.

Login

When you first start the Virtual Machine at the end of the boot process
you will be prompted for the user password to login. Enter geo as user
password and press Enter.

[image: User Login]
You are now logged in as user ‘geo’. On the left side of the screen there
is a panel with shortcuts to common applications, launch a the terminal
emulator.

[image: Launch terminal emulator]

Packages Installation

First we are going to install all the software packages we are going to need
for the GeoNode setup. Among others Tomcat 8, PostgreSQL, PostGIS,
Apache HTTP server and Git. Run the following command to install all the
packages

$ sudo apt-get update

$ sudo apt-get install python-virtualenv python-dev libxml2 libxml2-dev libxslt1-dev zlib1g-dev libjpeg-dev libpq-dev libgdal-dev git default-jdk
$ sudo apt-get install build-essential openssh-server gettext nano vim unzip zip patch git-core postfix

$ sudo apt-add-repository ppa:webupd8team/java
$ sudo apt-get update
$ sudo apt-get install oracle-java8-installer

$ sudo apt-add-repository ppa:ubuntugis && sudo apt-get update && sudo apt-get upgrade
$ sudo apt-add-repository ppa:ubuntugis/ppa && sudo apt-get update && sudo apt-get upgrade
$ sudo apt-get install gcc apache2 libapache2-mod-wsgi libgeos-dev libjpeg-dev libpng-dev libpq-dev libproj-dev libxml2-dev libxslt-dev
$ sudo apt-add-repository ppa:ubuntugis/ubuntugis-testing && sudo apt-get update && sudo apt-get upgrade
$ sudo apt-get install gdal-bin libgdal20 libgdal-dev
$ sudo apt-get install python-gdal python-pycurl python-imaging python-pastescript python-psycopg2 python-urlgrabber
$ sudo apt-get install postgresql postgis postgresql-9.5-postgis-scripts postgresql-contrib
$ sudo apt-get install tomcat8

$ sudo apt-get update && sudo apt-get upgrade && sudo apt-get autoremove && sudo apt-get autoclean && sudo apt-get purge && sudo apt-get clean

[image: Install Packages]

Note

If you will be prompted for geo user’s password (geo) and for confirmation twice

[image: Confirm Installation]

Warning

The installation process is going to take several minutes and it will need to download packages from Internet.

At this point we have all the packages we need on the system.

GeoNode Setup

First of all we need to prepare a new Python Virtual Environment:

$ sudo apt install python-pip
$ pip install --upgrade pip
$ pip install --user virtualenv
$ pip install --user virtualenvwrapper
The commands above will install the Python Venv packages

$ export WORKON_HOME=~/Envs
$ mkdir -p $WORKON_HOME
$ source $HOME/.local/bin/virtualenvwrapper.sh
$ printf '\n%s\n%s\n%s' '# virtualenv' 'export WORKON_HOME=~/Envs' 'source $HOME/.local/bin/virtualenvwrapper.sh' >> ~/.bashrc
$ source ~/.bashrc
We have now configured the user environment

$ mkvirtualenv --no-site-packages geonode
Through this command we have created a brand new geonode Virual Environment

$ sudo useradd -m geonode
$ sudo usermod -a -G geonode geo
$ sudo chmod -Rf 775 /home/geonode/
$ sudo su - geo
The commands above are needed only if geo and geonode users have not been already defined

Let’s activate the new geonode Python Virtual Environment:

$ workon geonode

Move into the geonode home folder

$ cd /home/geonode

We are going to install GeoNode as a dependency of a Customized DJango Project

Note

A custom project is a DJango application with ad hoc configuration and folders, which allows you to
extend the original GeoNode code without actually dealing or modifying the main source code.

This will allow you to easily customize your GeoNode instance, modify the theme, add new functionalities and so on,
and also being able to keep updated with the GeoNode latest source code.

For more deails please check https://github.com/GeoNode/geonode-project/tree/master

$ pip install Django==1.8.18
$ django-admin.py startproject --template=https://github.com/GeoNode/geonode-project/archive/2.9.x-rev.zip -e py,rst,json,yml my_geonode

Let’s install the GeoNode dependencies and packages into the Python Virtual Environment:

$ cd my_geonode
$ vim requirements.txt
Make sure requirements contains reference to geonode master branch
-e git://github.com/GeoNode/geonode.git@master#egg=geonode

$ pip install -r requirements.txt
$ pip install -e .
$ pip install pygdal==2.2.1.3
The closest to your `gdal-config --version`

In the next section we are going to setup PostgreSQL Databases for GeoNode and finalize the setup

Create GeoNode DB & Finalize GeoNode Setup

In this section we are going to setup users and databases for GeoNode in PostgreSQL.

Warning

Be sure you have successfully completed the steps in the previous section.

Databases and Permissions

First create the geonode user. GeoNode is going to use this user to access the
database

$ sudo -u postgres createuser -P geonode

You will be prompted asked to set a password for the user. Enter geonode as password

Create geonode database with owner geonode

$ sudo -u postgres createdb -O geonode geonode

And database geonode_data with owner geonode

$ sudo -u postgres createdb -O geonode geonode_data

Switch to user postgres and create PostGIS extension

$ sudo -u postgres psql -d geonode_data -c 'CREATE EXTENSION postgis;'

Then adjust permissions

$ sudo -u postgres psql -d geonode_data -c 'GRANT ALL ON geometry_columns TO PUBLIC;'
$ sudo -u postgres psql -d geonode_data -c 'GRANT ALL ON spatial_ref_sys TO PUBLIC;'
$ sudo -u postgres psql -d geonode_data -c 'GRANT ALL PRIVILEGES ON ALL TABLES IN SCHEMA public TO geonode;'

Now we are going to change user access policy for local connections in file pg_hba.conf

$ sudo vim /etc/postgresql/9.5/main/pg_hba.conf

Scroll down to the bottom of the document. We only need to edit one line. Change

"local" is for Unix domain socket connections only
local all all peer

Into

"local" is for Unix domain socket connections only
local all all trust

Note

If your PostgreSQL database resides on a separate machine, you have to allow
remote access to the databases in the pg_hba.conf for the geonode user and
tell PostgreSQL to accept non local connections in your postgresql.conf file

Then restart PostgreSQL to make the change effective

$ sudo service postgresql restart

PostgreSQL is now ready. To test the configuration try to connect to the geonode
database as geonode

$ psql -U geonode geonode

Finalize GeoNode Setup

Once the DB has been correctly configured, we can finalize the GeoNode setup.

If not already active let’s activate the new geonode Python Virtual Environment:

$ workon geonode

Move into the geonode home folder

$ cd /home/geonode

Move into the my_geonode custom project base folder

$ cd my_geonode

First of all we need to tweak a bit the my_geonode local_settings.
In order to do that, rename the my_geonode/local_settings.py.sample file to my_geonode/local_settings.py end edit it:

$ cp my_geonode/local_settings.py.sample my_geonode/local_settings.py
$ vim my_geonode/local_settings.py

Update the following sections at the accordingly to your server configuration

...
SITE_HOST_NAME = os.getenv('SITE_HOST_NAME', "localhost")
SITE_HOST_PORT = os.getenv('SITE_HOST_PORT', "8000")
SITEURL = os.getenv('SITEURL', "http://%s:%s/" % (SITE_HOST_NAME, SITE_HOST_PORT))

...

EMAIL_ENABLE = True

if EMAIL_ENABLE:
 EMAIL_BACKEND = 'django.core.mail.backends.smtp.EmailBackend'
 EMAIL_HOST = 'localhost'
 EMAIL_PORT = 25
 EMAIL_HOST_USER = ''
 EMAIL_HOST_PASSWORD = ''
 EMAIL_USE_TLS = False
 DEFAULT_FROM_EMAIL = '{{ project_name }} <no-reply@{{ project_name }}>'

...

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.postgresql_psycopg2',
 'NAME': 'geonode',
 'USER': 'geonode',
 'PASSWORD': 'geonode',
 'CONN_TOUT': 900,
 },
 # vector datastore for uploads
 'datastore' : {
 'ENGINE': 'django.contrib.gis.db.backends.postgis',
 'ENGINE': '', # Empty ENGINE name disables
 'NAME': 'geonode_data',
 'USER' : 'geonode',
 'PASSWORD' : 'geonode',
 'HOST' : 'localhost',
 'PORT' : '5432',
 'CONN_TOUT': 900,
 }
}

...

OGC_SERVER_DEFAULT_USER = os.getenv(
 'GEOSERVER_ADMIN_USER', 'admin'
)

OGC_SERVER_DEFAULT_PASSWORD = os.getenv(
 'GEOSERVER_ADMIN_PASSWORD', 'geoserver'
)

...

You may also want to tweak some configuration on my_geonode settings.
This file inherits my_geonode local_settings and set some GeoNode default settings:

$ vim my_geonode/settings.py

Update the following sections at the accordingly to your server configuration

...
Make sure GeoNode recognizes your servers

ALLOWED_HOSTS = # Add here your hosts

...
Modify time zone accordingly

TIME_ZONE = os.getenv('TIME_ZONE', "America/Chicago")

...
Tweak GeoNode behavior with the following settings
(see GeoNode documentation for more details)

CLIENT_RESULTS_LIMIT = 20
API_LIMIT_PER_PAGE = 1000
FREETEXT_KEYWORDS_READONLY = False
RESOURCE_PUBLISHING = False
ADMIN_MODERATE_UPLOADS = False
GROUP_PRIVATE_RESOURCES = False
GROUP_MANDATORY_RESOURCES = True
MODIFY_TOPICCATEGORY = True
USER_MESSAGES_ALLOW_MULTIPLE_RECIPIENTS = True
DISPLAY_WMS_LINKS = True

prevent signing up by default
ACCOUNT_OPEN_SIGNUP = True
ACCOUNT_EMAIL_REQUIRED = True
ACCOUNT_EMAIL_VERIFICATION = 'optional'
ACCOUNT_EMAIL_CONFIRMATION_EMAIL = True
ACCOUNT_EMAIL_CONFIRMATION_REQUIRED = True
ACCOUNT_CONFIRM_EMAIL_ON_GET = True
ACCOUNT_APPROVAL_REQUIRED = True

...
Modify your maps and backgrounds

default map projection
Note: If set to EPSG:4326, then only EPSG:4326 basemaps will work.
DEFAULT_MAP_CRS = "EPSG:3857"

Where should newly created maps be focused?
DEFAULT_MAP_CENTER = (0, 0)

How tightly zoomed should newly created maps be?
0 = entire world;
maximum zoom is between 12 and 15 (for Google Maps, coverage varies by area)
DEFAULT_MAP_ZOOM = 0

ALT_OSM_BASEMAPS = os.environ.get('ALT_OSM_BASEMAPS', False)
CARTODB_BASEMAPS = os.environ.get('CARTODB_BASEMAPS', False)
STAMEN_BASEMAPS = os.environ.get('STAMEN_BASEMAPS', False)
THUNDERFOREST_BASEMAPS = os.environ.get('THUNDERFOREST_BASEMAPS', False)
MAPBOX_ACCESS_TOKEN = os.environ.get('MAPBOX_ACCESS_TOKEN', '')
BING_API_KEY = os.environ.get('BING_API_KEY', None)

MAP_BASELAYERS = [{
...

Enable/Disable the notification system
(see GeoNode documentation for more details)

NOTIFICATION_ENABLED = True

...

Enable/Disable the integrated monitoring system
(see GeoNode documentation for more details)

MONITORING_ENABLED = False

Tweak the logging options

LOGGING = {
...
 "loggers": {
 "django": {
 "handlers": ["console"], "level": "INFO", },
 "geonode": {
 "handlers": ["console"], "level": "INFO", },
 "gsconfig.catalog": {
 "handlers": ["console"], "level": "INFO", },
 "owslib": {
 "handlers": ["console"], "level": "INFO", },
 "pycsw": {
 "handlers": ["console"], "level": "INFO", },
 "{{ project_name }}": {
 "handlers": ["console"], "level": "DEBUG", },
 },
}

Finalize GeoNode Setup & Test

The following Python commands will finalize the setup, configure and create DB tables and download GeoServer.

Warning

Before running the next commands be sure that:

	You have completed all the steps from the beginning of this chapter

	You are located into the my_geonode custom project base folder

	The geonode Python Virtual Environment is enabled

Stop all the services

$ sudo service apache2 stop
$ sudo service tomcat8 stop
Being sure other services are stopped

Cleanup old stuff

	Hard Reset

Warning

This will delete all data you created until now.

$ paver reset_hard
Cleanup folders and old DB Tables

	Hard Reset

Note

This will restore only GeoServer.

$ rm -Rf geoserver
$ rm -Rf downloaded/*.*

Revert to default site settings

You need to revert some customizations of the my_geonode local_settings.
In order to do that, edit the my_geonode/local_settings.py file:

$ vim my_geonode/local_settings.py

Comment the following pieces

...
SITEURL = 'http://localhost'
...
#GEOSERVER_LOCATION = os.getenv(
'GEOSERVER_LOCATION', '{}/geoserver/'.format(SITEURL)
#)

#GEOSERVER_PUBLIC_LOCATION = os.getenv(
'GEOSERVER_PUBLIC_LOCATION', '{}/geoserver/'.format(SITEURL)
#)
...

Being sure folders permissions are correctly set

$ sudo chown -Rf geonode: my_geonode/uploaded/
$ sudo chown -Rf geonode: my_geonode/static*

Setup and start the system in DEV mode

$ paver setup
This command downloads and extract the correct GeoServer version

$ paver sync
This command prepares the DB tables and loads initial data

$ paver start
This command allows you to start GeoNode in development mode

GeoNode and GeoServer in Development mode

The paver start command allows you to start the server in development (DEV) mode.
That means that you will be able to directly do changes to your code and see the results on the browser.

You need to be careful to the different ports of the services. In DEV mode the services will run on:

	GeoNode port 8000 -> http://localhost:8000/

	GeoServer port 8080 -> http://localhost:8080/geoserver

In order to test it, move to http://localhost:8000/

[image: GeoNode Dev Mode]

Setup & Configure HTTPD

In this section we are going to setup Apache HTTP to serve GeoNode.

Preliminary Steps & Checks

	Be sure development (DEV) mode has been stopped

If not already active let’s activate the new geonode Python Virtual Environment:

$ workon geonode

Move into the geonode home folder

$ cd /home/geonode

Move into the my_geonode custom project base folder

$ cd my_geonode

If paver start command is running you need to stop it

$ paver stop

	Restore site settings

You need to restore initial customizations of the my_geonode local_settings.
In order to do that, edit the my_geonode/local_settings.py file:

$ vim my_geonode/local_settings.py

Un-comment the following pieces

...
SITEURL = 'http://localhost'
...
GEOSERVER_LOCATION = os.getenv(
 'GEOSERVER_LOCATION', '{}/geoserver/'.format(SITEURL)
)

GEOSERVER_PUBLIC_LOCATION = os.getenv(
 'GEOSERVER_PUBLIC_LOCATION', '{}/geoserver/'.format(SITEURL)
)
...

Apache Configuration

Navigate to Apache configurations folder

$ cd /etc/apache2/sites-available

And create a new configuration file for GeoNode:

$ sudo vim geonode.conf

Place the following content inside the file

WSGIDaemonProcess geonode python-path=/home/geonode/my_geonode:/home/geo/Envs/geonode/lib/python2.7/site-packages user=www-data threads=15 processes=2

<VirtualHost *:80>
 ServerName http://localhost
 ServerAdmin webmaster@localhost
 DocumentRoot /home/geonode/my_geonode/my_geonode

 LimitRequestFieldSize 32760
 LimitRequestLine 32760

 ErrorLog /var/log/apache2/error.log
 LogLevel warn
 CustomLog /var/log/apache2/access.log combined

 WSGIProcessGroup geonode
 WSGIPassAuthorization On
 WSGIScriptAlias / /home/geonode/my_geonode/my_geonode/wsgi.py

 Alias /static/ /home/geonode/my_geonode/my_geonode/static_root/
 Alias /uploaded/ /home/geonode/my_geonode/my_geonode/uploaded/

 <Directory "/home/geonode/my_geonode/my_geonode/">
 <Files wsgi.py>
 Order deny,allow
 Allow from all
 Require all granted
 </Files>

 Order allow,deny
 Options Indexes FollowSymLinks
 Allow from all
 IndexOptions FancyIndexing
 </Directory>

 <Directory "/home/geonode/my_geonode/my_geonode/static_root/">
 Order allow,deny
 Options Indexes FollowSymLinks
 Allow from all
 Require all granted
 IndexOptions FancyIndexing
 </Directory>

 <Directory "/home/geonode/my_geonode/my_geonode/uploaded/thumbs/">
 Order allow,deny
 Options Indexes FollowSymLinks
 Allow from all
 Require all granted
 IndexOptions FancyIndexing
 </Directory>

 <Directory "/home/geonode/my_geonode/my_geonode/uploaded/avatars/">
 Order allow,deny
 Options Indexes FollowSymLinks
 Allow from all
 Require all granted
 IndexOptions FancyIndexing
 </Directory>

 <Directory "/home/geonode/my_geonode/my_geonode/uploaded/people_group/">
 Order allow,deny
 Options Indexes FollowSymLinks
 Allow from all
 Require all granted
 IndexOptions FancyIndexing
 </Directory>

 <Directory "/home/geonode/my_geonode/my_geonode/uploaded/group/">
 Order allow,deny
 Options Indexes FollowSymLinks
 Allow from all
 Require all granted
 IndexOptions FancyIndexing
 </Directory>

 <Directory "/home/geonode/my_geonode/my_geonode/uploaded/documents/">
 Order allow,deny
 Options Indexes FollowSymLinks
 Allow from all
 Require all granted
 IndexOptions FancyIndexing
 </Directory>

 <Directory "/home/geonode/my_geonode/my_geonode/uploaded/layers/">
 Order allow,deny
 Options Indexes FollowSymLinks
 Allow from all
 Require all granted
 IndexOptions FancyIndexing
 </Directory>

 <Proxy *>
 Order allow,deny
 Allow from all
 </Proxy>

 ProxyPreserveHost On
 ProxyPass /geoserver http://127.0.0.1:8080/geoserver
 ProxyPassReverse /geoserver http://127.0.0.1:8080/geoserver

</VirtualHost>

This sets up a VirtualHost in Apache HTTP server for GeoNode and a reverse proxy
for GeoServer.

Note

In the case that GeoServer is running on a separate machine change the ProxyPass
and ProxyPassReverse accordingly

Now load apache poxy module

$ sudo a2enmod proxy_http

And enable geonode configuration file

$ sudo a2ensite geonode

Postfix Configuration

Postfix is a service allowing the host to send e-mail and notificaions to the users.
In order to make GeoNode being able to send e-mails you will need to enable the service.

$ sudo ufw disable
This will be switch-off the

Edit the postfix configuration in order to allow the service act as a web service

$ sudo vim /etc/postfix/main.cf

Check that at the end of the file the following properties are configured as follows

$ sudo vim /etc/postfix/main.cf

 ...
 recipient_delimiter = +
 inet_interfaces = all
 inet_protocols = all

Finally restart the postfix service

$ sudo service postfix restart

Finalize GeoNode Setup

Once the Apache2 Virtual Host has been correctly configured, we can finalize the GeoNode setup.

If not already active let’s activate the new geonode Python Virtual Environment:

$ workon geonode

Move into the geonode home folder

$ cd /home/geonode

Move into the my_geonode custom project base folder

$ cd my_geonode

First of all we need to tweak a bit the my_geonode local_settings.
In order to do that, edit the my_geonode/local_settings.py file:

$ vim my_geonode/local_settings.py

Double check that exitsting properties match the following and add the missing ones

SITEURL = 'http://localhost'
...
account registration settings
ACCOUNT_OPEN_SIGNUP = True
ACCOUNT_APPROVAL_REQUIRED = False
ACCOUNT_EMAIL_CONFIRMATION_EMAIL = False
ACCOUNT_EMAIL_CONFIRMATION_REQUIRED = False

notification settings
NOTIFICATION_ENABLED = False
NOTIFICATION_LANGUAGE_MODULE = "account.Account"

Queue non-blocking notifications.
NOTIFICATION_QUEUE_ALL = False

pinax.notifications
or notification
NOTIFICATIONS_MODULE = 'pinax.notifications'

if NOTIFICATION_ENABLED:
 INSTALLED_APPS += (NOTIFICATIONS_MODULE,)

#Define email service on GeoNode
EMAIL_ENABLE = False

if EMAIL_ENABLE:
 EMAIL_BACKEND = 'django.core.mail.backends.smtp.EmailBackend'
 EMAIL_HOST = 'localhost'
 EMAIL_PORT = 25
 EMAIL_HOST_USER = ''
 EMAIL_HOST_PASSWORD = ''
 EMAIL_USE_TLS = False
 DEFAULT_FROM_EMAIL = 'My GeoNode <no-reply@geonode.org>'

set to true to have multiple recipients in /message/create/
USER_MESSAGES_ALLOW_MULTIPLE_RECIPIENTS = True

INSTALLED_APPS = INSTALLED_APPS + ('my_geonode',)
...
GEOSERVER_LOCATION = os.getenv(
 'GEOSERVER_LOCATION', '{}/geoserver/'.format(SITEURL)
)

GEOSERVER_PUBLIC_LOCATION = os.getenv(
 'GEOSERVER_PUBLIC_LOCATION', '{}/geoserver/'.format(SITEURL)
)
...
CATALOGUE = {
 'default': {
 # The underlying CSW implementation
 # default is pycsw in local mode (tied directly to GeoNode Django DB)
 'ENGINE': 'geonode.catalogue.backends.pycsw_local',
 # pycsw in non-local mode
 # 'ENGINE': 'geonode.catalogue.backends.pycsw_http',
 # GeoNetwork opensource
 # 'ENGINE': 'geonode.catalogue.backends.geonetwork',
 # deegree and others
 # 'ENGINE': 'geonode.catalogue.backends.generic',

 # The FULLY QUALIFIED base url to the CSW instance for this GeoNode
 'URL': '%s/catalogue/csw' % SITEURL,
 # 'URL': 'http://localhost:8080/geonetwork/srv/en/csw',
 # 'URL': 'http://localhost:8080/deegree-csw-demo-3.0.4/services',

 # login credentials (for GeoNetwork)
 'USER': 'admin',
 'PASSWORD': 'admin',
 }
}
...

In the end the my_geonode/local_settings.py should be something like this

-*- coding: utf-8 -*-
###
#
Copyright (C) 2012 OpenPlans
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
#
###

Django settings for the GeoNode project.
import os
from geonode.settings import *
#
General Django development settings
#

SECRET_KEY = '************************'

SITEURL = 'http://localhost'
SITENAME = 'my_geonode'

Defines the directory that contains the settings file as the LOCAL_ROOT
It is used for relative settings elsewhere.
LOCAL_ROOT = os.path.abspath(os.path.dirname(__file__))

MEDIA_ROOT = os.getenv('MEDIA_ROOT', os.path.join(LOCAL_ROOT, "uploaded"))

STATIC_ROOT = os.getenv('STATIC_ROOT',
 os.path.join(LOCAL_ROOT, "static_root")
)

WSGI_APPLICATION = "my_geonode.wsgi.application"

Load more settings from a file called local_settings.py if it exists
try:
 from local_settings import *
except ImportError:
 pass

Additional directories which hold static files
STATICFILES_DIRS.append(
 os.path.join(LOCAL_ROOT, "static"),
)

Location of url mappings
ROOT_URLCONF = 'my_geonode.urls'

Location of locale files
LOCALE_PATHS = (
 os.path.join(LOCAL_ROOT, 'locale'),
) + LOCALE_PATHS

#
account registration settings
ACCOUNT_OPEN_SIGNUP = True
ACCOUNT_APPROVAL_REQUIRED = False
ACCOUNT_EMAIL_CONFIRMATION_EMAIL = False
ACCOUNT_EMAIL_CONFIRMATION_REQUIRED = False

notification settings
NOTIFICATION_ENABLED = False
NOTIFICATION_LANGUAGE_MODULE = "account.Account"

Queue non-blocking notifications.
NOTIFICATION_QUEUE_ALL = False

pinax.notifications
or notification
NOTIFICATIONS_MODULE = 'pinax.notifications'

if NOTIFICATION_ENABLED:
 INSTALLED_APPS += (NOTIFICATIONS_MODULE,)

#Define email service on GeoNode
EMAIL_ENABLE = False

if EMAIL_ENABLE:
 EMAIL_BACKEND = 'django.core.mail.backends.smtp.EmailBackend'
 EMAIL_HOST = 'localhost'
 EMAIL_PORT = 25
 EMAIL_HOST_USER = ''
 EMAIL_HOST_PASSWORD = ''
 EMAIL_USE_TLS = False
 DEFAULT_FROM_EMAIL = 'My GeoNode <no-reply@geonode.org>'

set to true to have multiple recipients in /message/create/
USER_MESSAGES_ALLOW_MULTIPLE_RECIPIENTS = True
#

INSTALLED_APPS = INSTALLED_APPS + ('my_geonode',)

TEMPLATES[0]['DIRS'].insert(0, os.path.join(LOCAL_ROOT, "templates"))

#
ALLOWED_HOSTS = ['127.0.0.1', 'localhost', '::1']
PROXY_ALLOWED_HOSTS = ("127.0.0.1", 'localhost', '::1')

POSTGIS_VERSION = (2, 0, 7)

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.postgresql_psycopg2',
 'NAME': 'geonode',
 'USER': 'geonode',
 'PASSWORD': 'geonode',
 },
 # vector datastore for uploads
 'datastore' : {
 'ENGINE': 'django.contrib.gis.db.backends.postgis',
 #'ENGINE': '', # Empty ENGINE name disables
 'NAME': 'geonode_data',
 'USER' : 'geonode',
 'PASSWORD' : 'geonode',
 'HOST' : 'localhost',
 'PORT' : '5432',
 }
}

GEOSERVER_LOCATION = os.getenv(
 'GEOSERVER_LOCATION', '{}/geoserver/'.format(SITEURL)
)

GEOSERVER_PUBLIC_LOCATION = os.getenv(
 'GEOSERVER_PUBLIC_LOCATION', '{}/geoserver/'.format(SITEURL)
)

OGC_SERVER_DEFAULT_USER = os.getenv(
 'GEOSERVER_ADMIN_USER', 'admin'
)

OGC_SERVER_DEFAULT_PASSWORD = os.getenv(
 'GEOSERVER_ADMIN_PASSWORD', 'geoserver'
)

OGC (WMS/WFS/WCS) Server Settings
OGC_SERVER = {
 'default': {
 'BACKEND': 'geonode.geoserver',
 'LOCATION': GEOSERVER_LOCATION,
 'LOGIN_ENDPOINT': 'j_spring_oauth2_geonode_login',
 'LOGOUT_ENDPOINT': 'j_spring_oauth2_geonode_logout',
 # PUBLIC_LOCATION needs to be kept like this because in dev mode
 # the proxy won't work and the integration tests will fail
 # the entire block has to be overridden in the local_settings
 'PUBLIC_LOCATION': GEOSERVER_PUBLIC_LOCATION,
 'USER' : OGC_SERVER_DEFAULT_USER,
 'PASSWORD' : OGC_SERVER_DEFAULT_PASSWORD,
 'MAPFISH_PRINT_ENABLED' : True,
 'PRINT_NG_ENABLED' : True,
 'GEONODE_SECURITY_ENABLED' : True,
 'GEOGIG_ENABLED' : False,
 'WMST_ENABLED' : False,
 'BACKEND_WRITE_ENABLED': True,
 'WPS_ENABLED' : False,
 'LOG_FILE': '%s/geoserver/data/logs/geoserver.log' % os.path.abspath(os.path.join(PROJECT_ROOT, os.pardir)),
 # Set to dictionary identifier of database containing spatial data in DATABASES dictionary to enable
 'DATASTORE': 'datastore',
 }
}

CATALOGUE = {
 'default': {
 # The underlying CSW implementation
 # default is pycsw in local mode (tied directly to GeoNode Django DB)
 'ENGINE': 'geonode.catalogue.backends.pycsw_local',
 # pycsw in non-local mode
 # 'ENGINE': 'geonode.catalogue.backends.pycsw_http',
 # GeoNetwork opensource
 # 'ENGINE': 'geonode.catalogue.backends.geonetwork',
 # deegree and others
 # 'ENGINE': 'geonode.catalogue.backends.generic',

 # The FULLY QUALIFIED base url to the CSW instance for this GeoNode
 'URL': '%s/catalogue/csw' % SITEURL,
 # 'URL': 'http://localhost:8080/geonetwork/srv/en/csw',
 # 'URL': 'http://localhost:8080/deegree-csw-demo-3.0.4/services',

 # login credentials (for GeoNetwork)
 'USER': 'admin',
 'PASSWORD': 'admin',
 }
}

ALT_OSM_BASEMAPS = os.environ.get('ALT_OSM_BASEMAPS', False)
CARTODB_BASEMAPS = os.environ.get('CARTODB_BASEMAPS', False)
STAMEN_BASEMAPS = os.environ.get('STAMEN_BASEMAPS', False)
THUNDERFOREST_BASEMAPS = os.environ.get('THUNDERFOREST_BASEMAPS', False)
MAPBOX_ACCESS_TOKEN = os.environ.get('MAPBOX_ACCESS_TOKEN', None)
BING_API_KEY = os.environ.get('BING_API_KEY', None)

MAP_BASELAYERS = [{
 "source": {"ptype": "gxp_olsource"},
 "type": "OpenLayers.Layer",
 "args": ["No background"],
 "name": "background",
 "visibility": False,
 "fixed": True,
 "group":"background"
},
{
"source": {"ptype": "gxp_olsource"},
"type": "OpenLayers.Layer.XYZ",
"title": "TEST TILE",
"args": ["TEST_TILE", "http://test_tiles/tiles/${z}/${x}/${y}.png"],
"name": "background",
"attribution": "© TEST TILE",
"visibility": False,
"fixed": True,
"group":"background"
},
{
 "source": {"ptype": "gxp_osmsource"},
 "type": "OpenLayers.Layer.OSM",
 "name": "mapnik",
 "visibility": True,
 "fixed": True,
 "group": "background"
}]

LOCAL_GEOSERVER = {
 "source": {
 "ptype": "gxp_wmscsource",
 "url": OGC_SERVER['default']['PUBLIC_LOCATION'] + "wms",
 "restUrl": "/gs/rest"
 }
}
baselayers = MAP_BASELAYERS
MAP_BASELAYERS = [LOCAL_GEOSERVER]
MAP_BASELAYERS.extend(baselayers)

LOGGING = {
 'version': 1,
 'disable_existing_loggers': True,
 'formatters': {
 'verbose': {
 'format': '%(levelname)s %(asctime)s %(module)s %(process)d '
 '%(thread)d %(message)s'
 },
 'simple': {
 'format': '%(message)s',
 },
 },
 'filters': {
 'require_debug_false': {
 '()': 'django.utils.log.RequireDebugFalse'
 }
 },
 'handlers': {
 'null': {
 'level': 'ERROR',
 'class': 'django.utils.log.NullHandler',
 },
 'console': {
 'level': 'DEBUG',
 'class': 'logging.StreamHandler',
 'formatter': 'simple'
 },
 'mail_admins': {
 'level': 'ERROR', 'filters': ['require_debug_false'],
 'class': 'django.utils.log.AdminEmailHandler',
 }
 },
 "loggers": {
 "django": {
 "handlers": ["console"], "level": "ERROR", },
 "geonode": {
 "handlers": ["console"], "level": "DEBUG", },
 "gsconfig.catalog": {
 "handlers": ["console"], "level": "DEBUG", },
 "owslib": {
 "handlers": ["console"], "level": "DEBUG", },
 "pycsw": {
 "handlers": ["console"], "level": "ERROR", },
 },
 }
#

Finalize HTTPD Setup

Warning

Those steps must be completed from folder /home/geonode/my_geonode and inside geonode Python Virtual Environment.

Dowload GeoNode data to be served by Apache. You will be prompted for confirmation

$ python manage.py migrate
$ python manage.py collectstatic

Add thumbs and layers folders

$ sudo mkdir -p /home/geonode/my_geonode/my_geonode/uploaded/thumbs
$ sudo mkdir -p /home/geonode/my_geonode/my_geonode/uploaded/layers

Change permissions on GeoNode files and folders to allow Apache to read and edit them

$ sudo chown -Rf geonode /home/geonode/my_geonode/
$ sudo chown -Rf geonode:www-data /home/geonode/my_geonode/my_geonode/static/
$ sudo chown -Rf geonode:www-data /home/geonode/my_geonode/my_geonode/uploaded/
$ chmod -Rf 777 /home/geonode/my_geonode/my_geonode/uploaded/thumbs
$ chmod -Rf 777 /home/geonode/my_geonode/my_geonode/uploaded/layers
$ sudo chown www-data:www-data /home/geonode/my_geonode/my_geonode/static_root/

Finally restart Apache to load the new configuration:

$ sudo service apache2 restart

Install GeoServer Application

In this section we are going to setup GeoServer for GeoNode. GeoServer will run inside
Tomcat sevrlet container.

Setup GeoServer

	You’ve already installed Tomcat 8 in the system in the first section of the training. Before you deploy GeoServer stop the running Tomcat instance

$ sudo service tomcat8 stop

	Now copy the downloaded GeoServer archive inside Tomcat’s webapps folder

$ sudo cp -Rf /home/geonode/my_geonode/geoserver/geoserver/ /var/lib/tomcat8/webapps/

	Move GEOSERVER_DATA_DIR on an external location

$ sudo mkdir -p /data/geoserver-data
$ sudo mkdir -p /data/geoserver-logs
$ sudo mkdir -p /data/gwc_cache_dir
$ sudo cp -Rf /home/geonode/my_geonode/geoserver/data/* /data/geoserver-data/
$ sudo chown -Rf tomcat8: /data/geoserver-data/
$ sudo chown -Rf tomcat8: /data/geoserver-logs/
$ sudo chown -Rf tomcat8: /data/gwc_cache_dir/

	Set default Java settings

You need to edit the /etc/default/tomcat8 file

$ sudo vim /etc/default/tomcat8

Make sure JAVA_OPTS are configured as follows

#JAVA_OPTS="-Djava.awt.headless=true -Xmx128m -XX:+UseConcMarkSweepGC"
GEOSERVER_DATA_DIR="/data/geoserver-data"
GEOSERVER_LOG_LOCATION="/data/geoserver-logs/geoserver.log"
GEOWEBCACHE_CACHE_DIR="/data/gwc_cache_dir"
GEOFENCE_DIR="$GEOSERVER_DATA_DIR/geofence"

JAVA_OPTS="-Djava.awt.headless=true -XX:MaxPermSize=512m -XX:PermSize=128m -Xms512m -Xmx2048m -Duser.timezone=GMT -Dorg.geotools.shapefile.datetime=true -XX:+UseConcMarkSweepGC -XX:+UseParNewGC -XX:ParallelGCThreads=4 -Dfile.encoding=UTF8 -Duser.timezone=GMT -Djavax.servlet.request.encoding=UTF-8 -Djavax.servlet.response.encoding=UTF-8 -DGEOSERVER_DATA_DIR=$GEOSERVER_DATA_DIR -Dgeofence.dir=$GEOFENCE_DIR -DGEOSERVER_LOG_LOCATION=$GEOSERVER_LOG_LOCATION -DGEOWEBCACHE_CACHE_DIR=$GEOWEBCACHE_CACHE_DIR"

Warning

Double check memory options -Xms512m -Xmx2048m are compatible with your VM available RAM

	Set default Catalina settings

You need to edit the /var/lib/tomcat8/conf/catalina.properties file

$ sudo vim /var/lib/tomcat8/conf/catalina.properties

Make sure bcprov*.jar is skipped at run-time

tomcat.util.scan.StandardJarScanFilter.jarsToSkip=\
...
xom-*.jar,\
bcprov*.jar

	Restart Tomcat 8 service

$ sudo service tomcat8 restart

You can follow the start-up logs by running the following shell command

$ sudo tail -F -n 300 /var/lib/tomcat8/logs/catalina.out

Test GeoServer

Now start Tomcat to deploy GeoServer:

sudo service tomcat7 start

Tomcat will extract GeoServer web archive and start GeoServer. This may take some time

Open a web browser (in this example Firefox) and navigate to http://localhost:8080/geoserver

[image: Connecto to GeoServer]
In a few seconds GeoServer web interface will show up:

[image: Connecto to GeoServer]

GeoNode authentication integration

All we need to do now is to integrate GeoNode authentication so that GeoNode
administrator will be able to access and administer GeoServer as well.

	Stop GeoServer

$ sudo service tomcat8 stop

	Edit /data/geoserver-data/security/filter/geonode-oauth2/config.xml with a text editor

$ sudo gedit /data/geoserver-data/security/filter/geonode-oauth2/config.xml

And make sure the following values are configured as follows:

<accessTokenUri>http://localhost/o/token/</accessTokenUri>
<userAuthorizationUri>http://localhost/o/authorize/</userAuthorizationUri>
<redirectUri>http://localhost/geoserver</redirectUri>
<checkTokenEndpointUrl>http://localhost/api/o/v4/tokeninfo/</checkTokenEndpointUrl>
<logoutUri>http://localhost/account/logout/</logoutUri>

	Edit /data/geoserver-data/security/auth/geonodeAuthProvider/config.xml with a text editor

$ sudo gedit /data/geoserver-data/security/auth/geonodeAuthProvider/config.xml

And make sure the following values are configured as follows:

<baseUrl>http://localhost/</baseUrl>

	Edit /data/geoserver-data/security/role/geonode\ REST\ role\ service/config.xml with a text editor

$ sudo gedit /data/geoserver-data/security/role/geonode\ REST\ role\ service/config.xml

And make sure the following values are configured as follows:

<baseUrl>http://localhost</baseUrl>

	Edit /data/geoserver-data/global.xml with a text editor

$ sudo gedit /data/geoserver-data/global.xml

And make sure the following values are configured as follows:

<proxyBaseUrl>http://localhost/geoserver</proxyBaseUrl>

	Restart GeoServer to make the changes effective

$ sudo service tomcat8 restart

You can follow the start-up logs by running the following shell command

$ sudo tail -F -n 300 /var/lib/tomcat8/logs/catalina.out

Finish installation

In previous sections you’ ve setup all the applications we need to run GeoNode.

Test the installation

We are ready to restart GeoNode (Apache) and test the installation.
Restart Apache

$ sudo service apache2 restart

Open the browser and navigate to http://localhost/

GeoNode User interface will show up. Login with admin username and password you
just set.

[image: Test GeoNode 2]
[image: GeoNode admin signin]
Now open the main menu and click on GeoServer

[image: GeoServer admin login]
You will be redirected to GeoServer user interface. You will automatically be
logged in as administrator in GeoServer.

[image: GeoServer Admin]

GeoNode (vlatest) update from older versions

This part of the documentation describes the complete setup process for GeoNode
update from older versions.

	Guidelines
	Update from GeoNode 2.6.3 to GeoNode 2.7+

Guidelines

Update from GeoNode 2.6.3 to GeoNode 2.7+

Backup of the old Environment

Backup of the DataBase

	From “local_settings” or “settings” (vim geonode/local_settings.py) retrieve all the DB connection parameters

[image: ../../../_images/gn_up_0001.png]

	Dump all the DBs

sudo su - postgres
pg_dump -d geonode -U geonode -f /tmp/geonode.dump
pg_dump -d geonode_data -U geonode -f /tmp/geonode_data.dump

Backup of GeoServer

	Backup the old GeoServer binaries

tar czvf /tmp/geoserver.tar.gz geoserver/

	Backup of the GeoServer Data Dir

	As an admin login into GeoServer gui (http://localhost:8080/geoserver/)

	Click on “Server Status” and note the “Data Directory” path

[image: ../../../_images/gn_up_0002.png]
tar czvf /tmp/geoserver_data.tar.gz /home/geosolutions/geonode/geoserver/data/

	Backup of Uploaded/Media and Static files

DJANGO_SETTINGS_MODULE=geonode.local_settings python manage.py print_settings | grep MEDIA_ROOT

[image: ../../../_images/gn_up_0003.png]
tar czvf /tmp/geonode_media.tar.gz /home/geosolutions/geonode/gonode/uploaded

	do the same for STATIC_ROOT, TEMPLATES (all folders listed), LOCALE (all folders listed)

	Backup of the original source code

	Make sure you have everything committed and pushed for your local Git branches

	In case you are working locally, make sure you saved everything before proceeding with the update

Upgrade Development Environment

Prerequisites

	You did backup of the old Environment

	You cloned GeoNode from GitHub (https://github.com/GeoNode/geonode/tree/2.6.x)

Steps

	From geonode git branch do

to refresh all git repos and commits
git pull

get the 2.7.x code: if you want to keep your local copy
WARNING: you will need to fix conflicts manually
git pull origin 2.7.x

if you want to switch to the new branch
git checkout 2.7.x
git pull

	Update the Python libraries

	Exit from the current workspace

deactivate

	Create a new workspace

mkvirtualenv geonode-2.7.x

	Update the requirements

pip install pip --upgrade
pip install -r requirements.txt
pip install -e .
pip install pygdal==2.2.1.3

	Update the DB

DJANGO_SETTINGS_MODULE=geonode.local_settings paver sync

	Download the latest GeoServer WAR (http://build.geonode.org/geoserver/latest/geoserver-2.12.x.war)

[image: ../../../_images/gn_up_0004.png]

	Stop GeoServer

	Extract the WAR content and/or substitute the old one

move the old one
mv geoserver/ geoserver_old/

create an ampty folder for the new one
mkdir geoserver
cd geoserver

unzip the new GeoServer to the new folder
unzip /home/geosolutions/Downloads/geoserver-2.12.x.war

	Delete the notifier configuration by deleting the content of the GEOSERVER_DATA_DIR/notifier folder

	Delete the printing configuration by deleting the content of the GEOSERVER_DATA_DIR/printing folder

	Insert the content of the 2.12.x data dir (http://build.geonode.org/geoserver/latest/data-2.12.x.zip),
specifically:

	The content of data/notifier, into the GEOSERVER_DATA_DIR/notifier folder.

	The content of data/monitoring, into the GEOSERVER_DATA_DIR/monitoring folder.

	The content of data/styles, into the GEOSERVER_DATA_DIR/styles folder.

	The content of data/user_projections, into the GEOSERVER_DATA_DIR/user_projections folder.

	Update the GEOSERVER_DATA_DIR/geofence/geofence-server.properties as follows

Left file: D:\tmp\data-2.12.x\data\geofence\geofence-server.properties
Right file: D:\tmp\data-2.9.x-oauth2\data\geofence\geofence-server.properties
13 useRolesToFilter=false = 13 useRolesToFilter=false
14 acceptedRoles= 14 acceptedRoles=
15 15
16 16
17 ### Cache configuration 17 ### Cache configuration
18 18
--
19 cacheSize=500000 <> 19 cacheSize=50000
20 cacheRefresh=6000000 20 cacheRefresh=600000
21 cacheExpire=6000000 21 cacheExpire=600000
--
22 =
--
23 gwc.context.suffix=gwc +-
24 org.geoserver.rest.DefaultUserGroupServiceName=geonode REST role service
--

	Create/modify GEOSERVER_DATA_DIR/gwc/geowebcache-diskquota.xml as follows

File: D:\tmp\data-2.12.x\data\gwc\geowebcache-diskquota.xml
1 <gwcQuotaConfiguration> +-
2 <enabled>false</enabled>
3 <cacheCleanUpFrequency>10</cacheCleanUpFrequency>
4 <cacheCleanUpUnits>SECONDS</cacheCleanUpUnits>
5 <maxConcurrentCleanUps>2</maxConcurrentCleanUps>
6 <globalExpirationPolicyName>LRU</globalExpirationPolicyName>
7 <globalQuota>
8 <value>500</value>
9 <units>MiB</units>
10 </globalQuota>
11 <quotaStore>H2</quotaStore>
12 </gwcQuotaConfiguration>
--

	Create/modify GEOSERVER_DATA_DIR/logs/gwc-gs.xml as follows

Left file: D:\tmp\data-2.12.x\data\gwc-gs.xml
Right file: D:\tmp\data-2.9.x-oauth2\data\gwc-gs.xml
2 <version>1.1.0</version> = 2 <version>1.1.0</version>
3 <directWMSIntegrationEnabled>true</directWMSIntegrationEnabled> 3 <directWMSIntegrationEnabled>true</directWMSIntegrationEnabled>
4 <WMSCEnabled>true</WMSCEnabled> 4 <WMSCEnabled>true</WMSCEnabled>
5 <TMSEnabled>true</TMSEnabled> 5 <TMSEnabled>true</TMSEnabled>
6 <securityEnabled>false</securityEnabled> 6 <securityEnabled>false</securityEnabled>
7 <innerCachingEnabled>false</innerCachingEnabled> 7 <innerCachingEnabled>false</innerCachingEnabled>
--
8 <persistenceEnabled>true</persistenceEnabled> <> 8 <persistenceEnabled>false</persistenceEnabled>
--
9 <cacheProviderClass>class org.geowebcache.storage.blobstore.memory.guava.GuavaCacheProvider</cacheProviderClass> = 9 <cacheProviderClass>class org.geowebcache.storage.blobstore.memory.guava.GuavaCacheProvider</cacheProviderClass>
10 <cacheConfigurations> 10 <cacheConfigurations>
11 <entry> 11 <entry>
12 <string>class org.geowebcache.storage.blobstore.memory.guava.GuavaCacheProvider</string> 12 <string>class org.geowebcache.storage.blobstore.memory.guava.GuavaCacheProvider</string>
13 <InnerCacheConfiguration> 13 <InnerCacheConfiguration>
14 <hardMemoryLimit>16</hardMemoryLimit> 14 <hardMemoryLimit>16</hardMemoryLimit>
--
--
26 <defaultCachingGridSetIds> = 26 <defaultCachingGridSetIds>
27 <string>EPSG:4326</string> 27 <string>EPSG:4326</string>
28 <string>EPSG:900913</string> 28 <string>EPSG:900913</string>
29 </defaultCachingGridSetIds> 29 </defaultCachingGridSetIds>
30 <defaultCoverageCacheFormats> 30 <defaultCoverageCacheFormats>
31 <string>image/png</string> 31 <string>image/png</string>
--
32 <string>image/vnd.jpeg-png</string> +-
--
33 <string>image/jpeg</string> = 32 <string>image/jpeg</string>
34 <string>image/gif</string> 33 <string>image/gif</string>
35 <string>image/png8</string> 34 <string>image/png8</string>
36 </defaultCoverageCacheFormats> 35 </defaultCoverageCacheFormats>
37 <defaultVectorCacheFormats> 36 <defaultVectorCacheFormats>
--
38 <string>application/json;type=utfgrid</string> +-
--
39 <string>image/png</string> = 37 <string>image/png</string>
--
40 <string>image/vnd.jpeg-png</string> +-
--
41 <string>image/jpeg</string> = 38 <string>image/jpeg</string>
42 <string>image/gif</string> 39 <string>image/gif</string>
43 <string>image/png8</string> 40 <string>image/png8</string>
44 </defaultVectorCacheFormats> 41 </defaultVectorCacheFormats>
45 <defaultOtherCacheFormats> 42 <defaultOtherCacheFormats>
46 <string>image/png</string> 43 <string>image/png</string>
--
 -+ 44 <string>image/jpeg</string>
 45 <string>image/gif</string>
 46 <string>image/png8</string>
--
47 </defaultOtherCacheFormats> = 47 </defaultOtherCacheFormats>
48 </GeoServerGWCConfig> 48 </GeoServerGWCConfig>
--

	Create/modify GEOSERVER_DATA_DIR/logs/QUIET_LOGGING.properties as follows

This log4j configuration file needs to stay here, and is used as the default logging setup
during data_dir upgrades and in case the chosen logging config isn't available.
##
As GeoTools uses java.util.logging logging instead of log4j, GeoServer makes
the following mappings to adjust the log4j levels specified in this file to
the GeoTools logging system:
##
Log4J Level java.util.logging Level
--
ALL FINEST
TRACE FINER
DEBUG FINE (includes CONFIG)
INFO INFO
ERROR/ERROR ERRORING
ERROR SEVERE
OFF OFF

log4j.rootLogger=OFF, stdout

log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d{dd MMM HH:mm:ss} %p [%c{2}] - %m%n

	Create/modify GEOSERVER_DATA_DIR/logs/TEST_LOGGING.properties as follows

This log4j configuration file needs to stay here, and is used as the default logging setup
during data_dir upgrades and in case the chosen logging config isn't available.
##
As GeoTools uses java.util.logging logging instead of log4j, GeoServer makes
the following mappings to adjust the log4j levels specified in this file to
the GeoTools logging system:
##
Log4J Level java.util.logging Level
--
ALL FINEST
TRACE FINER
DEBUG FINE (includes CONFIG)
INFO INFO
ERROR/ERROR ERRORING
ERROR SEVERE
OFF OFF

log4j.rootLogger=ERROR, stdout

log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d{dd MMM HH:mm:ss} %p [%c{2}] - %m%n

GEOTOOLS_DEVELOPER_LOGGING.properties

log4j.category.org.geotools=ERROR
log4j.category.org.geotools.factory=ERROR
log4j.category.org.geoserver=ERROR
log4j.category.org.vfny.geoserver=ERROR

log4j.category.org.springframework=ERROR

wicket tester
log4j.category.org.apache.wicket.util.tester=INFO

	Delete old security configuration files, in particular delete the following folders:

- GEOSERVER_DATA_DIR/security/auth/geonodeAuthProvider
- GEOSERVER_DATA_DIR/security/filter/geonodeAnonymousFilter
- GEOSERVER_DATA_DIR/security/filter/geonodeCookieFilter

	Update/modify the GEOSERVER_DATA_DIR/security as follows

	./filter/geonode-oauth2/config.xml

Left file: D:\tmp\data-2.12.x\data\security\filter\geonode-oauth2\config.xml
Right file: D:\tmp\data-2.9.x-oauth2\data\security\filter\geonode-oauth2\config.xml
17 <!-- GeoServer Public URL --> 17 <!-- GeoServer Public URL -->
--
18 <redirectUri>http://localhost:8080/geoserver/index.html</redirectUri> <> 18 <redirectUri>http://localhost:8080/geoserver</redirectUri>
--

	./role/geonode REST role service/config.xml

Left file: D:\tmp\data-2.12.x\data\security\role\geonode REST role service\config.xml
Right file: D:\tmp\data-2.9.x-oauth2\data\security\role\geonode REST role service\config.xml
12 <adminRoleJSONPath>$.adminRole</adminRoleJSONPath> 13 <adminRoleJSONPath>$.adminRole</adminRoleJSONPath>
--
13 <usersJSONPath>$.users[?(@.username=='${username}')].groups</usersJSONPath> <> 14 <usersJSONPath>$.users[0].groups</usersJSONPath>
14 <cacheConcurrencyLevel>4</cacheConcurrencyLevel>
15 <cacheMaximumSize>60000</cacheMaximumSize>
16 <cacheExpirationTime>60000</cacheExpirationTime>
--
17 </authKeyRESTRoleService> = 15 </authKeyRESTRoleService>
--

	./config.xml

Left file: D:\tmp\data-2.12.x\data\security\config.xml
Right file: D:\tmp\data-2.9.x-oauth2\data\security\config.xml
 -+ 2 <roleServiceName>geonode REST role service</roleServiceName>
--
--
27 <filters name="gwc" class="org.geoserver.security.ServiceLoginFilterChain" interceptorName="restInterceptor" exceptionTranslationName="exception" path="/gwc/**" disabled="false" allowSessionCreation="false" ssl="false" matchHTTPMethod="false"> <> 28 <filters name="gwc" class="org.geoserver.security.ServiceLoginFilterChain" interceptorName="restInterceptor" exceptionTranslationName="exception" path="/gwc/rest/**" disabled="false" allowSessionCreation="false" ssl="false" matchHTTPMethod="false">
--
--
30 <filter>anonymous</filter> +-
31 </filters>
32 <filters name="geofence-rest" class="org.geoserver.security.ServiceLoginFilterChain" interceptorName="restInterceptor" exceptionTranslationName="exception" path="/geofence/rest/**" disabled="false" allowSessionCreation="false" ssl="false" matchHTTPMethod="false">
33 <filter>basic</filter>
34 <filter>geonode-oauth2</filter>
35 <filter>anonymous</filter>
36 </filters>
37 <filters name="geofence" class="org.geoserver.security.ServiceLoginFilterChain" interceptorName="interceptor" exceptionTranslationName="exception" path="/geofence/**" disabled="false" allowSessionCreation="false" ssl="false" matchHTTPMethod="false">
38 <filter>basic</filter>
39 <filter>geonode-oauth2</filter>
40 <filter>anonymous</filter>
--
--
52 <bruteForcePrevention> +-
53 <enabled>true</enabled>
54 <minDelaySeconds>1</minDelaySeconds>
55 <maxDelaySeconds>5</maxDelaySeconds>
56 <maxBlockedThreads>100</maxBlockedThreads>
57 <whitelistedMasks>
58 <string>127.0.0.1</string>
59 </whitelistedMasks>
60 </bruteForcePrevention>
--

	./rest.properties

Left file: D:\tmp\data-2.12.x\data\security\rest.properties
Right file: D:\tmp\data-2.9.x-oauth2\data\security\rest.properties
--
18 /rest/monitor/*;GET=ROLE_ADMINISTRATOR +-
19 /geofence/rest/*;GET,POST,DELETE,PUT=ROLE_ADMINISTRATOR
--
--
21 /**;POST,DELETE,PUT=ROLE_AUTHENTICATED <> 4 /**;POST,DELETE,PUT=ROLE_ADMINISTRATOR
--

Note

In case of dubts you can always try to do a “diff” between your old GEOSERVER_DATA_DIR and http://build.geonode.org/geoserver/latest/data-2.12.x.zip

	Update/tweak GeoNode settings.py

	Add LOGIN_REDIRECT_URL

LOGIN_REDIRECT_URL = '/'

	Modify INSTALLED_APPS as follows

Left file: D:\work\code\python\geonode\geonode-2.7.x\geonode\settings.py
Right file: D:\work\code\python\geonode\geonode-2.6.x\geonode\settings.py
281 # GeoServer Apps = 269 # GeoServer Apps
282 # Geoserver needs to come last because 270 # Geoserver needs to come last because
283 # it's signals may rely on other apps' signals. 271 # it's signals may rely on other apps' signals.
284 'geonode.geoserver', 272 'geonode.geoserver',
285 'geonode.upload', 273 'geonode.upload',
286 'geonode.tasks', 274 'geonode.tasks',
--
287 'geonode.messaging', +-
--
288 = 275
289) 276)
290 277
291 GEONODE_CONTRIB_APPS = (278 GEONODE_CONTRIB_APPS = (
292 # GeoNode Contrib Apps 279 # GeoNode Contrib Apps
--
293 # 'geonode.contrib.dynamic', <> 280 'geonode.contrib.dynamic',
294 # 'geonode.contrib.exif', 281 'geonode.contrib.exif',
295 # 'geonode.contrib.favorite', 282 'geonode.contrib.favorite',
296 # 'geonode.contrib.geogig', 283 'geonode.contrib.geogig',
297 # 'geonode.contrib.geosites', 284 'geonode.contrib.geosites',
298 # 'geonode.contrib.nlp', 285 'geonode.contrib.nlp',
299 # 'geonode.contrib.slack', 286 'geonode.contrib.slack',
--
300 # 'geonode.contrib.createlayer', =
301 # 'geonode.contrib.datastore_shards',
--
302 'geonode.contrib.metadataxsl', <> 287 'geonode.contrib.metadataxsl'
303 'geonode.contrib.api_basemaps',
304 'geonode.contrib.ows_api',
--
305) = 288)
306 289
307 # Uncomment the following line to enable contrib apps 290 # Uncomment the following line to enable contrib apps
--
308 GEONODE_APPS = GEONODE_CONTRIB_APPS + GEONODE_APPS <> 291 # GEONODE_APPS = GEONODE_APPS + GEONODE_CONTRIB_APPS
--
309 = 292
310 INSTALLED_APPS = (293 INSTALLED_APPS = (
311 294
312 'modeltranslation', 295 'modeltranslation',
313 296
314 # Boostrap admin theme 297 # Boostrap admin theme
--
--
334 'taggit', = 317 'taggit',
335 'treebeard', 318 'treebeard',
336 'friendlytagloader', 319 'friendlytagloader',
337 'geoexplorer', 320 'geoexplorer',
338 'leaflet', 321 'leaflet',
339 'django_extensions', 322 'django_extensions',
--
340 'django_basic_auth', <> 323 #'geonode-client',
--
341 # 'haystack', = 324 # 'haystack',
342 'autocomplete_light', 325 'autocomplete_light',
343 'mptt', 326 'mptt',
344 # 'modeltranslation', 327 # 'modeltranslation',
345 # 'djkombu', 328 # 'djkombu',
--
346 # 'djcelery', <> 329 'djcelery',
--
347 # 'kombu.transport.django', = 330 # 'kombu.transport.django',
348
349 'storages', 331 'storages',
--
350 'floppyforms', +-
--
351 = 332
352 # Theme 333 # Theme
--
 -+ 334 "pinax_theme_bootstrap_account",
--
353 "pinax_theme_bootstrap", = 335 "pinax_theme_bootstrap",
354 'django_forms_bootstrap', 336 'django_forms_bootstrap',
355 337
356 # Social 338 # Social
357 'account', 339 'account',
358 'avatar', 340 'avatar',
--
--
364 'actstream', = 345 'actstream',
365 'user_messages', 346 'user_messages',
366 'tastypie', 347 'tastypie',
367 'polymorphic', 348 'polymorphic',
368 'guardian', 349 'guardian',
369 'oauth2_provider', 350 'oauth2_provider',
--
370 'corsheaders', +-
--
371 = 351
--
372 'invitations', +-
--
373) + GEONODE_APPS = 352) + GEONODE_APPS
--

	Add MONITORING flags as follows

MONITORING_ENABLED = False

how long monitoring data should be stored
MONITORING_DATA_TTL = timedelta(days=7)

this will disable csrf check for notification config views,
use with caution - for dev purpose only
MONITORING_DISABLE_CSRF = False

	Update LOGGING handlers as follows

Left file: D:\work\code\python\geonode\geonode-2.7.x\geonode\settings.py
Right file: D:\work\code\python\geonode\geonode-2.6.x\geonode\settings.py
396 'filters': { = 366 'filters': {
397 'require_debug_false': { 367 'require_debug_false': {
398 '()': 'django.utils.log.RequireDebugFalse' 368 '()': 'django.utils.log.RequireDebugFalse'
399 } 369 }
400 }, 370 },
401 'handlers': { 371 'handlers': {
--
 -+ 372 'null': {
 373 'level': 'ERROR',
 374 'class': 'django.utils.log.NullHandler',
 375 },
--
402 'console': { = 376 'console': {
403 'level': 'ERROR', 377 'level': 'ERROR',
404 'class': 'logging.StreamHandler', 378 'class': 'logging.StreamHandler',
405 'formatter': 'simple' 379 'formatter': 'simple'
406 }, 380 },
407 'mail_admins': { 381 'mail_admins': {
--
--
410 } = 384 }
411 }, 385 },
412 "loggers": { 386 "loggers": {
413 "django": { 387 "django": {
414 "handlers": ["console"], "level": "ERROR", }, 388 "handlers": ["console"], "level": "ERROR", },
415 "geonode": { 389 "geonode": {
--
416 "handlers": ["console"], "level": "ERROR", }, +-
417 "geonode.qgis_server": {
--
418 "handlers": ["console"], "level": "ERROR", }, = 390 "handlers": ["console"], "level": "ERROR", },
419 "gsconfig.catalog": { 391 "gsconfig.catalog": {
420 "handlers": ["console"], "level": "ERROR", }, 392 "handlers": ["console"], "level": "ERROR", },
421 "owslib": { 393 "owslib": {
422 "handlers": ["console"], "level": "ERROR", }, 394 "handlers": ["console"], "level": "ERROR", },
423 "pycsw": { 395 "pycsw": {
424 "handlers": ["console"], "level": "ERROR", }, 396 "handlers": ["console"], "level": "ERROR", },
425 }, 397 },
426 } 398 }
--

	Update MIDDLEWARE and SECURITY flags as follows

Left file: D:\work\code\python\geonode\geonode-2.7.x\geonode\settings.py
Right file: D:\work\code\python\geonode\geonode-2.6.x\geonode\settings.py
458 MIDDLEWARE_CLASSES = (= 430 MIDDLEWARE_CLASSES = (
--
459 'corsheaders.middleware.CorsMiddleware', +-
--
460 'django.middleware.common.CommonMiddleware', = 431 'django.middleware.common.CommonMiddleware',
461 'django.contrib.sessions.middleware.SessionMiddleware', 432 'django.contrib.sessions.middleware.SessionMiddleware',
462 'django.contrib.messages.middleware.MessageMiddleware', 433 'django.contrib.messages.middleware.MessageMiddleware',
463 434
464 # The setting below makes it possible to serve different languages per 435 # The setting below makes it possible to serve different languages per
465 # user depending on things like headers in HTTP requests. 436 # user depending on things like headers in HTTP requests.
--
--
467 'pagination.middleware.PaginationMiddleware', = 438 'pagination.middleware.PaginationMiddleware',
468 'django.middleware.csrf.CsrfViewMiddleware', 439 'django.middleware.csrf.CsrfViewMiddleware',
469 'django.contrib.auth.middleware.AuthenticationMiddleware', 440 'django.contrib.auth.middleware.AuthenticationMiddleware',
470 'django.middleware.clickjacking.XFrameOptionsMiddleware', 441 'django.middleware.clickjacking.XFrameOptionsMiddleware',
471 442
472 # Security settings
--
473 'django.middleware.security.SecurityMiddleware', +-
--
474 =
475 # This middleware allows to print private layers for the users that have 443 # This middleware allows to print private layers for the users that have
476 # the permissions to view them. 444 # the permissions to view them.
477 # It sets temporary the involved layers as public before restoring the 445 # It sets temporary the involved layers as public before restoring the
478 # permissions. 446 # permissions.
479 # Beware that for few seconds the involved layers are public there could be 447 # Beware that for few seconds the involved layers are public there could be
--
--
485 # django-oauth-toolkit. =
486 'django.contrib.auth.middleware.SessionAuthenticationMiddleware', 453 'django.contrib.auth.middleware.SessionAuthenticationMiddleware',
487 'oauth2_provider.middleware.OAuth2TokenMiddleware', 454 'oauth2_provider.middleware.OAuth2TokenMiddleware',
488) 455)
489 456
490 # Security stuff
--
491 MIDDLEWARE_CLASSES += ('django.middleware.security.SecurityMiddleware',) +-
492 SESSION_COOKIE_SECURE = False
493 CSRF_COOKIE_SECURE = False
494 CSRF_COOKIE_HTTPONLY = False
495 X_FRAME_OPTIONS = 'DENY'
496 SECURE_CONTENT_TYPE_NOSNIFF = True
497 SECURE_BROWSER_XSS_FILTER = True
498 SECURE_SSL_REDIRECT = False
499 SECURE_HSTS_SECONDS = 3600
500 SECURE_HSTS_INCLUDE_SUBDOMAINS = True
--
501 = 457
502 # Replacement of default authentication backend in order to support 458 # Replacement of default authentication backend in order to support
503 # permissions per object. 459 # permissions per object.
504 AUTHENTICATION_BACKENDS = (460 AUTHENTICATION_BACKENDS = (
505 'oauth2_provider.backends.OAuth2Backend', 461 'oauth2_provider.backends.OAuth2Backend',
506 'django.contrib.auth.backends.ModelBackend', 462 'django.contrib.auth.backends.ModelBackend',
--
--
529 # Whether the uplaoded resources should be public and downloadable by default = 485 # Whether the uplaoded resources should be public and downloadable by default
530 # or not 486 # or not
531 DEFAULT_ANONYMOUS_VIEW_PERMISSION = strtobool(487 DEFAULT_ANONYMOUS_VIEW_PERMISSION = strtobool(
532 os.getenv('DEFAULT_ANONYMOUS_VIEW_PERMISSION', 'True') 488 os.getenv('DEFAULT_ANONYMOUS_VIEW_PERMISSION', 'True')
533) 489)
534 DEFAULT_ANONYMOUS_DOWNLOAD_PERMISSION = strtobool(490 DEFAULT_ANONYMOUS_DOWNLOAD_PERMISSION = strtobool(
--
535 os.getenv('DEFAULT_ANONYMOUS_DOWNLOAD_PERMISSION', 'True') <> 491 os.getenv('DEFAULT_ANONYMOUS_VIEW_PERMISSION', 'True')
--
536) = 492)
537 493
538 # 494 #
539 # Settings for default search size 495 # Settings for default search size
540 # 496 #
541 DEFAULT_SEARCH_SIZE = int(os.getenv('DEFAULT_SEARCH_SIZE', '10')) 497 DEFAULT_SEARCH_SIZE = int(os.getenv('DEFAULT_SEARCH_SIZE', '10'))
--
--
565 'USE_JSONFIELD': True, = 521 'USE_JSONFIELD': True,
566 'GFK_FETCH_DEPTH': 1, 522 'GFK_FETCH_DEPTH': 1,
567 } 523 }
568 524
569
570 # prevent signing up by default 525 # Settings for Social Apps
--
571 ACCOUNT_OPEN_SIGNUP = True <> 526 REGISTRATION_OPEN = strtobool(os.getenv('REGISTRATION_OPEN', 'False'))
--
572 =
573 ACCOUNT_EMAIL_CONFIRMATION_EMAIL = strtobool(527 ACCOUNT_EMAIL_CONFIRMATION_EMAIL = strtobool(
574 os.getenv('ACCOUNT_EMAIL_CONFIRMATION_EMAIL', 'False') 528 os.getenv('ACCOUNT_EMAIL_CONFIRMATION_EMAIL', 'False')
575) 529)
576 ACCOUNT_EMAIL_CONFIRMATION_REQUIRED = strtobool(530 ACCOUNT_EMAIL_CONFIRMATION_REQUIRED = strtobool(
577 os.getenv('ACCOUNT_EMAIL_CONFIRMATION_REQUIRED', 'False') 531 os.getenv('ACCOUNT_EMAIL_CONFIRMATION_REQUIRED', 'False')
578) 532)
579 ACCOUNT_APPROVAL_REQUIRED = strtobool(533 ACCOUNT_APPROVAL_REQUIRED = strtobool(
580 os.getenv('ACCOUNT_APPROVAL_REQUIRED', 'False') 534 os.getenv('ACCOUNT_APPROVAL_REQUIRED', 'False')
581) 535)
--

	Update the Uploader Settings as follows

UPLOADER = {
 'BACKEND': 'geonode.rest',
 'OPTIONS': {
 'TIME_ENABLED': False,
 'MOSAIC_ENABLED': False,
 'GEOGIG_ENABLED': False,
 },
 'SUPPORTED_CRS': [
 'EPSG:4326',
 'EPSG:3785',
 'EPSG:3857',
 'EPSG:900913',
 'EPSG:32647',
 'EPSG:32736'
],
 'SUPPORTED_EXT': [
 '.shp',
 '.csv',
 '.kml',
 '.kmz',
 '.json',
 '.geojson',
 '.tif',
 '.tiff',
 '.geotiff',
 '.gml',
 '.xml'
]
}

	Update/modify NOTIFICATIONS settings as follows

Left file: D:\work\code\python\geonode\geonode-2.7.x\geonode\settings.py
Right file: D:\work\code\python\geonode\geonode-2.6.x\geonode\settings.py
1099 # notification settings =
--
1100 NOTIFICATION_ENABLED = True or TEST +-
1101 PINAX_NOTIFICATIONS_LANGUAGE_MODEL = "account.Account"
--
1102 =
1103 # notifications backends
--
1104 _EMAIL_BACKEND = "pinax.notifications.backends.email.EmailBackend" +-
1105 PINAX_NOTIFICATIONS_BACKENDS = [
1106 ("email", _EMAIL_BACKEND),
1107]
--
1108 =
1109 # Queue non-blocking notifications. 969 # Queue non-blocking notifications.
--
1110 PINAX_NOTIFICATIONS_QUEUE_ALL = False <> 970 NOTIFICATION_QUEUE_ALL = False
1111 PINAX_NOTIFICATIONS_LOCK_WAIT_TIMEOUT = -1
--
1112 = 971
1113 # explicitly define NOTIFICATION_LOCK_LOCATION
1114 # NOTIFICATION_LOCK_LOCATION = <path>
1115
1116 # pinax.notifications
1117 # or notification 972 # notification settings
--
1118 NOTIFICATIONS_MODULE = 'pinax.notifications' <> 973 NOTIFICATION_LANGUAGE_MODULE = "account.Account"
--
1119 =
1120 # set to true to have multiple recipients in /message/create/
--
1121 USER_MESSAGES_ALLOW_MULTIPLE_RECIPIENTS = False +-
--
1122 =
--
1123 if NOTIFICATION_ENABLED: +-
1124 if NOTIFICATIONS_MODULE not in INSTALLED_APPS:
1125 INSTALLED_APPS += (NOTIFICATIONS_MODULE,)
--

	Update/modify CELERY settings as follows

Left file: D:\work\code\python\geonode\geonode-2.7.x\geonode\settings.py
Right file: D:\work\code\python\geonode\geonode-2.6.x\geonode\settings.py
1127 # async signals can be the same as broker url =
1128 # but they should have separate setting anyway
1129 # use amqp:// for local rabbitmq server
--
1130 ASYNC_SIGNALS_BROKER_URL = 'memory://' +-
--
1131 =
--
1132 CELERY_BROKER_URL = os.getenv('BROKER_URL', "amqp://") <> 974 BROKER_URL = os.getenv('BROKER_URL', "django://")
 975 CELERY_ALWAYS_EAGER = True
 976 CELERY_EAGER_PROPAGATES_EXCEPTIONS = True
 977 CELERY_IGNORE_RESULT = True
 978 CELERY_SEND_EVENTS = False
--
1133 CELERY_RESULT_BACKEND = None = 979 CELERY_RESULT_BACKEND = None
--
1134 CELERY_TASK_ALWAYS_EAGER = True # set this to False in order to run async +-
1135 CELERY_TASK_IGNORE_RESULT = True
1136 CELERY_TASK_DEFAULT_QUEUE = "default"
1137 CELERY_TASK_DEFAULT_EXCHANGE = "default"
1138 CELERY_TASK_DEFAULT_EXCHANGE_TYPE = "direct"
1139 CELERY_TASK_DEFAULT_ROUTING_KEY = "default"
1140 CELERY_TASK_CREATE_MISSING_QUEUES = True
--
1141 CELERY_TASK_RESULT_EXPIRES = 1 = 980 CELERY_TASK_RESULT_EXPIRES = 1
--
1142 CELERY_WORKER_DISABLE_RATE_LIMITS = True <> 981 CELERY_DISABLE_RATE_LIMITS = True
 982 CELERY_DEFAULT_QUEUE = "default"
 983 CELERY_DEFAULT_EXCHANGE = "default"
 984 CELERY_DEFAULT_EXCHANGE_TYPE = "direct"
1143 CELERY_WORKER_SEND_TASK_EVENTS = False 985 CELERY_DEFAULT_ROUTING_KEY = "default"
1144 986 CELERY_CREATE_MISSING_QUEUES = True
1145 CELERY_QUEUES = [987 CELERY_IMPORTS = (
1146 Queue('default', routing_key='default'), 988 'geonode.tasks.deletion',
1147 Queue('cleanup', routing_key='cleanup'),
1148 Queue('update', routing_key='update'), 989 'geonode.tasks.update',
1149 Queue('email', routing_key='email'), 990 'geonode.tasks.email'
1150] 991)
--

1177 = 1018
1178 1019
--
1179 # djcelery.setup_loader() <> 1020 djcelery.setup_loader()
--
1180 = 1021
--

	Additional/new Geonode behavior settings

DISPLAY_SOCIAL = strtobool(os.getenv('DISPLAY_SOCIAL', 'True'))
DISPLAY_COMMENTS = strtobool(os.getenv('DISPLAY_COMMENTS', 'True'))
DISPLAY_RATINGS = strtobool(os.getenv('DISPLAY_RATINGS', 'True'))
DISPLAY_WMS_LINKS = strtobool(os.getenv('DISPLAY_WMS_LINKS', 'True'))

Number of results per page listed in the GeoNode search pages
CLIENT_RESULTS_LIMIT = int(os.getenv('CLIENT_RESULTS_LIMIT', '20'))

Number of items returned by the apis 0 equals no limit
API_LIMIT_PER_PAGE = int(os.getenv('API_LIMIT_PER_PAGE', '200'))
API_INCLUDE_REGIONS_COUNT = strtobool(
 os.getenv('API_INCLUDE_REGIONS_COUNT', 'False'))
Make Free-Text Kaywords writable from users or read-only
- if True only admins can edit free-text kwds from admin dashboard
FREETEXT_KEYWORDS_READONLY = False

Each uploaded Layer must be approved by an Admin before becoming visible
ADMIN_MODERATE_UPLOADS = False

add following lines to your local settings to enable monitoring
if MONITORING_ENABLED:
 if 'geonode.contrib.monitoring' not in INSTALLED_APPS:
 INSTALLED_APPS += ('geonode.contrib.monitoring',)
 if 'geonode.contrib.monitoring.middleware.MonitoringMiddleware' not in MIDDLEWARE_CLASSES:
 MIDDLEWARE_CLASSES += \
 ('geonode.contrib.monitoring.middleware.MonitoringMiddleware',)

GEOIP_PATH = os.path.join(PROJECT_ROOT, 'GeoIPCities.dat')
If this option is enabled, Resources belonging to a Group won't be
visible by others
GROUP_PRIVATE_RESOURCES = False

If this option is enabled, Groups will become strictly Mandatory on
Metadata Wizard
GROUP_MANDATORY_RESOURCES = False

A boolean which specifies wether to display the email in user's profile
SHOW_PROFILE_EMAIL = False

Enables cross origin requests for geonode-client
MAP_CLIENT_USE_CROSS_ORIGIN_CREDENTIALS = strtobool(os.getenv(
 'MAP_CLIENT_USE_CROSS_ORIGIN_CREDENTIALS',
 'False'
))

	Update/modify THUMBNAIL GENERATOR

Left file: D:\work\code\python\geonode\geonode-2.7.x\geonode\settings.py
Right file: D:\work\code\python\geonode\geonode-2.6.x\geonode\settings.py
1284 =
1285 # Choose thumbnail generator -- this is the default generator 1077 # Choose thumbnail generator -- this is the default generator
--
1286 THUMBNAIL_GENERATOR = "geonode.layers.utils.create_gs_thumbnail_geonode" <> 1078 THUMBNAIL_GENERATOR = "geonode.geoserver.helpers.create_gs_thumbnail_geonode"
--

	Update/tweak GeoNode local_settings (for GeoServer)

Left file: D:\work\code\python\geonode\geonode-2.7.x\geonode\local_settings.py.geoserver.sample
Right file: D:\work\code\python\geonode\geonode-2.6.x\geonode\local_settings.py.geoserver.sample
21 import os = 21 import os
--
22 from geonode.settings import * +-
--
23 = 22
24 PROJECT_ROOT = os.path.abspath(os.path.dirname(__file__)) 23 PROJECT_ROOT = os.path.abspath(os.path.dirname(__file__))
25 24
--
26 MEDIA_ROOT = os.getenv('MEDIA_ROOT', os.path.join(PROJECT_ROOT, "uploaded")) +-
--
27 =
--
28 STATIC_ROOT = os.getenv('STATIC_ROOT', +-
29 os.path.join(PROJECT_ROOT, "static_root")
30)
--
31 =
--
32 # SECRET_KEY = '************************' +-
--
33 =
--
34 SITEURL = "http://localhost:8000/" <> 25 SITEURL = "http://localhost:8000/"
--
35 = 26
--
36 ALLOWED_HOSTS = ['localhost', 'geonode.example.com'] +-
--
37 =
--
38 # TIME_ZONE = 'Europe/Paris' +-
--
39 =
40 DATABASES = { 27 DATABASES = {
41 'default': { 28 'default': {
42 'ENGINE': 'django.db.backends.postgresql_psycopg2', 29 'ENGINE': 'django.db.backends.postgresql_psycopg2',
43 'NAME': 'geonode', 30 'NAME': 'geonode',
44 'USER': 'geonode', 31 'USER': 'geonode',
45 'PASSWORD': 'geonode', 32 'PASSWORD': 'geonode',
--
46 'HOST' : 'localhost', +-
47 'PORT' : '5432',
--
48 }, = 33 },
49 # vector datastore for uploads 34 # vector datastore for uploads
50 'datastore': { 35 'datastore' : {
51 #'ENGINE': 'django.contrib.gis.db.backends.postgis', 36 #'ENGINE': 'django.contrib.gis.db.backends.postgis',
52 'ENGINE': '', # Empty ENGINE name disables 37 'ENGINE': '', # Empty ENGINE name disables
--
53 'NAME': 'geonode_data', <> 38 'NAME': 'geonode',
--
54 'USER' : 'geonode', = 39 'USER' : 'geonode',
55 'PASSWORD': 'geonode', 40 'PASSWORD' : 'geonode',
56 'HOST': 'localhost', 41 'HOST' : 'localhost',
57 'PORT': '5432', 42 'PORT' : '5432',
58 } 43 }
59 } 44 }
60 45
61 GEOSERVER_LOCATION = os.getenv(46 GEOSERVER_LOCATION = os.getenv(
62 'GEOSERVER_LOCATION', 'http://localhost:8080/geoserver/' 47 'GEOSERVER_LOCATION', 'http://localhost:8080/geoserver/'
63) 48)
64
65 GEOSERVER_PUBLIC_LOCATION = os.getenv(49 GEOSERVER_PUBLIC_LOCATION = os.getenv(
--
66 # 'GEOSERVER_PUBLIC_LOCATION', '{}geoserver/'.format(SITEURL) <>
67 'GEOSERVER_LOCATION', 'http://localhost:8080/geoserver/' 50 'GEOSERVER_PUBLIC_LOCATION', 'http://localhost:8080/geoserver/'
68)
--
69 =
--
70 OGC_SERVER_DEFAULT_USER = os.getenv(+-
71 'GEOSERVER_ADMIN_USER', 'admin'
72)
--
73 =
--
74 OGC_SERVER_DEFAULT_PASSWORD = os.getenv(+-
75 'GEOSERVER_ADMIN_PASSWORD', 'geoserver'
--
76) = 51)
77 52
78 # OGC (WMS/WFS/WCS) Server Settings 53 # OGC (WMS/WFS/WCS) Server Settings
79 OGC_SERVER = { 54 OGC_SERVER = {
80 'default': { 55 'default': {
81 'BACKEND': 'geonode.geoserver', 56 'BACKEND': 'geonode.geoserver',
--
--
83 'LOGIN_ENDPOINT': 'j_spring_oauth2_geonode_login', = 58 'LOGIN_ENDPOINT': 'j_spring_oauth2_geonode_login',
84 'LOGOUT_ENDPOINT': 'j_spring_oauth2_geonode_logout', 59 'LOGOUT_ENDPOINT': 'j_spring_oauth2_geonode_logout',
85 # PUBLIC_LOCATION needs to be kept like this because in dev mode 60 # PUBLIC_LOCATION needs to be kept like this because in dev mode
86 # the proxy won't work and the integration tests will fail 61 # the proxy won't work and the integration tests will fail
87 # the entire block has to be overridden in the local_settings 62 # the entire block has to be overridden in the local_settings
88 'PUBLIC_LOCATION': GEOSERVER_PUBLIC_LOCATION, 63 'PUBLIC_LOCATION': GEOSERVER_PUBLIC_LOCATION,
--
89 'USER' : OGC_SERVER_DEFAULT_USER, <> 64 'USER' : 'admin',
90 'PASSWORD' : OGC_SERVER_DEFAULT_PASSWORD, 65 'PASSWORD' : 'geoserver',
--
91 'MAPFISH_PRINT_ENABLED' : True, = 66 'MAPFISH_PRINT_ENABLED' : True,
92 'PRINT_NG_ENABLED' : True, 67 'PRINT_NG_ENABLED' : True,
93 'GEONODE_SECURITY_ENABLED' : True, 68 'GEONODE_SECURITY_ENABLED' : True,
--
94 'GEOFENCE_SECURITY_ENABLED' : True, +-
--
95 'GEOGIG_ENABLED' : False, = 69 'GEOGIG_ENABLED' : False,
96 'WMST_ENABLED' : False, 70 'WMST_ENABLED' : False,
97 'BACKEND_WRITE_ENABLED': True, 71 'BACKEND_WRITE_ENABLED': True,
98 'WPS_ENABLED': False, 72 'WPS_ENABLED' : False,
99 'LOG_FILE': '%s/geoserver/data/logs/geoserver.log' % os.path.abspath(os.path.join(PROJECT_ROOT, os.pardir)), 73 'LOG_FILE': '%s/geoserver/data/logs/geoserver.log' % os.path.abspath(os.path.join(PROJECT_ROOT, os.pardir)),
100 # Set to dictionary identifier of database containing spatial data in DATABASES dictionary to enable 74 # Set to dictionary identifier of database containing spatial data in DATABASES dictionary to enable
101 'DATASTORE': '', # 'datastore', 75 'DATASTORE': '', #'datastore',
--
102 'PG_GEOGIG': False, +-
103 'TIMEOUT': 10 # number of seconds to allow for HTTP requests
--
104 } = 76 }
105 } 77 }
106 78
107 # If you want to enable Mosaics use the following configuration 79 # If you want to enable Mosaics use the following configuration
--
108 UPLOADER = { <> 80 #UPLOADER = {
109 # 'BACKEND': 'geonode.rest', 81 ## 'BACKEND': 'geonode.rest',
110 'BACKEND': 'geonode.importer', 82 # 'BACKEND': 'geonode.importer',
111 'OPTIONS': { 83 # 'OPTIONS': {
112 'TIME_ENABLED': True, 84 # 'TIME_ENABLED': True,
113 'MOSAIC_ENABLED': False, 85 # 'MOSAIC_ENABLED': True,
114 'GEOGIG_ENABLED': False, 86 # 'GEOGIG_ENABLED': False,
115 }, 87 # }
116 'SUPPORTED_CRS': [
117 'EPSG:4326',
118 'EPSG:3785',
119 'EPSG:3857',
120 'EPSG:900913',
121 'EPSG:32647',
122 'EPSG:32736'
123],
124 'SUPPORTED_EXT': [
125 '.shp',
126 '.csv',
127 '.kml',
128 '.kmz',
129 '.json',
130 '.geojson',
131 '.tif',
132 '.tiff',
133 '.geotiff',
134 '.gml',
135 '.xml'
136] 88 #}
137 } 89
--
138 = 90
139 CATALOGUE = { 91 CATALOGUE = {
140 'default': { 92 'default': {
141 # The underlying CSW implementation 93 # The underlying CSW implementation
142 # default is pycsw in local mode (tied directly to GeoNode Django DB) 94 # default is pycsw in local mode (tied directly to GeoNode Django DB)
143 'ENGINE': 'geonode.catalogue.backends.pycsw_local', 95 'ENGINE': 'geonode.catalogue.backends.pycsw_local',
--
--
146 # GeoNetwork opensource = 98 # GeoNetwork opensource
147 # 'ENGINE': 'geonode.catalogue.backends.geonetwork', 99 # 'ENGINE': 'geonode.catalogue.backends.geonetwork',
148 # deegree and others 100 # deegree and others
149 # 'ENGINE': 'geonode.catalogue.backends.generic', 101 # 'ENGINE': 'geonode.catalogue.backends.generic',
150 102
151 # The FULLY QUALIFIED base url to the CSW instance for this GeoNode 103 # The FULLY QUALIFIED base url to the CSW instance for this GeoNode
--
152 'URL': '%scatalogue/csw' % SITEURL, <> 104 'URL': '%scatalogue/csw' % SITEURL,
--
153 # 'URL': 'http://localhost:8080/geonetwork/srv/en/csw', = 105 # 'URL': 'http://localhost:8080/geonetwork/srv/en/csw',
154 # 'URL': 'http://localhost:8080/deegree-csw-demo-3.0.4/services', 106 # 'URL': 'http://localhost:8080/deegree-csw-demo-3.0.4/services',
155 107
156 # login credentials (for GeoNetwork) 108 # login credentials (for GeoNetwork)
157 'USER': 'admin', 109 'USER': 'admin',
158 'PASSWORD': 'admin', 110 'PASSWORD': 'admin',
159 } 111 }
160 } 112 }
161 113
--
162 # pycsw settings +-
163 PYCSW = {
164 # pycsw configuration
165 'CONFIGURATION': {
166 # uncomment / adjust to override server config system defaults
167 # 'server': {
168 # 'maxrecords': '10',
169 # 'pretty_print': 'true',
170 # 'federatedcatalogues': 'http://catalog.data.gov/csw'
171 # },
172 'metadata:main': {
173 'identification_title': 'GeoNode Catalogue',
174 'identification_abstract': 'GeoNode is an open source platform' \
175 ' that facilitates the creation, sharing, and collaborative use' \
176 ' of geospatial data',
177 'identification_keywords': 'sdi, catalogue, discovery, metadata,' \
178 ' GeoNode',
179 'identification_keywords_type': 'theme',
180 'identification_fees': 'None',
181 'identification_accessconstraints': 'None',
182 'provider_name': 'Organization Name',
183 'provider_url': SITEURL,
184 'contact_name': 'Lastname, Firstname',
185 'contact_position': 'Position Title',
186 'contact_address': 'Mailing Address',
187 'contact_city': 'City',
188 'contact_stateorprovince': 'Administrative Area',
189 'contact_postalcode': 'Zip or Postal Code',
190 'contact_country': 'Country',
191 'contact_phone': '+xx-xxx-xxx-xxxx',
192 'contact_fax': '+xx-xxx-xxx-xxxx',
193 'contact_email': 'Email Address',
194 'contact_url': 'Contact URL',
195 'contact_hours': 'Hours of Service',
196 'contact_instructions': 'During hours of service. Off on ' \
197 'weekends.',
198 'contact_role': 'pointOfContact',
199 },
200 'metadata:inspire': {
201 'enabled': 'true',
202 'languages_supported': 'eng,gre',
203 'default_language': 'eng',
204 'date': 'YYYY-MM-DD',
205 'gemet_keywords': 'Utility and governmental services',
206 'conformity_service': 'notEvaluated',
207 'contact_name': 'Organization Name',
208 'contact_email': 'Email Address',
209 'temp_extent': 'YYYY-MM-DD/YYYY-MM-DD',
210 }
211 }
212 }
--
213 =
--
214 # GeoNode javascript client configuration +-
--
215 =
--
216 # default map projection +-
217 # Note: If set to EPSG:4326, then only EPSG:4326 basemaps will work.
218 DEFAULT_MAP_CRS = "EPSG:900913"
--
219 =
--
220 # Where should newly created maps be focused? +-
221 DEFAULT_MAP_CENTER = (0, 0)
--
222 =
--
223 # How tightly zoomed should newly created maps be? +-
224 # 0 = entire world;
225 # maximum zoom is between 12 and 15 (for Google Maps, coverage varies by area)
226 DEFAULT_MAP_ZOOM = 0
--
227 =
228 # Default preview library 114 # Default preview library
--
229 LAYER_PREVIEW_LIBRARY = 'geoext' <> 115 #LAYER_PREVIEW_LIBRARY = 'geoext'
230 #LAYER_PREVIEW_LIBRARY = 'leaflet'
231 #LEAFLET_CONFIG = {
232 # 'TILES': [
233 # # Find tiles at:
234 # # http://leaflet-extras.github.io/leaflet-providers/preview/
235 #
236 # # Map Quest
237 # ('Map Quest',
238 # 'http://otile4.mqcdn.com/tiles/1.0.0/osm/{z}/{x}/{y}.png',
239 # 'Tiles Courtesy of MapQuest '
240 # '— Map data © '
241 # 'OpenStreetMap'),
242 # # Stamen toner lite.
243 # # ('Watercolor',
244 # # 'http://{s}.tile.stamen.com/watercolor/{z}/{x}/{y}.png',
245 # # 'Map tiles by Stamen Design, \
246 # # CC BY 3.0 — Map data © \
247 # # OpenStreetMap contributors, \
248 # # CC-BY-SA'),
249 # # ('Toner Lite',
250 # # 'http://{s}.tile.stamen.com/toner-lite/{z}/{x}/{y}.png',
251 # # 'Map tiles by Stamen Design, \
252 # # CC BY 3.0 — Map data © \
253 # # OpenStreetMap contributors, \
254 # # CC-BY-SA'),
255 #],
256 # 'PLUGINS': {
257 # 'esri-leaflet': {
258 # 'js': 'lib/js/esri-leaflet.js',
259 # 'auto-include': True,
260 # },
261 # 'leaflet-fullscreen': {
262 # 'css': 'lib/css/leaflet.fullscreen.css',
263 # 'js': 'lib/js/Leaflet.fullscreen.min.js',
264 # 'auto-include': True,
265 # },
266 # },
267 # 'SRID': 3857,
268 # 'RESET_VIEW': False
269 #}
--
270 =
--
271 ALT_OSM_BASEMAPS = os.environ.get('ALT_OSM_BASEMAPS', False) +-
272 CARTODB_BASEMAPS = os.environ.get('CARTODB_BASEMAPS', False)
273 STAMEN_BASEMAPS = os.environ.get('STAMEN_BASEMAPS', False)
274 THUNDERFOREST_BASEMAPS = os.environ.get('THUNDERFOREST_BASEMAPS', False)
275 MAPBOX_ACCESS_TOKEN = os.environ.get('MAPBOX_ACCESS_TOKEN', None)
276 BING_API_KEY = os.environ.get('BING_API_KEY', None)
--
277 =
--
278 MAP_BASELAYERS = [{ +-
279 "source": {"ptype": "gxp_olsource"},
280 "type": "OpenLayers.Layer",
281 "args": ["No background"],
282 "name": "background",
283 "visibility": False,
284 "fixed": True,
285 "group":"background"
286 },
287 # {
288 # "source": {"ptype": "gxp_olsource"},
289 # "type": "OpenLayers.Layer.XYZ",
290 # "title": "TEST TILE",
291 # "args": ["TEST_TILE", "http://test_tiles/tiles/${z}/${x}/${y}.png"],
292 # "name": "background",
293 # "attribution": "© TEST TILE",
294 # "visibility": False,
295 # "fixed": True,
296 # "group":"background"
297 # },
298 {
299 "source": {"ptype": "gxp_osmsource"},
300 "type": "OpenLayers.Layer.OSM",
301 "name": "mapnik",
302 "visibility": True,
303 "fixed": True,
304 "group": "background"
305 }]
--
306 =
--
307 if 'geonode.geoserver' in INSTALLED_APPS: +-
308 LOCAL_GEOSERVER = {
309 "source": {
310 "ptype": "gxp_wmscsource",
311 "url": OGC_SERVER['default']['PUBLIC_LOCATION'] + "wms",
312 "restUrl": "/gs/rest"
313 }
314 }
315 baselayers = MAP_BASELAYERS
316 MAP_BASELAYERS = [LOCAL_GEOSERVER]
317 MAP_BASELAYERS.extend(baselayers)
--
318 =
--
319 # Use kombu broker by default +-
320 # REDIS_URL = 'redis://localhost:6379/1'
321 # BROKER_URL = REDIS_URL
322 # CELERY_RESULT_BACKEND = REDIS_URL
323 CELERYD_HIJACK_ROOT_LOGGER = True
324 CELERYD_CONCURENCY = 1
325 # Set this to False to run real async tasks
326 CELERY_ALWAYS_EAGER = True
327 CELERYD_LOG_FILE = None
328 CELERY_REDIRECT_STDOUTS = True
329 CELERYD_LOG_LEVEL = 1
--
330 =
--
331 # Haystack Search Backend Configuration. To enable, +-
332 # first install the following:
333 # - pip install django-haystack
334 # - pip install elasticsearch==2.4.0
335 # - pip install woosh
336 # - pip install pyelasticsearch
337 # Set HAYSTACK_SEARCH to True
338 # Run "python manage.py rebuild_index"
339 # HAYSTACK_SEARCH = False
340 # Avoid permissions prefiltering
341 SKIP_PERMS_FILTER = False
342 # Update facet counts from Haystack
343 HAYSTACK_FACET_COUNTS = True
344 HAYSTACK_CONNECTIONS = {
345 'default': {
346 'ENGINE': 'haystack.backends.elasticsearch2_backend.Elasticsearch2SearchEngine',
347 'URL': 'http://127.0.0.1:9200/',
348 'INDEX_NAME': 'haystack',
349 },
350 # 'db': {
351 # 'ENGINE': 'haystack.backends.simple_backend.SimpleEngine',
352 # 'EXCLUDED_INDEXES': ['thirdpartyapp.search_indexes.BarIndex'],
353 # }
354 }
355 HAYSTACK_SIGNAL_PROCESSOR = 'haystack.signals.RealtimeSignalProcessor'
356 # HAYSTACK_SEARCH_RESULTS_PER_PAGE = 20
--
357 =
--
358 LOGGING = { +-
359 'version': 1,
360 'disable_existing_loggers': True,
361 'formatters': {
362 'verbose': {
363 'format': '%(levelname)s %(asctime)s %(module)s %(process)d '
364 '%(thread)d %(message)s'
365 },
366 'simple': {
367 'format': '%(message)s',
368 },
369 },
370 'filters': {
371 'require_debug_false': {
372 '()': 'django.utils.log.RequireDebugFalse'
373 }
374 },
375 'handlers': {
376 'null': {
377 'level': 'ERROR',
378 'class': 'django.utils.log.NullHandler',
379 },
380 'console': {
381 'level': 'DEBUG',
382 'class': 'logging.StreamHandler',
383 'formatter': 'simple'
384 },
385 'mail_admins': {
386 'level': 'ERROR', 'filters': ['require_debug_false'],
387 'class': 'django.utils.log.AdminEmailHandler',
388 }
389 },
390 "loggers": {
391 "django": {
392 "handlers": ["console"], "level": "ERROR", },
393 "geonode": {
394 "handlers": ["console"], "level": "DEBUG", },
395 "gsconfig.catalog": {
396 "handlers": ["console"], "level": "DEBUG", },
397 "owslib": {
398 "handlers": ["console"], "level": "DEBUG", },
399 "pycsw": {
400 "handlers": ["console"], "level": "ERROR", },
401 },
402 }
--
403 =
--
404 CORS_ORIGIN_ALLOW_ALL = True +-
--
405 =
--
406 GEOIP_PATH = "/usr/local/share/GeoIP" +-
--
407 =
--
408 MONITORING_ENABLED = True +-
409 # add following lines to your local settings to enable monitoring
410 if MONITORING_ENABLED:
411 INSTALLED_APPS += ('geonode.contrib.monitoring',)
412 MIDDLEWARE_CLASSES += ('geonode.contrib.monitoring.middleware.MonitoringMiddleware',)
413 MONITORING_CONFIG = None
414 MONITORING_SERVICE_NAME = 'local-geonode'
--

Final Steps

	Run paver setup in order to download the latest Jetty Runner

Warning

Don’t do this if your GEOSERVER_DATA_DIR is located under geonode/geoserver/data; it will be wiped out!!
In this case download Jetty Runner manually from http://repo2.maven.org/maven2/org/eclipse/jetty/jetty-runner/9.4.7.v20170914/jetty-runner-9.4.7.v20170914.jar
And put is under geonode/downloaded folder

DJANGO_SETTINGS_MODULE=geonode.local_settings paver setup

	Start the server

DJANGO_SETTINGS_MODULE=geonode.local_settings paver start

	Re-sync GeoFence Security Rules

DJANGO_SETTINGS_MODULE=geonode.local_settings paython manage.py sync_geofence

Users Workshop

Welcome to the GeoNode Training Users Workshop documentation vlatest.

This workshop will teach how to use the GeoNode [http://geonode.org/] going in depth into what we can do with software application.
At the end of this section you will master all the GeoNode sections and entities from a user perspective.

You will know how to:

	Manage users accounts and how to modify them.

	Use and manage the different GeoNode basic resouces.

	Use the GeoNode searching tools to find your resources.

	Manage Layers and Maps, update the styles and publish them.

	Load datasets into GeoNode and keep them synchronized with GeoServer.

Prerequisites

Before proceeding with the reading, it is strongly recommended to be sure having clear the following concepts:

	GeoNode and Django framework basic concepts

	What is Python

	What is a geospatial server and a basic knowledge of the geospatial web services.

	What is a metadata and a catalog.

	What is a map and a legend.

	Accounts and users

	GeoNode is primarily a social platform, and thus a primary component of any GeoNode instance is the user account. This section will guide you through account registration, updating your account information, and viewing other user accounts.

	Document Types

	GeoNode welcome page shows a variety of information about the current GeoNode instance. At the top of the page is a toolbar showing quick links to document types: layers, maps and documents.

	Searching

	GeoNode advanced Search tool.

	Managing layers

	Create, delete, manage and share Layers on GeoNode.

	Edit Layer Style

	Beautify the Layer using the GeoNode Style editor.

	Managing maps

	Create, delete, manage and share Maps on GeoNode.

	Using GeoNode with other applications

	Your GeoNode project is based on core components which are interoperable and as such, it is straightforward for you to integrate with external applications and services. This section will walk you through how to connect to your GeoNode instance from other applications and how to integrate other services into your GeoNode project. When complete, you should have a good idea about the possibilities for integration, and have basic knowledge about how to accomplish it. You may find it necessary to dive deeper into how to do more complex integration in order to accomplish your goals, but you should feel comfortable with the basics, and feel confident reaching out to the wider GeoNode community for help.

Accounts and users

GeoNode is primarily a social platform, and thus a primary component of any GeoNode instance is the user account. This section will guide you through account registration, updating your account information, and viewing other user accounts.

	Creating a new account

	Managing your profile

	Setting notification preferences

	Viewing other user accounts

Creating a new account

Before you can save or edit any layers on a GeoNode instance, you need to create an account.

	From any page in the web interface, you will see a Register link. Click that link, and the register form will appear

Note

The registrations in GeoNode must be open, in case you don’t see the register link then it’s not possible to register unless the addministrator of the side does that for you.

[image: ../../_images/signin.png]
Sign in screen

	On the next page, fill out the form. Enter a user name and password in the fields. Also, enter your email address for verification.

[image: ../../_images/signup.png]
Registering for a new account

	You will be returned to the welcome page. An email will be sent confirming that you have signed up. While you are now logged in, you will need to confirm your account. Navigate to the link that was sent in the email.

[image: ../../_images/confirm.png]
Confirming your email address

	Click Confirm. You will be returned to the homepage.

Managing your profile

Your profile contains personal information.

	Click on your user name in the top right of the screen. A drop-down list will show. Click on Profile to enter the Profile settings page.

[image: ../../_images/profilelink.png]
Link to your profile

	The next page shows your profile, which is currently empty.

[image: ../../_images/profilepage.png]
Profile page

	Click the Edit profile information link.

[image: ../../_images/editprofilelink.png]
Link to edit your profile

	On this page, your personal information can be set, including your avatar. Enter some details in the Profile box as well as your city and country info.

[image: ../../_images/profileedit.png]
Editing your profile

	When finished, click Update profile.

[image: ../../_images/updateprofilelink.png]
Link to save your profile updates

	You will be returned to the main profile page. Now click Account settings.

[image: ../../_images/accountsettingslink.png]
Link to edit your account settings

	On this page you can change your email address, time zone, and language. Your email should be populated already, but set the timezone to your current location.

[image: ../../_images/accountpage.png]
Editing your account

	When finished, click Save.

Setting notification preferences

By default GeoNode sends notifications to the users for events that the users
could be subscribed such as a new layer uploaded or a new rate added to a map.

	you can adjust your notification settings by clicking on your user name in the top right of the screen. A drop-down list will show. Click on Notifications to enter the Notifications Settings page.

[image: ../../_images/notification_settings.png]

	make sure to have a verified email address to which notices can be sent. If not, click on the proposed link to add one

	now check/uncheck the notification types you wish to receive or not receive. It is possible to be notified for the following events:

	Layer Created

	Layer Updated

	Layer Deleted

	Rating for Layer

	Comment for Layer

	Map Created

	Map Updated

	Map Deleted

	Rating for Map

	Comment for Map

	Document Created

	Document Updated

	Document Deleted

	Rating for Document

	Comment for Document

	User following you

	Request to donwload a resource

Viewing other user accounts

Now that your account is created, you can view other accounts on the system. Note that on the main profile page there are options for following (and blocking) other users.

[image: ../../_images/profilepage.png]
Profile page

	To see information about other users on the system, click the People link on the top toolbar. You will see a list of users registered on this system.

[image: ../../_images/peoplepage.png]
List of users

	Click on the user name for a particular user. You will see the layers owned by this user.

[image: ../../_images/adminlayers.png]
List of layers owned by a user

	You can also click Activities to see the activity feed.

[image: ../../_images/adminactivities.png]
List of users

	If you are interested in keeping track of what this user does, go back to the previous page and click the Follow button.

	A confirmation page will display. Click Confirm.

[image: ../../_images/followconfirm.png]
Confirming following a user

	You will now be following this user, and your profile page will note this.

[image: ../../_images/followconfirm.png]
Success following a user

Document Types

GeoNode welcome page shows a variety of information about the current GeoNode instance. At the top of the page is a toolbar showing quick links to document types: layers, maps and documents.

[image: ../../_images/welcome_toolbar.png]
Document types in GeoNode welcome page

Data management tools built into GeoNode allow for integrated creation of data, documents, link to external documents, and map visualizations.
Each dataset in the system can be shared publicly or restricted to allow access to only specific users.
Social features like user profiles and commenting and rating systems allow for the development of communities around each platform to facilitate the use, management, and quality control of the data the GeoNode instance contains.

Layers

Layers are a primary component of GeoNode.

Layers are publishable resources representing a raster or vector spatial data source. Layers also can be associated with metadata, ratings, and comments.

By clicking the Layers link you will get a list of all published layers. If logged in as an administrator, you will also see the unpublished layers in the same list.

[image: ../../_images/welcome_documents_layers.png]
Layers in GeoNode toolbar

GeoNode allows the user to upload vector (currently only Shapefiles) and raster data in their original projections using a web form.

Vector data is uploaded in ESRI Shapefile format and satellite imagery and other kinds of raster data are uploaded as GeoTIFFs.

[image: ../../_images/explore_layers.png]
Layers list in GeoNode

Maps

Maps are a primary component of GeoNode.

Maps are comprised of various layers and their styles. Layers can be both local layers in GeoNode as well as remote layers either served from other WMS servers or by web service layers such as Google or MapQuest.

GeoNode maps also contain other information such as map zoom and extent, layer ordering, and style.

By clicking the Map link you will get a list of all published maps.

[image: ../../_images/welcome_documents_maps.png]
Maps in GeoNode toolbar

This toolbar allows you create a map based on the uploaded layers combine them with some existing layers and a remote web service layer, and then share the resulting map for public viewing.
Once the data has been uploaded, GeoNode lets the user search for it geographically or via keywords and create maps.
All the layers are automatically reprojected to web mercator for maps display, making it possible to use different popular base layers, like Open Street Map, Google Satellite or Bing layers.

Documents

As for the layers and maps GeoNode allows to publish tabular and text data manage metadata and associated documents.

By clicking the Documents link you will be brought to the Documents menu where a new subtoolbar can be seen.

[image: ../../_images/welcome_documents_documents.png]
Documents in GeoNode toolbar

Through the document datailed page is possible to view, download and manage a document.

Searching

In GeoNode welcome page, click the Search button to bring up the Search page.

[image: ../../_images/toolbar_search.png]
Search tool in GeoNode welcome page

This page contains a wealth of options for customizing a search for various information on GeoNode.
This search form allows for much more fine-tuned searches than the simple search box is available at the top of every page.

It is possible to search data by Text, Categories, Type, Keywords, Date, Regions or Extent.

[image: ../../_images/searching_page1.png]
Search page

Managing layers

After user accounts, the next primary component of GeoNode is the layer. Layers are a published resource representing a raster or vector spatial data source. Layers also can be associated with metadata, ratings, and comments.

In this section, you will learn how to create a new layer by uploading a local data set, add layer info, change the style of the layer, and share the results.

	Uploading a layer

	Layer information
	Downloads

	Layer Detail Tabs

	Sharing layers
	Anonymous access

	Sharing with social media

	Adding more layers

Uploading a layer

Now that we have taken a tour of GeoNode and viewed existing layers, the next
step is to upload our own.

In your data pack is a directory called data. Inside that directory is
a shapefile called san_andres_y_providencia_administrative.shp. This is
a data set containing administrative boundaries for the San Andres Province.
This will be the first layer that we will upload to GeoNode.

	Navigate to the GeoNode welcome page.

	Click the Layers link on the top toolbar. This will bring up the Layers menu.

[image: ../../_images/toolbar.png]
Main toolbar for GeoNode

[image: ../../_images/layers1.png]
Layers menu

	Click Upload Layers in the Layers toolbar. This will bring up the upload form

[image: ../../_images/layerstoolbar.png]
Layers toolbar

[image: ../../_images/uploadform.png]
Upload Layers form

	Fill out the form.

	Click on the Browse… button. This will bring up a local file dialog. Navigate to your data folder and select all of the four files composing the shapefile (san_andres_y_providencia_administrative.shp, san_andres_y_providencia_administrative.dbf, san_andres_y_providencia_administrative.shx, san_andres_y_providencia_administrative.prj). Alternatively you could drag and drop the four files in the Drop files here area.

	The upload form should appear like this now:

[image: ../../_images/uploadformfilled.png]
Files ready for upload

	GeoNode has the ability to restrict who can view, edit, and manage layers. On the right side of the page, under Who can view and download this data?, select Any registered user. This will ensure that anonymous view access is disabled.

	In the same area, under Who can edit this data?, select the Only the following users or groups option and type your username. This will ensure that only you are able to edit the data in the layer.

[image: ../../_images/uploadpermissions.png]
Permissions for new layer

	Click Upload to upload the data and create a layer. A dialog will display showing the progress of the upload.

[image: ../../_images/uploading.png]
Upload in progress

	Your layer has been uploaded to GeoNode. Now you will be able to access to the its info page (clicking on the Layer Info button), access to its metadata edit form (clicking on the Edit Metadata button) or to manage the styles for it (clicking on the Manage Styles button).

[image: ../../_images/afterupload.png]

Layer information

After upload, another form will displaying, containing metadata about the layer. Change any information as desired, and then click Update at the very bottom of the form.

[image: ../../_images/layermetadata.png]
Layer metadata

After the update, the layer will display in a preview window.

[image: ../../_images/layerpreview.png]
Layer preview

This page contains lots of options for managing this layer. Let’s look at a few of them:

Downloads

At the top of the page there are two buttons titled Download Layer and Download Metadata. These buttons provide access to the ability to extract geospatial data and metadata from within GeoNode. In this way, GeoNode allows for two way data and metadata access; one can import as well as export data.

Data

	Click the Download Layer button. You will see a list of options of the supported export formats.

[image: ../../_images/downloadformats.png]
Available export formats

	Click the option for Zipped Shapefile.

	GeoNode will process the request and bring up a Save As dialog. Save this file to your computer, and note how it is the same content as was uploaded.

Metadata

	Click the Download Metadata button. You will see a list of options of the supported export formats.

[image: ../../_images/metadataformats.png]
Available metadata export formats

	Click the option for DUBLIN CORE.

	GeoNode will process the request and display XML metadata. Try clicking various metadata formats, and note how it is the same metadata content in various formats compatible with metadata and GIS packages.

Layer Detail Tabs

	Scroll down the page toward the bottom. Five tabs are available: Info, Attributes, Share, Ratings, and Comments. The info tab is already highlighted, and presents basic information about the layer, of the kind that was seen on the layer list page.

[image: ../../_images/infotab.png]
Layer Info tab

	Click the Attributes tab. This lists the attributes of the layer, including statistics (range, average, median and standard deviation). Layer attribute statistics are made available only for numeric attributes. As we can see, this layer’s attributes are not numeric, so no statistics are calculated.

[image: ../../_images/layerattributes.png]
Attributes tab

	Click the Ratings tab. This tab allows you (and others viewing this page) to rate this layer. Ratings can be based on quality, accuracy, or any other metric. Click on the appropriate star to rate this layer.

[image: ../../_images/layerrating.png]
Layer Ratings tab

	Click the Comments tab. This tab allows you to leave a comment for other viewing this layer.

[image: ../../_images/layercomment.png]
Layer Comments tab

	Click the Add Comment button and enter a comment.

[image: ../../_images/commentadd.png]
Adding a new comment

	When finished, click Submit Comments

[image: ../../_images/commentadded.png]
New comment posted

Sharing layers

GeoNode has the ability to restrict or allow other users to access a layer and share on social media.

Anonymous access

	Go to the layer preview of the first layer uploaded, and copy the URL to that preview page.

Note

The URL should be something like: http://GEONODE/layers/geonode:san_andres_y_providencia_administrative

	Now log out of GeoNode by clicking on your profile name and selecting Log out.

[image: ../../_images/logoutlink.png]
Log out

	When asked for confirmation, click the Log out button.

[image: ../../_images/logoutconfirm.png]
Confirming log out

	Now paste the URL copied about into your browser address bar and navigate to that location.

	You will be redirected to the Log In form. This is because when this layer was first uploaded, we set the view properties to be any registered user. Once logged out, we are no longer a registered user and so are not able to see or interact with the layer, unless we log in GeoNode again.

[image: ../../_images/forbidden.png]
Unable to view this protected layer

	To stop this process from happening, you need to ensure that your permissions are set so anyone can view the layer for others to see it on social networks.

[image: ../../_images/map_permissions.png]

	This is done by selecting anyone in the layer permissions tab, be aware this now means your layer is public!

Sharing with social media

	On the taskbar below your username and profile picture there are three links to social media services, Twitter, Google Plus and Facebook.

[image: ../../_images/socialmedia.png]

	Upon clicking on these icons you will be taken through the application’s process for posting to the social network. Ensure the permissions are set so anyone can view the layer if you want unauthenticated to be able to access it.

Adding more layers

We’ve uploaded one layer so far. There is one more layer in the data directory associated with this workshop called san_andres_y_providencia_poi.shp.

	Upload this layer, referring to the directions on uploading a layer. As a difference, leave the permissions set to their default values.

[image: ../../_images/upload2.png]
Uploading the layer

[image: ../../_images/layer2.png]
Finished upload

Edit Layer Style

Edit style task can be performed only by the user who have the permission to do it.

	In the Explore Layer page choose a Layer that you want to edit clicking over the name of layer or in the preview window.

	In the Edit Layers page click the Edit Layer button.

	In the Edit Layer window click Edit button under Style icon. In this interface is it possible to change the style of layers. GeoNode allows to edit layer styles graphically, without the need to resort to programming or requiring a technical background.

In the following example the layer has one style and one rule in that style. Click Edit in Styles menu change Title and Abstract of the selected Style.

[image: ../../_images/layer_styles.png]
Layer Styles window

[image: ../../_images/layer_styles_userstyle.png]
User Styles window

Click the Rule (Untitled 1) to select it, and then click on Edit below it.
Edit the style choosing Basic tab to edit symbology of layers, Labels to add and manage labels and Advanced to manage styles by scale and condition.
When done, click Save, then click on the word Layers to return to the layer list.

[image: ../../_images/style_rule_basic.png]
Basic Style Rule window

[image: ../../_images/style_rule_label.png]
Labels Style Rule window

[image: ../../_images/style_rule_advanced.png]
Advanced Style Rule window

	In the Edit Layer window click Manage button under Style icon. Manage Styles function allows to assign available style to selected layers.

[image: ../../_images/manage_styles.png]
Manage Layer Styles

Managing maps

The next primary component of GeoNode is the map. Maps are comprised of various layers and their styles. Layers can be both local layers in GeoNode as well as remote layers either served from other WMS servers or by web service layers such as Google or MapQuest.

GeoNode maps also contain other information such as map zoom and extent, layer ordering, and style.

In this section, we’ll create a map based on the layers uploaded in the previous section, combine them with some existing layers and a remote web service layer, and then share the resulting map for public viewing.

	Creating a map
	Adding layers

	Adding external layers

	Saving the map

	Styling layers

	Share your map

Creating a map

Adding layers

	Click the Maps link on the top toolbar. This will bring up the list of maps.

[image: ../../_images/maps1.png]
Maps page

	Currently, there aren’t any maps here, so let’s add one. Click the Create a New Map button.

	A map composition interface will display.

[image: ../../_images/createmap.png]
Create maps interface

In this interface there is a toolbar, layer list, and map window. The map window contains the MapQuest OpenStreetMap layer by default. There are other service layers available here as well: Blue Marble, Bing Aerial With Labels, MapQuest, and OpenStreetMap.

	Click on the New Layers button and select Add Layers.

[image: ../../_images/addlayerslink.png]
Add layers link

	Select all of the San Andreas layers by clicking the top entry and Shift-clicking the bottom one. Click Add Layers to add them all to the map.

[image: ../../_images/addlayersselect.png]
Selecting layers

Note

This selection includes not only the two layers uploaded in the previous section, but also the layers that were already hosted on GeoNode at the beginning of the workshop.

	The layers will be added to the map. Click Done (right next to Add Layers at the bottom) to return to the main layers list.

[image: ../../_images/layersadded.png]
Layers added to the map

Adding external layers

	Once again, click on the New Layers button and select Add Layers.

[image: ../../_images/addlayerslink.png]
Add layers link

	From the top dropdown list, select Add a New Server…

[image: ../../_images/addnewserver.png]
Add a New Server

	Enter the URL of the server, and select the correct type of server from the dropdown (WMS, TMS, or ArcGIS). For example, enter http://e-atlas.org.au/geoserver/wms for the URL and select Web Map Service as the type. Then click the Add Server button.

[image: ../../_images/serverurltype.png]
New Server URL and Type

	Note - for security purposes, the URL you enter must be on a list of pre-approved external services set up by the GeoNode admininistrator. Otherwise you will receive a 403 error when trying to add the server.

	A list of layers available from that server should appear momentarily. The layers must be available in the Web Mercator projection or they will not show up in the list. Select the layers you want to add to the map. Click Add Layers to add them all to the map.

[image: ../../_images/externallayersadd.png]
Add layers

	The layers will be added to the map. Click Done (right next to Add Layers at the bottom) to return to the main layers list.

[image: ../../_images/externallayersadded.png]
Layers added to the map

Saving the map

	While we still have some work to do on our map, let’s save it so that we can come back to it later. Click on the Map button in the toolbar, and select Save Map.

[image: ../../_images/savemaplink.png]
Save map link

	Enter a title and abstract for your map.

[image: ../../_images/savemapdialog.png]
Save map dialog

	Click Save. Notice that the link on the top right of the page changed to reflect the map’s name.

[image: ../../_images/mapname.png]
Saved map name

This link contains a permalink to your map. If you open this link in a new window, your map will appear exactly as it was saved.

Styling layers

In this interface, we can pause in our map creation and change the style of one of our uploaded layers. GeoNode allows you to edit layer styles graphically, without the need to resort to programming or requiring a technical background.

We’ll be editing the san_andres_y_providencia_poi layer.

	In the layer list, uncheck all of the layers except the above, so that only this one is visible (not including the base layer).

[image: ../../_images/layersunchecked.png]
Only one layer visible

	Zoom in closer using the toolbar or the mouse.

[image: ../../_images/zoomedin.png]
Zoomed in to see the layer better

	In the layer list, click to select the remaining layer and then click the palette icon (Layer Styles). This will bring up the style manager.

[image: ../../_images/styles.png]
Styles manager

	This layer has one style (named the same as the layer) and one rule in that style. Click the rule (Untitled 1) to select it, and then click on Edit below it.

[image: ../../_images/editrulelink.png]
Edit style rule link

	Edit the style. You can choose from simple shapes, add labels, and even adjust the look of the points based on attribute values and scale.

[image: ../../_images/editrulebasic.png]
Editing basic style rules

[image: ../../_images/editrulelink.png]
Editing style labels

	When done, click Save, then click on the word Layers to return to the layer list.

[image: ../../_images/styledlayer.png]
Styled layer

Share your map

Now let’s finish our map.

	Check the box next to the highway layer to activate it. If it is not below the POI layer in the list, click and drag it down.

[image: ../../_images/mapcomposition.png]
Adjusting map composition

	Make any final adjustments to the map composition as desired, including zoom and pan settings.

	Click the Map button in the toolbar, and then click Publish Map.

[image: ../../_images/publishmaplink.png]
Publish map link

	The title and abstract as previously created should still be there. Make any adjustments as necessary, and click Save.

	A new dialog will appear with instructions on how to embed this map in a webpage, including a code snippet. You can adjust the parameters as necessary.

[image: ../../_images/publishmap.png]
Map publishing options

Your map can now be shared.

Using GeoNode with other applications

Your GeoNode project is based on core components which are interoperable and as such, it is straightforward for you to integrate with external applications and services. This section will walk you through how to connect to your GeoNode instance from other applications and how to integrate other services into your GeoNode project. When complete, you should have a good idea about the possibilities for integration, and have basic knowledge about how to accomplish it. You may find it necessary to dive deeper into how to do more complex integration in order to accomplish your goals, but you should feel comfortable with the basics, and feel confident reaching out to the wider GeoNode community for help.

OGC services

Since GeoNode is built on GeoServer which is heavily based on OGC services, the main path for integration with external services is via OGC Standards. A large number of systems, applications and services support adding WMS layers to them, but only a few key ones are covered below. WFS and WCS are also supported in a wide variety of clients and platforms and give you access to the actual data for use in GeoProcessing or to manipulate it to meet your requirements. GeoServer also bundles GeoWebCache which produces map tiles that can be added as layers in many popular web mapping tools including Google Maps, Leaflet, OpenLayers and others. You should review the reference material included in the first chapter to learn more about OGC Services and when evaluating external systems make sure that they are also OGC Compliant in order to integrate as seamlessly as possible.

Use GeoNode with:

	ArcGIS

	QGIS

	Google Earth

ArcGIS

ArcGIS Desktop (ArcMap) supports adding WMS layers to your map project. The following set of steps will walk you through how to configure a WMS Layer from your GeoNode within ArcMap.

First, you can start with a new empty project or add these layers to your existing project.

[image: ../../_images/arcmap_empty.png]

Next click the ArcCatalog button on the toolbar to bring up its interface.

[image: ../../_images/arccatalog.png]

From there, double click the “Add WMS Server” item in the tree to bring up the dialog that lets you enter the details for your WMS.

[image: ../../_images/arc_add_wms.png]

Next, enter the URL for your GeoNode’s WMS endpoint which is the base url with /geoserver/wms appended to the end of the URL. You can also enter your credentials into the optional Account section of this dialog to gain access to non-public layers that your user may have access to.

[image: ../../_images/arc_enter_wms_url.png]

Click the “Get Layers” button to ask ArcMap to query your WMS’s GetCapabilities document to get the list of available layers.

[image: ../../_images/arcmap_wms_layers.png]

After you click the OK button, your GeoNode layers will appear in the ArcCatalog Interface.

[image: ../../_images/arcmap_layers_catalog.png]

Once your server is configured in ArcMap, you can right click on one of the layers and investigate its properties.

[image: ../../_images/arcmap_layer_properties.png]

In order to actually add the layer to your project, you can drag and drop it into the Table of Contents, or right click and select “Create Layer”. Your Layer will now be displayed in the map panel of your project.

[image: ../../_images/arcmap_wms_layer_drag.png]

[image: ../../_images/arcmap_wms_layer_map.png]

Once the layer is in your projects Table of Contents, you can right click on it and select the Layer Properties option and select the Styles Tab to choose from the available styles for that layer.

[image: ../../_images/arcmap_wms_styles.png]

Now that we have seen how to add a WMS layer to our ArcMap project, lets walk through how to add the same layers as a WFS which retrieves the actual feature data from your GeoNode rather than a rendered map as you get with WMS. Adding layers as a WFS gives you more control over how the layers are styled within ArcMap and makes them available for you to use with other ArcGIS tools like the Geoprocessing toolbox.

Note

Adding WFS layers to ArcMap requires that you have the Data Interoperability Extension installed. This extension is not included in ArcMap by default and is licensed and installed separately.

Start by opening up the ArcCatalog Interface within ArcMap and make sure that you have the “Interoperability Connections” option listed in the list.

[image: ../../_images/arcmap_interoperability.png]

Next select “Add Interoperability Connection” to bring up the dialog that lets you add the WFS endpoint from your GeoNode.

[image: ../../_images/arcmap_interop_add.png]

Select “WFS (Web Feature Service)” in the Format dropdown and enter the URL to the WFS endpoint for your GeoNode in the Dataset field. The WFS endpoint is your base URL + /geoserver/wfs

[image: ../../_images/arcmap_interop_wfs.png]

You will need to click the “Parameters” button to supply more connection information including your credentials which will give you the ability to use private layers that you have access to.

[image: ../../_images/arcmap_wfs_params.png]

Select the Feature Types button to have ArcMap get a list of layers from the WFS Service of your GeoNode.

[image: ../../_images/arcmap_wfs_layers.png]

Select the layers that you want to add and click OK and ArcMap will import the features from your GeoNode into the system.

[image: ../../_images/arcmap_wfs_import.png]

Depending on the projection of your data, you may receive a warning about Alignment and Accuracy of data transformations. You can specify the transformation manually or simply hit close to ignore this dialog. If you dont want to be warned again, use the checkboxes in this dialog to hide these warnings temporarily or permanently.

[image: ../../_images/arcmap_wfs_transformations.png]

Your WFS Layer will be added to your map and you can view it in the Map Panel. If you need to, use the “Zoom to Layer Extent” or other zoom tools to zoom to the bounds of your layer.

[image: ../../_images/arcmap_wfs_layer_view.png]

You can now use the identify tool to inspect a feature in your layer, or perform any other function that you can normally use to work with Vector Layers in ArcMap.

[image: ../../_images/arcmap_wfs_identify.png]

Since your layer was imported as actual vector features, you can use normal ArcMap styling tools to style the layer to match how you want it to be displayed.

[image: ../../_images/arcmap_wfs_style.png]

Now that you have added layers from your GeoNode as both WMS and WFS, you can explore the other options available to you with these layers within ArcMap.

QGIS

Quantum GIS or qGIS is an open source, cross platform desktop GIS app. It can also be used to add layers from your GeoNode instance as WMS or WFS. The process is very similar to how we add these same layers to ArcMap, and we will walk through the steps necessary in the following section.

First, select “Add WMS Layer” from the Layer menu.

[image: ../../_images/qgis_add_wms_layer.jpg]

The Add WMS Layer Dialog will be displayed where you are able to specify the parameters to connect to your WMS server.

[image: ../../_images/qgis_wms_add_1.jpg]

Next, you need to fill in the parameters to connect to your GeoNode instance. The URL for your GeoNode’s WMS is the base URL + /geoserver/wms

[image: ../../_images/qgis_wms_add_2.jpg]

After clicking the OK button, your server will show up in the list of servers. Make sure its selected, then, click the connect button to have QGIS retrieve the list of layers from your GeoNode.

[image: ../../_images/qgis_wms_add_7.jpg]

Select the layers you want to add to your QGIS project and click “Add”.

[image: ../../_images/qgis_wms_add_6.jpg]

Your layer will be displayed in the map panel.

[image: ../../_images/qgis_wms_layer.jpg]

You can then zoom into your features in the Map.

[image: ../../_images/qgis_wms_layer_zoom.jpg]

From there, you can use the identify tool to inspect the attributes of one of the features on the map.

[image: ../../_images/qgis_identify_wfs.jpg]

Or, you can look at the layer metadata by right clicking on the layer and selecting Layer Properties and selecting the metadata tab.

[image: ../../_images/qgis_wms_metadata.jpg]

Adding WFS servers and layers to your QGIS project is very similar to adding WMS. Depending on your version of QGIS, you may need to add the WFS plugin. You can use the Plugin manager to add it.

[image: ../../_images/qgis_wfs_installer.jpg]

Once the plugin is installed, you can select the “Add WFS Layer” option from the Layer menu.

[image: ../../_images/qgis_add_wfs.jpg]

Step through the same process you did for WMS to create a new WFS connection. First specify server parameters and click OK.

[image: ../../_images/qgis_wfs_add_2.jpg]

Then click Connect to retrieve the list of layers on the server and select the layers you want to add and click Apply.

[image: ../../_images/qgis_wfs_add_3.jpg]

The layer(s) you selected will be displayed in the map panel.

[image: ../../_images/qgis_wfs_layer.jpg]

You can use the same identify tool to inspect features in the map panel.

[image: ../../_images/qgis_wfs_identify.jpg]

To look at more information about your layer, right click the layer in the Table of Contents and select Layer Properties. You can look at the list of fields.

[image: ../../_images/qgis_wfs_fields.jpg]

… or set a style to match how you want your data to be displayed.

[image: ../../_images/qgis_wfs_style.jpg]

You now know how to add layers from your GeoNode instance to a QGIS project. You can explore all of the other options available to you in QGIS by consulting its documentation.

Google Earth

GeoNode’s built in map interface lets you look at your layers and maps in the Google Earth plugin directly in your browser. You can switch to this 3D viewer directly in GeoNode by clicking the google earth icon in the map panel.

[image: ../../_images/ge_layer.png]

GeoServer will render your layer as an image until you are zoomed in sufficiently, and then it will switch to rendering it as a vector overlay that you can click on to view the attributes for the feature you clicked on.

[image: ../../_images/ge_feature_info.png]

You can also use this option in the GeoExplorer client by clicking the same button.

[image: ../../_images/ge_geoexplorer.png]

Note

Some of the GeoExplorer options will not be available to you when you are in this mode, they will be grayed out an inaccessible.

If instead you want to use layers from your GeoNode in the Google Earth client itself, you have a few options available to you.

First, you can select the KML option from the Download Layer menu to download the entire layer in a single KML file. Depending on the size of the layer, your GeoNode could take several seconds or longer to generate this KML and return it to you.

[image: ../../_images/download_kml.png]

When the layer is generated, it will be downloaded to your desktop machine and you can simply double click it to open it in Google Earth.

[image: ../../_images/google_earth.png]

Alternatively, you can use the “View in Google Earth” option in the Layer Download menu to view the layer in Google Earth using the same methodology described above depending on the zoom level.

[image: ../../_images/download_kmz.png]

This will download a small KMZ to your desktop that contains a reference to the layers on the server and you can double click it to open it in Google Earth.

[image: ../../_images/kmz_ge.png]

Note

The basic difference between these two options is that the first downloads all of the data to your desktop at once and as such, the downloaded file can be used offline while the second is simply a Network Link to the layer on the server. Choose whichever method is best for your own needs and purposes.

Once you have added your layers to the Places panel in Google Earth, you can move them from the Temporary Places section into My Places if you wish to use them after your current Google Earth session is complete. You can arrange them in folders and use Google Earth functionality to save your project to disk. Consult Google Earths documentation for more information about how to do this.

Administrators Workshop

Welcome to the GeoNode Training Administrators Workshop documentation vlatest.

This workshop will teach how to install and manage a deployment of the GeoNode [http://geonode.org/] software application.
At the end of this section you will master all the GeoNode sections and entities from an administrator perspective.

You will know how to:

	Use the GeoNode’s Django Administration Panel.

	Use the console Management Commands for GeoNode.

	Configure and customize your GeoNode installation.

Prerequisites

Before proceeding with the reading, it is strongly recommended to be sure having clear the following concepts:

	GeoNode and Django framework concepts

	Good knowledge of Python

	Good knowledge of what is a geospatial server and geospatial web services.

	Good knowledge of what is metadata and catalog.

	Good knowledge of HTML and CSS.

	Usage of the GeoNode’s Django Administration Panel

	GeoNode has an administration panel based on the Django admin which can be used to do some database operations. Although most of the operations can and should be done through the normal GeoNode interface, the admin panel provides a quick overview and management tool over the database.

	Management Commands for GeoNode

	GeoNode comes with administrative commands to help with day to day tasks. This section shows the list of the ones that come from the GeoNode application.

	Configuring Alternate CSW Backends

	pycsw [http://pycsw.org/] is the default CSW server implementation provided with GeoNode. This section will explain how to configure GeoNode to operate against alternate CSW server implementations.

	Customize the look and feel

	You might want to change the look of GeoNode, editing the colors and the logo of the website and adjust the templates for your needs. To do so, you first have to set up your own geonode project from a template. If you’ve successfully done this, you can go further and start theming your geonode project.

	Debugging GeoNode Installations

	There are several mechanisms to debug GeoNode installations, the most common ones are discussed in this section.

	Changing the Default Language

	GeoNode’s default language is English, but GeoNode users can change the interface language with the pulldown menu at the top-right of most GeoNode pages. Once a user selects a language GeoNode remembers that language for subsequent pages.

	Loading Data into a GeoNode

	This module will walk you through the various options available to load data into your GeoNode from GeoServer, on the command-line or programatically. You can choose from among these techniques depending on what kind of data you have and how you have your geonode setup.

	More on Security and Permissions

	This tutorial will guide you through the steps that can be done in order to restrict the access on your data uploaded to geonode.

First of all it will be shown how a user can be created and what permissions he can have. Secondly we will take a closer look on to layers, maps and documents and the different opportunities you have in order to ban certain users from viewing or editing your data.

	Backup & Restore GeoNode - Data Migration

	How to perform a full backup / restore of GeoNode and GeoServer catalogs and how to migrate data. Customization backup / restore fixtures and data manglers.

Usage of the GeoNode’s Django Administration Panel

GeoNode has an administration panel based on the Django admin which
can be used to do some database operations.
Although most of the operations can and should be done through the normal GeoNode interface, the admin panel provides a quick overview and management tool over the
database.

It should be highlighted that the sections not covered in this guide are meant to be managed through GeoNode.

Accessing the admin panel

Only the staff users (including the superusers) can access the admin interface.

Note

User’s staff membership can be set by the admin panel itself, see how in the Manage users and groups through the admin panel section.

The link to access the admin interface can be found by clicking in the upper right corner on the user name, see figure

[image: ../../_images/admin-login.png]

	Manage users and groups through the admin panel

	Users

	Groups

	Manage profiles using the admin panel

	Manage the metadata categories using the admin panel

	Manage layers using the admin panel

	Manage the maps using the admin panel

	Manage the documents using the admin panel

Manage users and groups through the admin panel

The admin section called Auth has the link to access the Groups while the section called People has the link to access the Users, see figure

[image: ../../_images/admin-auth.png]

[image: ../../_images/admin-people.png]

Users

Adding a user

By clicking on the “add” link on the right of the Users link is possible to add
a new users to the GeoNode site.
A simple form asking for username and password will be presented, see figure

[image: ../../_images/admin-users-new.png]

Upon clicking “save” a new form will be presented asking for some personal information and the rights the user should have.

For a normal, not privileged user is enough to just fill the personal information and then confirm with “save”.

If the user has to access the admin panel or be a superuser it’s enough just to tick the “staff” and “superuser” checkboxes.

[image: ../../_images/admin-users-new-2.png]

Changing a user

To modify an existing user click on “Users” then on a username in the list. The same form will be presented.

[image: ../../_images/admin-users-list.png]

Groups

Although the “Groups” permissions system is not implemented yet in GeoNode is possible to create new groups with set of permissions which will be inherited by all the group members.

The creation and management of a Group is done in a very similar way that the user one.

Manage profiles using the admin panel

So far GeoNode implements two distinct roles, that can be assigned to resources such as layers, maps or documents:

	party who authored the resource

	party who can be contacted for acquiring knowledge about or acquisition of the resource

This two profiles can be set in the GeoNode interface by accessing the metadata page and setting the “Point of Contact” and “Metadata Author” fields respectively.

Is possible for an administrator to add new roles if needed, by clicking on the “Add Role” button in the “Base” -> “Contact Roles” section:

[image: ../../_images/admin-roles-add.png]

Clicking on the “People” section (see figure) will open a web for with some personal information plus a section called “Users”.

[image: ../../_images/admin-people.png]

Is important that this last section is not modified here unless the administrator is very confident in that operation.

[image: ../../_images/admin-profiles-contactroles.png]

Manage the metadata categories using the admin panel

In the “Base” section of the admin panel there are the links to manage the metadata categories used in GeoNode

[image: ../../_images/admin-base.png]

The metadata categories are:

	Regions

	Restriction Code Types

	Spatial Representation Types

	Topic Categories

The other links available should not be used.

Regions

The Regions can be updated, deleted and added on needs. Just after a GeoNode fresh installation the regions contain all of the world countries, identified by their ISO code.

[image: ../../_images/admin-base-region-list.png]

Restriction Code Types

Being GeoNode strictly tied to the standards, the restrictions cannot be added/deleted or modified in their identifier. This behavior is necessary to keep the consistency in case of federation with the CSW catalogues.

The Restrictions GeoNode description field can in any case be modified if some kind of customisation is necessary, since it’s just the string that will appear on the layer metadata page. If some of the restrictions are not needed within the GeoNode instance, it is possible to hide them by unchecking the “Is choice” field.

[image: ../../_images/admin-base-restriction-list.png]

Spatial Representation Types

For this section the same concepts of the Restriction Code Types applies.

[image: ../../_images/admin-base-spatialrepresentation-list.png]

Topic Categories

Also for the Topic Categories the only part editable is the GeoNode description.
Being standard is assumed that every possible data type will fall under these category identifiers.
If some of the categories are not needed within the GeoNode instance, it is possible to hide them by unchecking the “Is choice” field.

[image: ../../_images/admin-base-topiccategories-list.png]

Manage layers using the admin panel

Some of the layers information can be edited directly through the admin interface although the best place is in the layer -> metadata page in GeoNode.

[image: ../../_images/admin-layers.png]

Is not recommended to modify the Attributes neither the Styles.

Clicking on the Layers link will present a list of layers. By selecting one of them is possible to modify some information like the metadata, the keywords etc.
It’s strongly recommended to limit the edits to the metadata and similar information.

Manage the maps using the admin panel

Currently the maps admin panel allows more metadata options that the GeoNode maps metadata page. Thus is a good place where to add some more detailed information.

[image: ../../_images/admin-maps.png]

The “Map Layers” section should not be used.

By clicking on a map in the maps list the metadata web form will be presented.
Is possible to add or modify the information here. As for the layers, the more specific entries like the layers stack or the map coordinates should not be modified.

Manage the documents using the admin panel

As for the layers, most of the information related to the documents can and should be modified using the GeoNode’s document metadata page.

[image: ../../_images/admin-documents.png]

Through the document detail page is possible to edit the metadata information.
The fields related to the bounding box or the file attached should not be edited directly.

Management Commands for GeoNode

GeoNode comes with administrative commands to help with day to day tasks.

Below is the list of the ones that come from the GeoNode application, the full list can be obtained by doing:

python manage.py help

importlayers

Imports a file or folder with geospatial files to GeoNode.

It supports data in Shapefile and GeoTiff format. It also picks up the styles if a .sld file is present.

Usage:

python manage.py importlayers <data_dir>

Additional options:

Usage: manage.py importlayers [options] path [path...]

Brings a data file or a directory full of data files into a GeoNode site. Layers are added to the Django database, the GeoServer configuration, and the GeoNetwork metadata index.

Options:
 -v VERBOSITY, --verbosity=VERBOSITY
 Verbosity level; 0=minimal output, 1=normal output,
 2=verbose output, 3=very verbose output
 --settings=SETTINGS The Python path to a settings module, e.g.
 "myproject.settings.main". If this isn't provided, the
 DJANGO_SETTINGS_MODULE environment variable will be
 used.
 --pythonpath=PYTHONPATH
 A directory to add to the Python path, e.g.
 "/home/djangoprojects/myproject".
 --traceback Raise on exception
 -u USER, --user=USER Name of the user account which should own the imported
 layers
 -i, --ignore-errors Stop after any errors are encountered.
 -o, --overwrite Overwrite existing layers if discovered (defaults
 False)
 -k KEYWORDS, --keywords=KEYWORDS
 The default keywords, separated by comma, for the
 imported layer(s). Will be the same for all imported
 layers if multiple imports are
 done in one command
 -c CATEGORY, --category=CATEGORY
 The category for the imported
 layer(s). Will be the same for all imported layers
 if multiple imports are done in one command
 -r REGIONS, --regions=REGIONS
 The default regions, separated by comma, for the
 imported layer(s). Will be the same for all imported
 layers if multiple imports are
 done in one command
 -t TITLE, --title=TITLE
 The title for the imported
 layer(s). Will be the same for all imported layers
 if multiple imports are done in one command
 -p, --private Make layer viewable only to owner
 --version show program's version number and exit
 -h, --help show this help message and exit

updatelayers

Update the GeoNode application with data from GeoServer.

This is useful to add data in formats that are not supported in GeoNode by default, and for example to link it it to ArcSDE datastores. The updatelayers command provides several options that can be used to control how layer information is read from GeoServer and updated in GeoNode. Refer to ‘Additional Options’.

Usage:

python manage.py updatelayers

Additional options:

Usage: manage.py updatelayers [options]

Update the GeoNode application with data from GeoServer

Options:
 -v VERBOSITY, --verbosity=VERBOSITY
 Verbosity level; 0=minimal output, 1=normal output,
 2=verbose output, 3=very verbose output
 --settings=SETTINGS The Python path to a settings module, e.g.
 "myproject.settings.main". If this isn't provided, the
 DJANGO_SETTINGS_MODULE environment variable will be
 used.
 --pythonpath=PYTHONPATH
 A directory to add to the Python path, e.g.
 "/home/djangoprojects/myproject".
 --traceback Raise on exception
 -i, --ignore-errors Stop after any errors are encountered.
 --skip-unadvertised Skip processing unadvertised layers from GeoSever.
 --skip-geonode-registered
 Just processing GeoServer layers still not registered
 in GeoNode.
 --remove-deleted Remove GeoNode layers that have been deleted from
 GeoSever.
 -u USER, --user=USER Name of the user account which should own the imported
 layers
 -f FILTER, --filter=FILTER
 Only update data the layers that match the given
 filter
 -s STORE, --store=STORE
 Only update data the layers for the given geoserver
 store name
 -w WORKSPACE, --workspace=WORKSPACE
 Only update data on specified workspace
 --version show program's version number and exit
 -h, --help show this help message and exit

fixsitename

Uses SITENAME and SITEURL to set the values of the default site object.

This information is used in the page titles and when sending emails from GeoNode, for example, new registrations.

Usage:

python manage.py fixsitename

Additional options:

Usage: manage.py fixsitename [options]

Options:
 -v VERBOSITY, --verbosity=VERBOSITY
 Verbosity level; 0=minimal output, 1=normal output,
 2=verbose output, 3=very verbose output
 --settings=SETTINGS The Python path to a settings module, e.g.
 "myproject.settings.main". If this isn't provided, the
 DJANGO_SETTINGS_MODULE environment variable will be
 used.
 --pythonpath=PYTHONPATH
 A directory to add to the Python path, e.g.
 "/home/djangoprojects/myproject".
 --traceback Raise on exception
 --version show program's version number and exit
 -h, --help show this help message and exit

Configuring Alternate CSW Backends

pycsw [http://pycsw.org/] is the default CSW server implementation provided with GeoNode. This section will explain how to configure GeoNode to operate against alternate CSW server implementations.

Supported CSW server implementations

GeoNode additionally supports the following CSW server implementations:

	GeoNetwork opensource [http://geonetwork-opensource.org/]

	deegree [http://deegree.org/]

Since GeoNode communicates with alternate CSW configurations via HTTP, the CSW server can be installed and deployed independent of GeoNode if desired.

Installing the CSW

GeoNetwork opensource Installation

	Deploy GeoNetwork opensource by downloading geonetwork.war (see http://geonetwork-opensource.org/downloads.html) and deploying into your servlet container

	Follow the instructions at http://geonetwork-opensource.org/manuals/2.6.4/eng/users/quickstartguide/installing/index.html to complete the installation

	test the server with a GetCapabilities request (http://localhost:8080/geonetwork/srv/en/csw?service=CSW&version=2.0.2&request=GetCapabilities)

See http://geonetwork-opensource.org/docs.html for further documentation.

deegree Installation

	Deploy deegree by downloading the deegree3 cswDemo .war (see http://wiki.deegree.org/deegreeWiki/DownloadPage) and deploying into your servlet container

	Create a PostGIS-enabled PostgreSQL database

	Follow the instructions at http://wiki.deegree.org/deegreeWiki/deegree3/CatalogueService#Run_your_own_installation to complete the installation

	test the server with a GetCapabilities request (http://localhost:8080/deegree-csw-demo-3.0.4/services?service=CSW&version=2.0.2&request=GetCapabilities)

See http://wiki.deegree.org/deegreeWiki/deegree3/CatalogueService for further documentation.

Customizing GeoNode CSW configuration

At this point, the CSW alternate backend is ready for GeoNode integration. GeoNode’s CSW configuration (in geonode/settings.py) must be updated to point to the correct CSW. The example below exemplifies GeoNetwork as an alternate CSW backend:

CSW settings
CATALOGUE = {
 'default': {
 # The underlying CSW implementation
 # default is pycsw in local mode (tied directly to GeoNode Django DB)
 #'ENGINE': 'geonode.catalogue.backends.pycsw_local',
 # pycsw in non-local mode
 #'ENGINE': 'geonode.catalogue.backends.pycsw',
 # GeoNetwork opensource
 'ENGINE': 'geonode.catalogue.backends.geonetwork',
 # deegree and others
 #'ENGINE': 'geonode.catalogue.backends.generic',

 # The FULLY QUALIFIED base url to the CSW instance for this GeoNode
 #'URL': '%scatalogue/csw' % SITEURL,
 'URL': 'http://localhost:8080/geonetwork/srv/en/csw',
 #'URL': 'http://localhost:8080/deegree-csw-demo-3.0.4/services',

 # login credentials (for GeoNetwork)
 'USER': 'admin',
 'PASSWORD': 'admin',
 }
}

Customize the look and feel

Warning

These instructions are only valid if you’ve installed GeoNode following the guide at Setup & Configure HTTPD !!

You might want to change the look of GeoNode, editing the colors and the logo of the website and adjust the templates for your needs. To do so, you first have to set up your own geonode project from a template. If you’ve successfully done this, you can go further and start theming your geonode project.

	Setup steps

	Setup your own geonode project

	Theming your GeoNode project

	Theme your geonode project

Setup steps

Warning

These instructions are only valid if you’ve installed GeoNode following the guide at Setup & Configure HTTPD !!

If you are working remotely, you should first connect to the machine that has your GeoNode installation. You will need to perform the following steps in a directory where you intend to keep your newly created project.

	1
2
3
4
5
6
7
8

	$ sudo su
$ cd /home/geonode
$ disable_local_repo.sh
$ apt-get install python-django
$ django-admin startproject geonode_custom --template=https://github.com/GeoNode/geonode-project/archive/master.zip -epy,rst
$ chown -Rf geonode: geonode_custom
$ exit
$ sudo pip install -e geonode_custom

Note

You should NOT use the name geonode for your project as it will conflict with your default geonode package name.

These commands create a new template based on the geonode example project.

Make sure that the directories are reachable and have the correct rights for the users geonode and www-data:

	1
2

	$ sudo chown -Rf geonode: *
$ sudo chmod -Rf 775 geonode_custom

If you have a brand new installation of GeoNode, rename the /home/geonode/geonode/local_settings.py.sample to local_settings.py and edit it’s content by setting the SITEURL and SITENAME. This file will be your main settings file for your project. It inherits all the settings from the original one plus you can override the ones that you need.

Note

You can also decide to copy the /home/geonode/geonode/local_settings.py.sample to /path/to/geonode_custom/geonode_custom/local_settings.py in order to keep all the custom settings confined into the new project.

Warning

In order for the edits to the local_settings.py file to take effect, you have to restart apache.

Edit the file /etc/apache2/sites-available/geonode.conf and change the following directive from:

WSGIScriptAlias / /home/geonode/geonode/wsgi/geonode.wsgi

to:

WSGIScriptAlias / /home/geonode/geonode_custom/geonode_custom/wsgi.py

	1
2
3
4
5
6
7
8
9

	$ sudo vi /etc/apache2/sites-available/geonode.conf

 WSGIScriptAlias / /home/geonode/geonode_custom/geonode_custom/wsgi.py

 ...

 <Directory "/home/geonode/geonode_custom/geonode_custom/">

 ...

Edit the file /etc/apache2/sites-available/geonode.conf and modify the DocumentRoot as follows:

Note

It’s a good practice to make copies and backups of the configuration files before modifying or updating them in order to revert the configuration at the previous state if something goes wrong.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

	<VirtualHost *:80>
 ServerName http://localhost
 ServerAdmin webmaster@localhost
 DocumentRoot /home/geonode/geonode_custom/geonode_custom

 ErrorLog /var/log/apache2/error.log
 LogLevel warn
 CustomLog /var/log/apache2/access.log combined

 WSGIProcessGroup geonode
 WSGIPassAuthorization On
 WSGIScriptAlias / /home/geonode/geonode_custom/geonode_custom/wsgi.py

 <Directory "/home/geonode/geonode_custom/geonode_custom/">
 <Files wsgi.py>
 Order deny,allow
 Allow from all
 Require all granted
 </Files>

 Order allow,deny
 Options Indexes FollowSymLinks
 Allow from all
 IndexOptions FancyIndexing
 </Directory>

 ...

Then regenerate the static JavaScript and CSS files from /path/to/geonode_custom/ and restart apache

	1
2
3
4
5
6

	$ cd /home/geonode/geonode_custom
$ python manage.py collectstatic
$ python manage.py syncdb
$ /home/geonode/geonode
$ sudo pip install -e .
$ sudo service apache2 restart

Customize the Look & Feel

Now you can edit the templates in geonode_custom/templates, the css and images to match your needs like shown in customize.theme_admin!

Note

After going through the theming guide you’ll have to return to this site to execute one more command in order to finish the theming!

When you’ve done the changes, run the following command in the geonode_custom folder:

	1
2

	$ cd /home/geonode/geonode_custom
$ python manage.py collectstatic

And now you should see all the changes you’ve made to your GeoNode.

Source code revision control

It is recommended that you immediately put your new project under source code revision control. The GeoNode development team uses Git and GitHub and recommends that you do the same. If you do not already have a GitHub account, you can easily set one up. A full review of Git and distributed source code revision control systems is beyond the scope of this tutorial, but you may find the Git Book [http://git-scm.com/book] useful if you are not already familiar with these concepts.

	Create a new repository in GitHub. You should use the GitHub user interface to create a new repository for your new project.

[image: ../../../_images/github_home.jpg]
Creating a new GitHub Repository From GitHub’s Homepage

[image: ../../../_images/create_repo.jpg]
Specifying new GitHub Repository Parameters

[image: ../../../_images/new_repo.jpg]
Your new Empty GitHub Repository

	Initialize your own repository in the geonode_custom folder:

	1

	$ sudo git init

	Add the remote repository reference to your local git configuration:

	1
2
3

	$ sudo git remote add origin <https url of your custom repo>

 https://github.com/geosolutions-it/geonode_custom.git

	Add your project files to the repository:

	1

	$ sudo git add .

	Commit your changes:

	1
2
3
4
5

	 # Those two command must be issued ONLY once
$ sudo git config --global user.email "geo@geo-solutions.it"
$ sudo git config --global user.name "GeoNode Training"

$ sudo git commit -am "Initial commit"

	Push to the remote repository:

	1

	$ sudo git push origin master

Further Reading

	If you want more information on how to GitHub works and how to contribute to GeoNode project, go to the section “Contributing to GeoNode”

	If you want to customize the Logo and Style of geonode_custom, go to the section “Theming your GeoNode project”

Here below you can find some more details about the custom project structure and info on some of the most important Python files you may want to edit.

The following section is mostly oriented to advanced users and developers.

Project structure

Your GeoNode project will now be structured as depicted below:

|-- README.rst
|-- manage.py
|-- geonode_custom
| |-- __init__.py
| |-- settings.py
| |-- local_settings.py
| |-- static
| | |-- README
| | |-- css
| | | |-- site_base.css
| | |-- img
| | | |-- README
| | |-- js
| | |-- README
| |-- templates
| | |-- site_base.html
| | |-- site_index.html
| |-- urls.py
| |-- wsgi.py
|-- setup.py

You can also view your project on GitHub.

[image: ../../../_images/github_project.png]
Viewing your project on GitHub

Each of the key files in your project are described below.

manage.py

manage.py is the main entry point for managing your project during
development. It allows running all the management commands from each app in your
project. When run with no arguments, it will list all of the management commands.

settings.py

settings.py is the primary settings file for your project. It imports the settings from the system geonode and adds the local paths. It is quite
common to put all sensible defaults here and keep deployment specific configuration
in the local_settings.py file. All of the possible settings values and
their meanings are detailed in the Django documentation.

A common paradigm for handing ‘local settings’ (and in other areas where some
python module may not be available) is:

	try:

	from local_settings import *

	except:

	pass

This is not required and there are many other solutions to handling varying
deployment configuration requirements.

urls.py

urls.py is where your application specific URL routes go. Additionally,
any overrides can be placed here, too.

wsgi.py

This is a generated file to make deploying your project to a WSGI server easier.
Unless there is very specific configuration you need, wsgi.py can be
left alone.

setup.py

There are several packaging options in python but a common approach is to place
your project metadata (version, author, etc.) and dependencies in setup.py.

This is a large topic and not necessary to understand while getting started with
GeoNode development but will be important for larger projects and to make
development easier for other developers.

More: http://docs.python.org/2/distutils/setupscript.html

static

The static directory will contain your fixed resources: css, html,
images, etc. Everything in this directory will be copied to the final media
directory (along with the static resources from other apps in your project).

templates

All of your projects templates go in the templates directory. While
no organization is required for your project specific templates, when overriding
or replacing a template from another app, the path must be the same as the template
to be replaced.

Staying in sync with mainline GeoNode

Warning

These instructions are only valid if you’ve installed GeoNode using apt-get !!

One of the primary reasons to set up your own GeoNode project using this method is so that you can stay in sync with the mainline GeoNode as the core development team makes new releases. Your own project should not be adversely affected by these changes, but you will receive bug fixes and other improvements by staying in sync.

Upgrade GeoNode:

$ apt-get update
$ apt-get install geonode

Verify that your new project works with the upgraded GeoNode:

$ python manage.py runserver

Navigate to http://localhost:8000.

Warning

These instructions are only valid if you’ve installed GeoNode following the guide at Setup & Configure HTTPD !!

Upgrading from source code repo:

Upgrade GeoNode:

$ cd /home/geonode/geonode
$ git pull origin master

Verify that your new project works with the upgraded GeoNode:

$ python manage.py runserver

Navigate to http://localhost:8000.

Theming your GeoNode project

There are a range of options available to you if you want to change the default look and feel of your GeoNode project. Since GeoNode’s style is based on Bootstrap [http://twitter.github.com/bootstrap/] you will be able to make use of all that Bootstrap has to offer in terms of theme customization. You should consult Bootstrap’s documentation as your primary guide once you are familiar with how GeoNode implements Bootstrap and how you can override GeoNode’s theme and templates in your own project.

Logos and graphics

GeoNode intentionally does not include a large number of graphics files in its interface. This keeps page loading time to a minimum and makes for a more responsive interface. That said, you are free to customize your GeoNode’s interface by simply changing the default logo, or by adding your own images and graphics to deliver a GeoNode experience the way you envision int.

Your GeoNode project has a directory already set up for storing your own images at <geonode_custom>/static/img. You should place any image files that you intend to use for your project in this directory.

Let’s walk through an example of the steps necessary to change the default logo.

	Change to the img directory:

$ cd /home/geonode/geonode_custom/geonode_custom/static/img

	If you haven’t already, obtain your logo image. The URL below is just an example, so you will need to change this URL to match the location of your file or copy it to this location:

$ sudo wget http://www2.sta.uwi.edu/~anikov/UWI-logo.JPG
$ sudo chown -Rf geonode: .

	Change to the css directory:

$ cd /home/geonode/geonode_custom/geonode_custom/static/css

	Override the CSS that displays the logo by editing <geonode_custom>/static/css/site_base.css with your favorite editor and adding the following lines, making sure to update the width, height, and URL to match the specifications of your image.

$ sudo vi site_base.css

.navbar-brand {
 width: 373px;
 height: 79px;
 background: transparent url("../img/UWI-logo.JPG") no-repeat scroll 15px 0px;
}

	Restart your GeoNode project and look at the page in your browser:

$ cd /home/geonode
$ sudo rm -Rf geonode/geonode/static_root/*
$ cd geonode_custom
$ python manage.py collectstatic
$ sudo service apache2 restart

Note

It is a good practice to cleanup the static_folder and the Browser Cache before reloading in order to be sure that the changes have been correctly taken and displayed on the screen.

Visit your site at http://localhost/ or the remote URL for your site.

[image: ../../../_images/logo_override.png]
Custom logo

You can see that the header has been expanded to fit your graphic. In the following sections you will learn how to customize this header to make it look and function the way you want.

Note

You should commit these changes to your repository as you progress through this section, and get in the habit of committing early and often so that you and others can track your project on GitHub. Making many atomic commits and staying in sync with a remote repository makes it easier to collaborate with others on your project.

Cascading Style Sheets

In the last section you already learned how to override GeoNode’s default CSS rules to include your own logo. You are able to customize any aspect of GeoNode’s appearance this way. In the last screenshot, you saw that the main area in the homepage is covered up by the expanded header.

First, we’ll walk through the steps necessary to displace it downward so it is no longer hidden, then change the background color of the header to match the color in our logo graphic.

	Reopen <geonode_custom>/static/css/site_base.css in your editor and add the following rule after the one added in the previous step:

$ cd /home/geonode/geonode_custom/geonode_custom/static/css
$ sudo vi site_base.css

#wrap {
 margin: 75px 75px;
}

	Add a rule to change the background color of the header to match the logo graphic we used:

.navbar-inverse {
 background: #0e60c3;
}

	Your project CSS file should now look like this:

.navbar-brand {
 width: 373px;
 height: 79px;
 background: url(../img/UWI-logo.JPG) no-repeat;
}

#wrap {
 margin: 75px 75px;
}

.navbar-inverse {
 background: #0e60c3;
}

	Restart the development server and reload the page:

$ python manage.py collectstatic
$ sudo service apache2 restart

[image: ../../../_images/css_overrides.png]
CSS overrides

Note

You can continue adding rules to this file to override the styles that are in the GeoNode base CSS file which is built from base.less [https://github.com/GeoNode/geonode/blob/master/geonode/static/geonode/less/base.less]. You may find it helpful to use your browser’s development tools to inspect elements of your site that you want to override to determine which rules are already applied. See the screenshot below. Another section of this workshop covers this topic in much more detail.

[image: ../../../_images/inspect_element.png]
Screenshot of using Chrome’s debugger to inspect the CSS overrides

Templates and static pages

Now that we have changed the default logo and adjusted our main content area to fit the expanded header, the next step is to update the content of the homepage itself. Your GeoNode project includes two basic templates that you will use to change the content of your pages.

The file site_base.html (in <geonode_custom>/templates/) is the basic template that all other templates inherit from and you will use it to update things like the header, navbar, site-wide announcement, footer, and also to include your own JavaScript or other static content included in every page in your site. It’s worth taking a look at GeoNode’s base file on GitHub [https://github.com/GeoNode/geonode/blob/master/geonode/templates/base.html]. You have several blocks available to you to for overriding, but since we will be revisiting this file in future sections of this workshop, let’s just look at it for now and leave it unmodified.

Open <geonode_custom>/templates/site_base.html in your editor:

 $ cd /home/geonode/geonode_custom/geonode_custom/templates
 $ sudo vi site_base.html

.. code-block:: html

 {% extends "base.html" %}
 {% block extra_head %}
 <link href="{{ STATIC_URL }}css/site_base.css" rel="stylesheet"/>
 {% endblock %}

You will see that it extends from base.html, which is the GeoNode template referenced above and it currently only overrides the extra_head block to include our project’s site_base.css which we modified in the previous section. You can see on line 22 of the GeoNode base.html template [https://github.com/GeoNode/geonode/blob/master/geonode/templates/base.html#L22] that this block is included in an empty state and is set up specifically for you to include extra CSS files as your project is already set up to do.

Now that we have looked at site_base.html, let’s actually override a different template.

The file site_index.html is the template used to define your GeoNode project’s homepage. It extends GeoNode’s default index.html template and gives you the option to override specific areas of the homepage like the hero area, but also allows you leave area like the “Latest Layers” and “Maps” and the “Contribute” section as they are. You are of course free to override these sections if you choose and this section shows you the steps necessary to do that below.

	Open <geonode_custom>/templates/site_index.html in your editor.

	Edit the <h1> element on line 9 to say something other than “Welcome”:

<h1>{% trans "UWI GeoNode" %}</h1>

	Edit the introductory paragraph to include something specific about your GeoNode project:

<p>
 {% blocktrans %}
 UWI's GeoNode is setup for students and faculty to collaboratively
 create and share maps for their class projects. It is maintained by the
 UWI Geographical Society.
 {% endblocktrans %}
</p>

	Change the Getting Started link to point to another website:

 For more information about the UWI Geographical society,
 visit our website

	Add a graphic to the hero area above the paragraph replaced in step 3:

	Your edited site_index.html file should now look like this:

{% extends 'index.html' %}
{% load i18n %}
{% comment %}
This is where you can override the hero area block. You can simply modify the content below or replace it wholesale to meet your own needs.
{% endcomment %}
 {% block hero %}
 <div class="jumbotron">
 <div class="container">
 <h1>{% trans "UWI GeoNode" %}</h1>
 <div class="hero-unit-content"/>
 <div class="intro">

 </div>
 <p>
 {% blocktrans %}
 UWI's GeoNode is setup for students and faculty to collaboratively
 create and share maps for their class projects. It is maintained by the
 UWI Geographical Society.
 {% endblocktrans %}
 </p>

 For more information about the UWI Geographical society,
 visit our website

 </div>
 </div>
 {% endblock %}

	Refresh your GeoNode project and view the changes in your browser at http://localhost/ or the remote URL for your site:

$ python manage.py collectstatic
$ sudo service apache2 restart

[image: ../../../_images/homepage.png]

From here you can continue to customize your site_index.html template to suit your needs. This workshop will also cover how you can add new pages to your GeoNode project site.

Other theming options

You are able to change any specific piece of your GeoNode project’s style by adding CSS rules to site_base.css, but since GeoNode is based on Bootstrap, there are many pre-defined themes that you can simply drop into your project to get a whole new look. This is very similar to WordPress [http://wordpress.com] themes and is a powerful and easy way to change the look of your site without much effort.

Bootswatch

Bootswatch [http://bootswatch.com] is a site where you can download ready-to-use themes for your GeoNode project site. The following steps will show you how to use a theme from Bootswatch in your own GeoNode site.

	Visit http://bootswatch.com and select a theme (we will use Sandstone for this example). Select the download bootstrap.css option in the menu:

[image: ../../../_images/bootswatch.png]

	Put this file into <geonode_custom>/static/css.

$ cd /home/geonode/geonode_custom/geonode_custom/static/css

	Update the site_base.html template to include this file. It should now look like this:

$ cd /home/geonode/geonode_custom/geonode_custom/templates
$ sudo vi site_base.html

{% extends "base.html" %}
{% block extra_head %}
 <link href="{{ STATIC_URL }}css/site_base.css" rel="stylesheet"/>
 <link href="{{ STATIC_URL }}css/bootstrap.css" rel="stylesheet"/>
{% endblock %}

	Refresh the development server and visit your site:

$ python manage.py collectstatic
$ sudo service apache2 restart

[image: ../../../_images/bootswatch_geonode.png]

Your GeoNode project site is now using the Sandstone theme in addition to the changes you have made.

Debugging GeoNode Installations

There are several mechanisms to debug GeoNode installations, the most common ones are discussed in the following sections.

Viewing the logs

There are many kinds of logs in GeoNode, most of them are located in /var/log/geonode/ and will be explained below in order of relevance:

	GeoNode main log: This is the output of the Django application generated by Apache, it may contain detailed information about uploads and high level problems.

The default location is /var/log/geonode/apache.log or /var/log/apache2/error.log.

It is set to a very low level (not very much information is logged) by default, but it’s output can be increased by setting the logging level to DEBUG in /etc/geonode/local_settings.py.

	GeoServer log: It contains most of the information related to problems with data, rendering and styling errors.

This one can be accessed at GEOSERVER_DATA_DIR/logs/geoserver.log, which is usually /var/lib/tomcat7/webapps/geoserver/data/logs/geoserver.log or /var/lib/geoserver/geonode-data/logs/geoserver.log.

It may also be symlinked in /var/log/geonode/geoserver.log.

	Tomcat logs: Tomcat logs could indicate problems loading GeoServer.

They can be found at /var/lib/tomcat7/logs/catalina.out or /var/lib/tomcat/geoserver/logs/catalina.out.

	PostgreSQL logs: PostgreSQL is accessed by GeoServer and Django, therefore information about errors which are very hard to debug may be found by looking at PostgreSQL’s logs.

They are located at /var/log/postgresql/postgresql-$(psql_version)-main.log where $(psql_version) depends on your local installation.

Enabling DEBUG mode

Django can be set to return nicely formatted exceptions which are useful for debugging instead of generic 500 errors.

This is enabled by setting DEBUG=True in /home/geonode/geonode/geonode/local_settings.py (or /etc/geonode/local_settings.py if GeoNode has been installed using apt-get).

After enabling DEBUG, the Apache server has to be restarted for the changes to be picked up. In Ubuntu:

service apache2 restart

Other tips and tricks

Modifying GeoServer’s output strategy

Up to version 1.1, GeoNode used by default the SPEED output strategy of GeoServer, this meant that proper error messages were being sacrificed for performance.
Unfortunately, this caused many errors to be masked as XML parsing errors when layers were not properly configured.

It is recommended to verify the output strategy is set at least to PARTIAL_BUFFER2 (or a safer one, e.g. ``FILE``) with a high value for the buffer size.
More information about the different strategies and the performance vs correctness trade off is available at GeoServer’s web.xml file.

The typical location of the file that needs to be modified is /var/lib/tomcat7/webapps/geoserver/WEB-INF/web.xml as shown below:

<context-param>
 <param-name>serviceStrategy</param-name>
 <param-value>FILE</param-value>
</context-param>

Add the Django debug toolbar

Warning

The Debug Toolbar module must be disabled whe running the server in production (with Apache2 HTTPD Server WSGI)

The django debug toolbar offers a lot of information on about how the page you
are seeing is created and used. From the database hits to the views involved.
It is a configurable set of panels that display various debug information
about the current request/response and when clicked, display more details
about the panel’s content.

To install it:

$ pip install django-debug-toolbar

	Then edit your settings /home/geonode/geonode/geonode/settings.py (or /etc/geonode/settings.py if GeoNode has been installed using apt-get) and add the following to the bottom of the file:

#debug_toolbar settings
if DEBUG:
 INTERNAL_IPS = ('127.0.0.1',)
 MIDDLEWARE_CLASSES += (
 'debug_toolbar.middleware.DebugToolbarMiddleware',
)

 INSTALLED_APPS += (
 'debug_toolbar',
)

 DEBUG_TOOLBAR_PANELS = [
 'debug_toolbar.panels.versions.VersionsPanel',
 'debug_toolbar.panels.timer.TimerPanel',
 'debug_toolbar.panels.settings.SettingsPanel',
 'debug_toolbar.panels.headers.HeadersPanel',
 'debug_toolbar.panels.request.RequestPanel',
 'debug_toolbar.panels.sql.SQLPanel',
 'debug_toolbar.panels.staticfiles.StaticFilesPanel',
 'debug_toolbar.panels.templates.TemplatesPanel',
 'debug_toolbar.panels.cache.CachePanel',
 'debug_toolbar.panels.signals.SignalsPanel',
 'debug_toolbar.panels.logging.LoggingPanel',
 'debug_toolbar.panels.redirects.RedirectsPanel',
]

 DEBUG_TOOLBAR_CONFIG = {
 'INTERCEPT_REDIRECTS': False,
 }

	Stop Apache and start the server in Development Mode:

$ service apache2 stop
$ python manage.py runserver

	Redirect the browser to http://localhost:8000. You should be able to see the Debug Panel on the right of the screen.

[image: ../../_images/django_debug_toolbar.png]
DJango Debug Toolbar Enabled In Devel Mode

	More:

	For more set up and customize the panels read the official docs here

http://django-debug-toolbar.readthedocs.org/en/latest/

Changing the Default Language

GeoNode’s default language is English, but GeoNode users can change the interface language with the pulldown menu at the top-right of most GeoNode pages. Once a user selects a language GeoNode remembers that language for subsequent pages.

GeoNode Configuration

As root edit the geonode config file /home/geonode/geonode/geonode/settings.py (or /etc/geonode/settings.py if GeoNode has been installed using apt-get) and change LANGUAGE_CODE to the desired default language.

Note

A list of language codes can be found in the global django config file /usr/local/lib/python2.7/dist-packages/django/conf/global_settings.py (or /var/lib/geonode/lib/python2.7/site-packages/django/conf/global_settings.py if GeoNode has been installed using apt-get).

For example, to make French the default language use

LANGUAGE_CODE = 'fr'

Unfortunately Django overrides this setting, giving the language setting of a user’s browser priority. For example, if LANGUAGE_CODE is set to French, but the user has configured their operating system for Spanish they may see the Spanish version when they first visit GeoNode.

Additional Steps

If this is not the desired behaviour, and all users should initially see the default LANGUAGE_CODE, regardless of their browser’s settings, do the following steps to ensure Django ignores the browser language settings. (Users can always use the pulldown language menu to change the language at any time.)

As root create a new directory within GeoNode’s site packages

mkdir /usr/lib/python2.7/dist-packages/setmydefaultlanguage

or

mkdir /var/lib/geonode/lib/python2.7/site-packages/setmydefaultlanguage

or

mkdir ~/.venvs/geonode/lib/python2.7/site-packages/setmydefaultlanguage

if GeoNode has been installed using apt-get as root create and edit a new file /usr/lib/python2.7/dist-packages/setmydefaultlanguage/__init__.py

if GeoNode has been installed as a custom project dependency, ~/.venvs/geonode/lib/python2.7/site-packages/setmydefaultlanguage/__init__.py

Add the following lines

from django.conf import settings
from django.utils import translation

class ForceDefaultLanguageMiddleware(object):
 """
 Ignore Accept-Language HTTP headers

 This will force the I18N machinery to always choose settings.LANGUAGE_CODE
 as the default initial language, unless another one is set via sessions or cookies

 Should be installed *before* any middleware that checks request.META['HTTP_ACCEPT_LANGUAGE'],
 namely django.middleware.locale.LocaleMiddleware
 """
 def process_request(self, request):
 request.LANG = getattr(settings, 'LANGUAGE_CODE', settings.LANGUAGE_CODE)
 translation.activate(request.LANG)
 request.LANGUAGE_CODE = request.LANG

At the end of the GeoNode configuration file /home/geonode/geonode/geonode/settings.py, /etc/geonode/settings.py if GeoNode has been installed using apt-get or ~/.venvs/geonode/src/geonode/geonode/settings.py if installed as a custom project dependency, add the following lines to ensure the above class is executed:

MIDDLEWARE_CLASSES += (
 'setmydefaultlanguage.ForceDefaultLanguageMiddleware',
)

Restart

Finally restart Apache2 as root with:

service apache2 restart

Please refer to Translating GeoNode for information on editing GeoNode pages in different languages and create new GeoNode Translations.

Loading Data into a GeoNode

This module will walk you through the various options available to load data into your GeoNode from GeoServer, on the command-line or programatically. You can choose from among these techniques depending on what kind of data you have and how you have your geonode setup.

	Using importlayers to import Data into GeoNode

	GeoServer Data Configuration

	Using GDAL and OGR to convert your Data for use in GeoNode
	OGR (Vector Data)

	GDAL (Raster Data)

Using importlayers to import Data into GeoNode

The geonode.layers app includes 2 management commands that you can use to load or configure data in your GeoNode. Both of these are invoked by using the manage.py script. This section will walk you through how to use the importlayers management command and the subsequent section will lead you through the process of using updatelayers.

The first thing to do is to use the –help option to the importlayers command to investigate the options to this management command. You can display this help by executing the following command:

$ python manage.py importlayers --help

This will produce output that looks like the following:

Usage: manage.py importlayers [options] path [path...]

Brings a data file or a directory full of data files into aGeoNode site. Layers are added to the Django database, theGeoServer configuration, and the GeoNetwork metadata index.

Options:
 -v VERBOSITY, --verbosity=VERBOSITY
 Verbosity level; 0=minimal output, 1=normal output,
 2=verbose output, 3=very verbose output
 --settings=SETTINGS The Python path to a settings module, e.g.
 "myproject.settings.main". If this isn't provided, the
 DJANGO_SETTINGS_MODULE environment variable will be
 used.
 --pythonpath=PYTHONPATH
 A directory to add to the Python path, e.g.
 "/home/djangoprojects/myproject".
 --traceback Print traceback on exception
 -u USER, --user=USER Name of the user account which should own the imported
 layers
 -i, --ignore-errors Stop after any errors are encountered.
 -o, --overwrite Overwrite existing layers if discovered (defaults
 False)
 -k KEYWORDS, --keywords=KEYWORDS
 The default keywords for the imported layer(s). Will
 be the same for all imported layers if multiple
 imports are done in one command
 --version show program's version number and exit
 -h, --help show this help message and exit

While the description of most of the options should be self explanatory, its worth reviewing some of the key options in a bit more detail.

	The -i option will force the command to stop when it first encounters an error. Without this option specified, the process will skip over errors that have layers and continue loading the other layers.

	The -o option specifies that layers with the same name as the base name will be loaded and overwrite the existing layer.

	The -u option specifies which will be the user that owns the imported layers. The same user will be the point of contact and the metadata author as well for that layer

	The -k option is used to add keywords for all of the layers imported.

The import layers management command is invoked by specifying options as described above and specifying the path to a single layer file or to a directory that contains multiple files. For purposes of this exercise, lets use the default set of testing layers that ship with geonode. You can replace this path with the directory to your own shapefiles:

$ python manage.py importlayers -v 3 /var/lib/geonode/lib/python2.7/site-packages/gisdata/data/good/vector/

This command will produce the following output to your terminal:

Verifying that GeoNode is running ...
Found 8 potential layers.
No handlers could be found for logger "pycsw"
[created] Layer for '/Users/jjohnson/.venvs/geonode/lib/python2.7/site-packages/gisdata/data/good/vector/san_andres_y_providencia_administrative.shp' (1/8)
[created] Layer for '/Users/jjohnson/.venvs/geonode/lib/python2.7/site-packages/gisdata/data/good/vector/san_andres_y_providencia_coastline.shp' (2/8)
[created] Layer for '/Users/jjohnson/.venvs/geonode/lib/python2.7/site-packages/gisdata/data/good/vector/san_andres_y_providencia_highway.shp' (3/8)
[created] Layer for '/Users/jjohnson/.venvs/geonode/lib/python2.7/site-packages/gisdata/data/good/vector/san_andres_y_providencia_location.shp' (4/8)
[created] Layer for '/Users/jjohnson/.venvs/geonode/lib/python2.7/site-packages/gisdata/data/good/vector/san_andres_y_providencia_natural.shp' (5/8)
[created] Layer for '/Users/jjohnson/.venvs/geonode/lib/python2.7/site-packages/gisdata/data/good/vector/san_andres_y_providencia_poi.shp' (6/8)
[created] Layer for '/Users/jjohnson/.venvs/geonode/lib/python2.7/site-packages/gisdata/data/good/vector/san_andres_y_providencia_water.shp' (7/8)
[created] Layer for '/Users/jjohnson/.venvs/geonode/lib/python2.7/site-packages/gisdata/data/good/vector/single_point.shp' (8/8)

Detailed report of failures:

Finished processing 8 layers in 30.0 seconds.

8 Created layers
0 Updated layers
0 Skipped layers
0 Failed layers
3.750000 seconds per layer

If you encounter errors while running this command, you can use the -v option to increase the verbosity of the output so you can debug the problem. The verbosity level can be set from 0-3 with 0 being the default. An example of what the output looks like when an error is encountered and the verbosity is set to 3 is shown below:

Verifying that GeoNode is running ...
Found 8 potential layers.
[failed] Layer for '/Users/jjohnson/.venvs/geonode/lib/python2.7/site-packages/gisdata/data/good/vector/san_andres_y_providencia_administrative.shp' (1/8)
[failed] Layer for '/Users/jjohnson/.venvs/geonode/lib/python2.7/site-packages/gisdata/data/good/vector/san_andres_y_providencia_coastline.shp' (2/8)
[failed] Layer for '/Users/jjohnson/.venvs/geonode/lib/python2.7/site-packages/gisdata/data/good/vector/san_andres_y_providencia_highway.shp' (3/8)
[failed] Layer for '/Users/jjohnson/.venvs/geonode/lib/python2.7/site-packages/gisdata/data/good/vector/san_andres_y_providencia_location.shp' (4/8)
[failed] Layer for '/Users/jjohnson/.venvs/geonode/lib/python2.7/site-packages/gisdata/data/good/vector/san_andres_y_providencia_natural.shp' (5/8)
[failed] Layer for '/Users/jjohnson/.venvs/geonode/lib/python2.7/site-packages/gisdata/data/good/vector/san_andres_y_providencia_poi.shp' (6/8)
[failed] Layer for '/Users/jjohnson/.venvs/geonode/lib/python2.7/site-packages/gisdata/data/good/vector/san_andres_y_providencia_water.shp' (7/8)
[failed] Layer for '/Users/jjohnson/.venvs/geonode/lib/python2.7/site-packages/gisdata/data/good/vector/single_point.shp' (8/8)

Detailed report of failures:

/Users/jjohnson/.venvs/geonode/lib/python2.7/site-packages/gisdata/data/good/vector/san_andres_y_providencia_administrative.shp
================
Traceback (most recent call last):
 File "/Users/jjohnson/projects/geonode/geonode/layers/utils.py", line 682, in upload
 keywords=keywords,
 File "/Users/jjohnson/projects/geonode/geonode/layers/utils.py", line 602, in file_upload
 keywords=keywords, title=title)
 File "/Users/jjohnson/projects/geonode/geonode/layers/utils.py", line 305, in save
 store = cat.get_store(name)
 File "/Users/jjohnson/.venvs/geonode/lib/python2.7/site-packages/geoserver/catalog.py", line 176, in get_store
 for ws in self.get_workspaces():
 File "/Users/jjohnson/.venvs/geonode/lib/python2.7/site-packages/geoserver/catalog.py", line 489, in get_workspaces
 description = self.get_xml("%s/workspaces.xml" % self.service_url)
 File "/Users/jjohnson/.venvs/geonode/lib/python2.7/site-packages/geoserver/catalog.py", line 136, in get_xml
 response, content = self.http.request(rest_url)
 File "/Library/Python/2.7/site-packages/httplib2/__init__.py", line 1445, in request
 (response, content) = self._request(conn, authority, uri, request_uri, method, body, headers, redirections, cachekey)
 File "/Library/Python/2.7/site-packages/httplib2/__init__.py", line 1197, in _request
 (response, content) = self._conn_request(conn, request_uri, method, body, headers)
 File "/Library/Python/2.7/site-packages/httplib2/__init__.py", line 1133, in _conn_request
 conn.connect()
 File "/Library/Python/2.7/site-packages/httplib2/__init__.py", line 799, in connect
 raise socket.error, msg
error: [Errno 61] Connection refused

Note

This last section of output will be repeated for all layers, and only the first one is show above.

This error indicates that GeoNode was unable to connect to GeoServer to load the layers. To solve this, you should make sure GeoServer is running and re-run the command.

If you encounter errors with this command that you cannot solve, you should bring them up on the geonode users mailing list.

You should now have the knowledge necessary to import layers into your GeoNode project from a directory on the servers filesystem and can use this to load many layers into your GeoNode at once.

Note

If you do not use the -u command option, the ownership of the imported layers will be assigned to the primary superuser in your system. You can use GeoNodes Django Admin interface to modify this after the fact if you want them to be owned by another user.

GeoServer Data Configuration

While it is possible to import layers directly from your servers filesystem into your GeoNode, you may have an existing GeoServer that already has data in it, or you may want to configure data from a GeoServer which is not directly supported by uploading data.

GeoServer supports a wide range of data formats and connections to database, and while many of them are not supported as GeoNode upload formats, if they can be configured in GeoServer, you can add them to your GeoNode by following the procedure described below.

GeoServer supports 3 types of data: Raster, Vector and Databases. For a list of the supported formats for each type of data, consult the following pages:

	http://docs.geoserver.org/latest/en/user/data/vector/index.html#data-vector

	http://docs.geoserver.org/latest/en/user/data/raster/index.html

	http://docs.geoserver.org/latest/en/user/data/database/index.html

Note

Some of these raster or vector formats or database types require that you install specific plugins in your GeoServer in order to use the. Please consult the GeoServer documentation for more information.

Lets walk through an example of configuring a new PostGIS database in GeoServer and then configuring those layers in your GeoNode.

First visit the GeoServer administration interface on your server. This is usually on port 8080 and is available at http://localhost:8080/geoserver/web/

You should login with the superuser credentials you setup when you first configured your GeoNode instance.

Once you are logged in to the GeoServer Admin interface, you should see the following.

[image: ../../_images/geoserver_admin1.png]

Note

The number of stores, layers and workspaces may be different depending on what you already have configured in your GeoServer.

Next you want to select the “Stores” option in the left hand menu, and then the “Add new Store” option. The following screen will be displayed.

[image: ../../_images/geoserver_new_store.png]

In this case, we want to select the PostGIS store type to create a connection to our existing database. On the next screen you will need to enter the parameters to connect to your PostGIS database (alter as necessary for your own database).

[image: ../../_images/geoserver_postgis_params.png]

Note

If you are unsure about any of the settings, leave them as the default.

The next screen lets you configure the layers in your database. This will of course be different depending on the layers in your database.

[image: ../../_images/geoserver_publish_layers.png]

Select the “Publish” button for one of the layers and the next screen will be displayed where you can enter metadata for this layer. Since we will be managing this metadata in GeoNode, we can leave these alone for now.

[image: ../../_images/geoserver_layer_params.png]

The things that must be specified are the Declared SRS and you must select the “Compute from Data” and “Compute from native bounds” links after the SRS is specified.

[image: ../../_images/geoserver_srs.png]

Click save and this layer will now be configured for use in your GeoServer.

[image: ../../_images/geoserver_layers.png]

The next step is to configure these layers in GeoNode. The updatelayers management command is used for this purpose. As with importlayers, its useful to look at the command line options for this command by passing the –help option:

$ python manage.py updatelayers --help

This help option displays the following:

Usage: manage.py updatelayers [options]

Update the GeoNode application with data from GeoServer

Options:
 -v VERBOSITY, --verbosity=VERBOSITY
 Verbosity level; 0=minimal output, 1=normal output,
 2=verbose output, 3=very verbose output
 --settings=SETTINGS The Python path to a settings module, e.g.
 "myproject.settings.main". If this isn't provided, the
 DJANGO_SETTINGS_MODULE environment variable will be
 used.
 --pythonpath=PYTHONPATH
 A directory to add to the Python path, e.g.
 "/home/djangoprojects/myproject".
 --traceback Print traceback on exception
 -i, --ignore-errors Stop after any errors are encountered.
 -u USER, --user=USER Name of the user account which should own the imported
 layers
 -w WORKSPACE, --workspace=WORKSPACE
 Only update data on specified workspace
 --version show program's version number and exit
 -h, --help show this help message and exit

For this sample, we can use the default options. So enter the following command to configure the layers from our GeoServer into our GeoNode:

$ python manage.py updatelayers

The output will look something like the following:

[created] Layer Adult_Day_Care (1/11)
[created] Layer casinos (2/11)
[updated] Layer san_andres_y_providencia_administrative (3/11)
[updated] Layer san_andres_y_providencia_coastline (4/11)
[updated] Layer san_andres_y_providencia_highway (5/11)
[updated] Layer san_andres_y_providencia_location (6/11)
[updated] Layer san_andres_y_providencia_natural (7/11)
[updated] Layer san_andres_y_providencia_poi (8/11)
[updated] Layer san_andres_y_providencia_water (9/11)
[updated] Layer single_point (10/11)
[created] Layer ontdrainage (11/11)

Finished processing 11 layers in 45.0 seconds.

3 Created layers
8 Updated layers
0 Failed layers
4.090909 seconds per layer

Note

This example picked up 2 additional layers that were already in our GeoServer, but were not already in our GeoNode.

For layers that already exist in your GeoNode, they will be updated and the configuration synchronized between GeoServer and GeoNode.

You can now view and use these layers in your GeoNode.

Using GDAL and OGR to convert your Data for use in GeoNode

GeoNode supports uploading data in shapefiles, GeoTiff, csv and kml formats (for the last two formats only if you are using the geonode.importer backend in the UPLOAD variable in settings.py). If your data is in other formats, you will need to convert it into one of these formats for use in GeoNode. This section will walk you through the steps necessary to convert your data into formats suitable for uploading into GeoNode.

You will need to make sure that you have the gdal library installed on your system. On Ubuntu you can install this package with the following command:

$ sudo apt-get install gdal-bin

OGR (Vector Data)

OGR is used to manipulate vector data. In this example, we will use MapInfo .tab files and convert them to shapefiles with the ogr2ogr command. We will use sample MapInfo files from the website linked below.

http://services.land.vic.gov.au/landchannel/content/help?name=sampledata

You can download the Admin;(Postcode) layer by issuing the following command:

$ wget http://services.land.vic.gov.au/sampledata/mif/admin_postcode_vm.zip

You will need to unzip this dataset by issuing the following command:

$ unzip admin_postcode_vm.zip

This will leave you with the following files in the directory where you executed the above commands:

|-- ANZVI0803003025.htm
|-- DSE_Data_Access_Licence.pdf
|-- VMADMIN.POSTCODE_POLYGON.xml
|-- admin_postcode_vm.zip
--- vicgrid94
 --- mif
 --- lga_polygon
 --- macedon\ ranges
 |-- EXTRACT_POLYGON.mid
 |-- EXTRACT_POLYGON.mif
 --- VMADMIN
 |-- POSTCODE_POLYGON.mid
 --- POSTCODE_POLYGON.mif

First, lets inspect this file set using the following command:

$ ogrinfo -so vicgrid94/mif/lga_polygon/macedon\ ranges/VMADMIN/POSTCODE_POLYGON.mid POSTCODE_POLYGON

The output will look like the following:

Had to open data source read-only.
INFO: Open of `vicgrid94/mif/lga_polygon/macedon ranges/VMADMIN/POSTCODE_POLYGON.mid'
 using driver `MapInfo File' successful.

Layer name: POSTCODE_POLYGON
Geometry: 3D Unknown (any)
Feature Count: 26
Extent: (2413931.249367, 2400162.366186) - (2508952.174431, 2512183.046927)
Layer SRS WKT:
PROJCS["unnamed",
 GEOGCS["unnamed",
 DATUM["GDA94",
 SPHEROID["GRS 80",6378137,298.257222101],
 TOWGS84[0,0,0,-0,-0,-0,0]],
 PRIMEM["Greenwich",0],
 UNIT["degree",0.0174532925199433]],
 PROJECTION["Lambert_Conformal_Conic_2SP"],
 PARAMETER["standard_parallel_1",-36],
 PARAMETER["standard_parallel_2",-38],
 PARAMETER["latitude_of_origin",-37],
 PARAMETER["central_meridian",145],
 PARAMETER["false_easting",2500000],
 PARAMETER["false_northing",2500000],
 UNIT["Meter",1]]
PFI: String (10.0)
POSTCODE: String (4.0)
FEATURE_TYPE: String (6.0)
FEATURE_QUALITY_ID: String (20.0)
PFI_CREATED: Date (10.0)
UFI: Real (12.0)
UFI_CREATED: Date (10.0)
UFI_OLD: Real (12.0)

This gives you information about the number of features, the extent, the projection and the attributes of this layer.

Next, lets go ahead and convert this layer into a shapefile by issuing the following command:

$ ogr2ogr -t_srs EPSG:4326 postcode_polygon.shp vicgrid94/mif/lga_polygon/macedon\ ranges/VMADMIN/POSTCODE_POLYGON.mid POSTCODE_POLYGON

Note that we have also reprojected the layer to the WGS84 spatial reference system with the -t_srs ogr2ogr option.

The output of this command will look like the following:

Warning 6: Normalized/laundered field name: 'FEATURE_TYPE' to 'FEATURE_TY'
Warning 6: Normalized/laundered field name: 'FEATURE_QUALITY_ID' to 'FEATURE_QU'
Warning 6: Normalized/laundered field name: 'PFI_CREATED' to 'PFI_CREATE'
Warning 6: Normalized/laundered field name: 'UFI_CREATED' to 'UFI_CREATE'

This output indicates that some of the field names were truncated to fit into the constraint that attributes in shapefiles are only 10 characters long.

You will now have a set of files that make up the postcode_polygon.shp shapefile set. We can inspect them by issuing the following command:

$ ogrinfo -so postcode_polygon.shp postcode_polygon

The output will look similar to the output we saw above when we inspected the MapInfo file we converted from:

INFO: Open of `postcode_polygon.shp'
 using driver `ESRI Shapefile' successful.

Layer name: postcode_polygon
Geometry: Polygon
Feature Count: 26
Extent: (144.030296, -37.898156) - (145.101137, -36.888878)
Layer SRS WKT:
GEOGCS["GCS_WGS_1984",
 DATUM["WGS_1984",
 SPHEROID["WGS_84",6378137,298.257223563]],
 PRIMEM["Greenwich",0],
 UNIT["Degree",0.017453292519943295]]
PFI: String (10.0)
POSTCODE: String (4.0)
FEATURE_TY: String (6.0)
FEATURE_QU: String (20.0)
PFI_CREATE: Date (10.0)
UFI: Real (12.0)
UFI_CREATE: Date (10.0)
UFI_OLD: Real (12.0)

These files can now be loaded into your GeoNode instance via the normal uploader.

Visit the upload page in your GeoNode, drag and drop the files that composes the shapefile that you have generated using the GDAL ogr2ogr command (postcode_polygon.dbf, postcode_polygon.prj, postcode_polygon.shp, postcode_polygon.shx). Give the permissions as needed and then click the “Upload files” button.

[image: ../../_images/upload_shapefile.png]

As soon as the import process completes, you will have the possibility to go straight to the layer info page (“Layer Info” button), or to edit the metadata for that layer (“Edit Metadata” button), or to manage the styles for that layer (“Manage Styles”).

[image: ../../_images/layer_info_vector.png]

GDAL (Raster Data)

Now that we have seen how to convert vector layers into shapefiles using ogr2ogr, we will walk through the steps necessary to perform the same operation with Raster layers. For this example, we will work with Arc/Info Binary and ASCII Grid data and convert it into GeoTiff format for use in GeoNode.

First, you need to download the sample data to work with it. You can do this by executing the following command:

$ wget http://84.33.2.26/geonode/sample_asc.tar

You will need to uncompress this file by executing this command:

$ tar -xvf sample_asc.tar

You will be left with the following files on your filesystem:

|-- batemans_ele
| |-- dblbnd.adf
| |-- hdr.adf
| |-- metadata.xml
| |-- prj.adf
| |-- sta.adf
| |-- w001001.adf
| |-- w001001x.adf
|-- batemans_elevation.asc

The file batemans_elevation.asc is an Arc/Info ASCII Grid file and the files in the batemans_ele directory are an Arc/Info Binary Grid file.

You can use the gdalinfo command to inspect both of these files by executing the following command:

$ gdalinfo batemans_elevation.asc

The output should look like the following:

Driver: AAIGrid/Arc/Info ASCII Grid
Files: batemans_elevation.asc
Size is 155, 142
Coordinate System is `'
Origin = (239681.000000000000000,6050551.000000000000000)
Pixel Size = (100.000000000000000,-100.000000000000000)
Corner Coordinates:
Upper Left (239681.000, 6050551.000)
Lower Left (239681.000, 6036351.000)
Upper Right (255181.000, 6050551.000)
Lower Right (255181.000, 6036351.000)
Center (247431.000, 6043451.000)
Band 1 Block=155x1 Type=Float32, ColorInterp=Undefined
 NoData Value=-9999

You can then inspect the batemans_ele files by executing the following command:

$ gdalinfo batemans_ele

And this should be the corresponding output:

Driver: AIG/Arc/Info Binary Grid
Files: batemans_ele
 batemans_ele/dblbnd.adf
 batemans_ele/hdr.adf
 batemans_ele/metadata.xml
 batemans_ele/prj.adf
 batemans_ele/sta.adf
 batemans_ele/w001001.adf
 batemans_ele/w001001x.adf
Size is 155, 142
Coordinate System is:
PROJCS["unnamed",
 GEOGCS["GDA94",
 DATUM["Geocentric_Datum_of_Australia_1994",
 SPHEROID["GRS 1980",6378137,298.257222101,
 AUTHORITY["EPSG","7019"]],
 TOWGS84[0,0,0,0,0,0,0],
 AUTHORITY["EPSG","6283"]],
 PRIMEM["Greenwich",0,
 AUTHORITY["EPSG","8901"]],
 UNIT["degree",0.0174532925199433,
 AUTHORITY["EPSG","9122"]],
 AUTHORITY["EPSG","4283"]],
 PROJECTION["Transverse_Mercator"],
 PARAMETER["latitude_of_origin",0],
 PARAMETER["central_meridian",153],
 PARAMETER["scale_factor",0.9996],
 PARAMETER["false_easting",500000],
 PARAMETER["false_northing",10000000],
 UNIT["METERS",1]]
Origin = (239681.000000000000000,6050551.000000000000000)
Pixel Size = (100.000000000000000,-100.000000000000000)
Corner Coordinates:
Upper Left (239681.000, 6050551.000) (150d 7'28.35"E, 35d39'16.56"S)
Lower Left (239681.000, 6036351.000) (150d 7'11.78"E, 35d46'56.89"S)
Upper Right (255181.000, 6050551.000) (150d17'44.07"E, 35d39'30.83"S)
Lower Right (255181.000, 6036351.000) (150d17'28.49"E, 35d47'11.23"S)
Center (247431.000, 6043451.000) (150d12'28.17"E, 35d43'13.99"S)
Band 1 Block=256x4 Type=Float32, ColorInterp=Undefined
 Min=-62.102 Max=142.917
NoData Value=-3.4028234663852886e+38

You will notice that the batemans_elevation.asc file does not contain projection information while the batemans_ele file does. Because of this, lets use the batemans_ele files for this exercise and convert them to a GeoTiff for use in GeoNode. We will also reproject this file into WGS84 in the process. This can be accomplished with the following command.

$ gdalwarp -t_srs EPSG:4326 batemans_ele batemans_ele.tif

The output will show you the progress of the conversion and when it is complete, you will be left with a batemans_ele.tif file that you can upload to your GeoNode.

You can inspect this file with the gdalinfo command:

$ gdalinfo batemans_ele.tif

Which will produce the following output:

Driver: GTiff/GeoTIFF
Files: batemans_ele.tif
Size is 174, 130
Coordinate System is:
GEOGCS["WGS 84",
 DATUM["WGS_1984",
 SPHEROID["WGS 84",6378137,298.257223563,
 AUTHORITY["EPSG","7030"]],
 AUTHORITY["EPSG","6326"]],
 PRIMEM["Greenwich",0],
 UNIT["degree",0.0174532925199433],
 AUTHORITY["EPSG","4326"]]
Origin = (150.119938943722502,-35.654598806259330)
Pixel Size = (0.001011114155919,-0.001011114155919)
Metadata:
 AREA_OR_POINT=Area
Image Structure Metadata:
 INTERLEAVE=BAND
Corner Coordinates:
Upper Left (150.1199389, -35.6545988) (150d 7'11.78"E, 35d39'16.56"S)
Lower Left (150.1199389, -35.7860436) (150d 7'11.78"E, 35d47' 9.76"S)
Upper Right (150.2958728, -35.6545988) (150d17'45.14"E, 35d39'16.56"S)
Lower Right (150.2958728, -35.7860436) (150d17'45.14"E, 35d47' 9.76"S)
Center (150.2079059, -35.7203212) (150d12'28.46"E, 35d43'13.16"S)
Band 1 Block=174x11 Type=Float32, ColorInterp=Gray

You can then follow the same steps we used above to upload the GeoTiff file we created into the GeoNode, and you will see your layer displayed in the Layer Info page.

[image: ../../_images/batemans_tif.png]

Now that you have seen how to convert layers with both OGR and GDAL, you can use these techniques to work with your own data and get it prepared for inclusion in your own GeoNode.

More on Security and Permissions

	Security and Permissions
	Users

	Layers

	Maps

	Documents

Security and Permissions

This tutorial will guide you through the steps that can be done in order to restrict the access on your data uploaded to geonode.

First of all it will be shown how a user can be created and what permissions he can have. Secondly we will take a closer look
on to layers, maps and documents and the different opportunities you have in order to ban certain users from viewing or editing your
data.

Users

Your first step will be to create a user. There are three options to do so, depending on which kind of user you want to create you may
choose a different option. We will start with creating a superuser, because this user is the most important. A superuser
has all the permissions without explicitly assigning them.

The easiest way to create a superuser (in linux) is to open your terminal and type:

$ python manage.py createsuperuser

You will be asked a username (in this tutorial we will call the superuser you now create your_superuser), an email address and a password.

Now you’ve created a superuser you should become familiar with the Django Admin Interface. As a superuser you are having
access to this interface, where you can manage users, layers, permission and more. To learn more detailed about this interface
check this LINK. For now it will be enough to just follow the steps. To attend the Django Admin Interface, go to your geonode website and sign in with your_superuser. Once you’ve logged in, the name of your user will appear on the top right. Click on it and the following menu
will show up:

[image: ../../_images/menu_admin.png]

Clicking on Admin causes the interface to show up.

[image: ../../_images/admin_interface.png]

Go to Auth -> Users and you will see all the users that exist at the moment. In your case it will only be your_superuser. Click on it, and you will see a section on Personal Info, one on Permissions and one on Important dates. For the moment, the section on Permissions is the most important.

[image: ../../_images/permissions_django_admin.png]

As you can see, there are three boxes that can be checked and unchecked. Because you’ve created a superuser, all three boxes
are checked as default. If only the box active would have been checked, the user would not be a superuser and would not be able to
access the Django Admin Interface (which is only available for users with the staff status). Therefore keep the following
two things in mind:

	a superuser is able to access the Django Admin Interface and he has all permissions on the data uploaded to GeoNode.

	an ordinary user (created from the GeoNode interface) only has active permissions by default. The user will not have the ability to access the Django Admin Interface and certain permissions have to be added for him.

Until now we’ve only created superusers. So how do you create an ordinary user? You have two options:

	Django Admin Interface

First we will create a user via the Django Admin Interface because we’ve still got it open. Therefore go back to Auth -> Users and you should find a button on the right that says Add user.

[image: ../../_images/add_user.png]

Click on it and a form to fill out will appear. Name the new user test_user, choose a password and click save at the right bottom of the site.

[image: ../../_images/add_test_user.png]

Now you should be directed to the site where you could
change the permissions on the user test_user. As default only active is checked. If you want this user also to be able to attend this admin interface
you could also check staff status. But for now we leave the settings as they are!

To test whether the new user was successfully created, go back to the GeoNode web page and try to sign in.

	GeoNode website

	To create an ordinary user you could also just use the GeoNode website. If you installed GeoNode using a release, you should

	see a Register button on the top, beside the Sign in button (you might have to log out before).

[image: ../../_images/register.png]

Hit the button and again a form will appear for you to fill out. This user will be named geonode_user

[image: ../../_images/sign_up_test_user.png]

By hitting Sign up the user will be signed up, as default only with the status active.

As mentioned before, this status can be changed as well. To do so, sign in with your_superuser again and attend the admin interface. Go again to Auth -> Users, where now three users
should appear:

We now want to change the permission of the geonode_user so that he will be able to attend the admin interface as well.
Click on to geonode_user and you will automatically be moved to the site where you can change the permissions. Check the box staff status and hit save to store the changes.

To sum it up, we have now created three users with different kind of permissions.

	your_superuser: This user is allowed to attend the admin interface and has all available permissions on layers, maps etc.

	geonode_user: This user is permitted to attend the admin interface, but permissions on layers, maps etc. have to be assigned.

	test_user: This user is not able to attend the admin interface, permissions on layers, maps etc. have also to be assigned.

You should know have an overview over the different kinds of users and how to create and edit them. You’ve also learned about the permissions a certain user has and how to change them using the Django Admin Interface.

Note

If you’ve installed GeoNode in developing mode, the Register button won’t be seen from the beginning. To add this button to the website, you have to change the REGISTRATION_OPEN = False in the settings.py to REGISTRATION_OPEN = True. Then reload GeoNode and you should also be able to see the Register button.

Layers

Now that we’ve already created some users, we will take a closer look on the security of layers, how you can protect your data not to be viewed or edited by unwanted users.

Hint

As already mentioned before it is important to know that a superuser does have unrestricted access to all your uploaded data. That means you cannot ban a superuser from viewing, downloading or editing a layer!

The permissions on a certain layer can already be set when uploading your files. When the upload form appears (Layers -> Upload Layer) you will see the permission section on the right side:

[image: ../../_images/upload_layer.png]

As it can be seen here, the access on your layer is split up into three groups:

	view and download data

	edit data

	manage and edit data

The difference between manage and edit layer and edit layer is that a user assigned to edit layer is not able to change
the permissions on the layer whereas a user assigned to manage and edit layer can change the permissions.
You can now choose whether you want your layer to be viewed and downloaded by

	anyone

	any registered user

	a certain user (or group)

We will now upload our test layer like shown HERE. If you want your layer only be viewed by certain users or a group, you have to choose Only users who can edit in the part Who can view and download this data.
In the section Who can edit this data you write down the names of the users you want to have admission on this data. For this first layer we will choose the settings like shown in the following image:

If you now log out, your layer can still be seen, but the unregistered users won’t be able to edit your layer. Now sign in as geonode_user and click on the test layer. Above the layer you can see this:

[image: ../../_images/edit_and_download_layer.png]

The geonode_user is able to edit the test_layer. But before going deeper into this, we have to first take a look on another case. As an administrator you might also upload your layers to geoserver and then make them available on GeoNode using updatelayers. Or you even add the layers via the terminal using importlayers (LINK TUTORIAL). To set the permissions on this layer, click on the test layer (you’ve uploaded via updatelayers) and you will see the same menu as shown in the image above. Click Edit layer and the menu will appear.

[image: ../../_images/edit_and_manage.png]

Choose edit permissions and a window with the permission settings will appear. This window can also be opened by scrolling down the website. On the right-hand side of the page you should be able to see a button like this.

Click on it and you will see the same window as before.

Now set the permissions of this layer using the following settings:

When you assign a user to be able to edit your data, this user is allowed to execute all of the following actions:

	edit metadata

	edit styles

	manage styles

	replace layer

	remove layer

So be aware that each user assigned to edit this layer can even remove it! In our case, only the user test_user and your_superuser do have the rights to do so. Geonode_user is neither able to view nor to download or edit this layer.

Now you are logged in as the user test_user. Below the test_layer you can see the following:

By clicking Edit Layer and Edit Metadata on top of the layer, you can change this information. The test_user is able to change all the metadata of this layer. We now want to change to point of contact, therefore scroll down until you see this:

[image: ../../_images/point_of_contact.png]

Change the point of contact from _who_ever_created_this to test_user. Save your changes and you will now be able to see the following:

Warning

If you allow a user to view and download a layer, this user will also be able to edit the styles, even if he is not assigned to edit the layer! Keep this in mind!

To learn how you can edit metadata or change the styles go to this section LINK.

Maps

The permission on maps are basically the same as on layers, just that there are fewer options on how to edit the map. Let’s create a map (or already TUTORIAL?). Click on test_map and scroll down till you see this:

[image: ../../_images/change_map_permissions.png]

Here you can set the same permissions as known from the layer permissions! Set the permissions of this map as seen here:

Save your changes and then log out and log in as test_user. You should now be able to view the test_map and click on to Edit map.

[image: ../../_images/edit_map.png]

As you may recognize, this user is not able to change the permissions on this map. If you log in as the user geonode_user you should be able to see the button change map permissions when you scroll down the page.

Documents

All the same is also valid for your uploaded documents.

Backup & Restore GeoNode - Data Migration

The admin command to backup and restore GeoNode, allows to extract consistently the GeoNode and GeoServer data models in a serializable meta-format which is being interpreted later by the restore procedure in order to exactly rebuild the whole structure,
accordingly to the current instance version (which may also be different from the starting one).

In particular the tool helps developers and amdins to correctly extract and serialize the following resources are on the storage and deserialize on the target GeoNode/GeoServer instance:

	GeoNode (Resource Base Model):

	Layers (both raster and vectors)

	Maps

	Documents

	People with Credentials

	Permissions

	Associated Styles

	Static data and templates

	GeoServer (Catalog):

	OWS Services configuration and limits

	Security model along with auth filters configuration, users and credentials

	Workspaces

	Stores (both DataStores and CoverageStores)

	Layers

	Styles

The tool exposes two GeoNode Management Commands, ‘backup’ and ‘restore’.

The commands allow to:

	Fully backup GeoNode data and fixtures on a zip archive

	Fully backup GeoServer configuration (physical datasets - tables, shapefiles, geotiffs)

	Fully restore GeoNode and GeoServer fixtures and catalog from the zip archive

	Migrate fixtures from old GeoNode models to the new one

The usage of those commands is quite easy and straight. It is possible to run the backup and restore commands from the GeoNode Admin panel also.

The first step is to ensure that everything is correctly configured and the requisites respected in order to successfully perform a backup and restore of GeoNode.

Warning

It is worth notice that this functionality requires the latest GeoServer Extension [http://build.geonode.org/geoserver/latest/] (2.9.x or greater) for GeoNode in order to correctly work.

Note

GeoServer full documentation is also available here GeoServer Docs [http://docs.geoserver.org/latest/en/user/community/backuprestore/index.html]

Requisites and Setup

Before running a GeoNode backup / restore, it is necessary to ensure everything is correctly configured and setup.

Settings

Accordingly to the admin needs, the file settings.ini must be tuned up a bit before running a backup / restore.

It can be found at geonode/base/management/commands/settings.ini and by default it contains the following properties:

[database]
pgdump = pg_dump
pgrestore = pg_restore

[geoserver]
datadir = /opt/gs_data_dir
dumpvectordata = yes
dumprasterdata = yes

[fixtures]
#NOTE: Order is important
apps = people,account,avatar.avatar,base.backup,base.license,base.topiccategory,base.region,base.resourcebase,base.contactrole,base.link,base.restrictioncodetype,base.spatialrepresentationtype,guardian.userobjectpermission,guardian.groupobjectpermission,layers.uploadsession,layers.style,layers.layer,layers.attribute,layers.layerfile,maps.map,maps.maplayer,maps.mapsnapshot,documents.document,taggit

dumps = people,accounts,avatars,backups,licenses,topiccategories,regions,resourcebases,contactroles,links,restrictioncodetypes,spatialrepresentationtypes,useropermissions,groupopermissions,uploadsessions,styles,layers,attributes,layerfiles,maps,maplayers,mapsnapshots,documents,tags

Migrate from GN 2.0 to GN 2.4
#migrations = base.resourcebase,layers.layer,layers.attribute,maps.map,maps.maplayer
#manglers = gn20_to_24.ResourceBaseMangler,gn20_to_24.LayerMangler,gn20_to_24.LayerAttributesMangler,gn20_to_24.MapMangler,gn20_to_24.MapLayersMangler

Migrate from GN 2.4 to GN 2.4
migrations = base.resourcebase,layers.layer,layers.attribute,maps.map,maps.maplayer
manglers = gn24_to_24.ResourceBaseMangler,gn24_to_24.LayerMangler,gn24_to_24.LayerAttributesMangler,gn24_to_24.DefaultMangler,gn24_to_24.MapLayersMangler

The settings.ini has few different sections that must carefully checked before running a backup / restore command.

Settings: [database] Section

[database]
pgdump = pg_dump
pgrestore = pg_restore

This section si quite simple. It contains only two (2) properties:

	pgdump; the path of the pg_dump local command.

	pgrestore; the path of the pg_restore local command.

Warning

Those properties are ignored in case GeoNode is not configured to use a DataBase as backend (see settings.py and local_settings.py sections)

Note

Database connection settings (both for GeoNode and GeoServer) will be taken from settings.py and local_settings.py configuration files. Be sure they are correctly configured (on the target GeoNode instance too) and the DataBase server is accessible while executing a backup / restore command.

Settings: [geoserver] Section

[geoserver]
datadir = /opt/gs_data_dir
dumpvectordata = yes
dumprasterdata = yes

This section allows to enable / disable a full data backup / restore of GeoServer.

	datadir; the full path of GeoServer Data Dir, by default /opt/gs_data_dir. The path must be accessible and fully writable by the geonode and / or httpd server users when executing a backup / restore command.

	dumpvectordata; a boolean allowing to disable dump of vectorial data from GeoServer (shapefiles or DB tables). If false (or no) vectorial data won’t be stored / re-stored.

	dumprasterdata; a boolean allowing to disable dump of raster data from GeoServer (geotiffs). If false (or no) raster data won’t be stored / re-stored.

Warning

Enabling those options requires that the GeoServer Data Dir is accessible and fully writable by the geonode and / or httpd server users when executing a backup / restore command.

Settings: [fixtures] Section

[fixtures]
#NOTE: Order is important
apps = people,account,avatar.avatar,base.backup,base.license,base.topiccategory,base.region,base.resourcebase,base.contactrole,base.link,base.restrictioncodetype,base.spatialrepresentationtype,guardian.userobjectpermission,guardian.groupobjectpermission,layers.uploadsession,layers.style,layers.layer,layers.attribute,layers.layerfile,maps.map,maps.maplayer,maps.mapsnapshot,documents.document,taggit

dumps = people,accounts,avatars,backups,licenses,topiccategories,regions,resourcebases,contactroles,links,restrictioncodetypes,spatialrepresentationtypes,useropermissions,groupopermissions,uploadsessions,styles,layers,attributes,layerfiles,maps,maplayers,mapsnapshots,documents,tags

Migrate from GN 2.0 to GN 2.4
#migrations = base.resourcebase,layers.layer,layers.attribute,maps.map,maps.maplayer
#manglers = gn20_to_24.ResourceBaseMangler,gn20_to_24.LayerMangler,gn20_to_24.LayerAttributesMangler,gn20_to_24.MapMangler,gn20_to_24.MapLayersMangler

Migrate from GN 2.4 to GN 2.4
migrations = base.resourcebase,layers.layer,layers.attribute,maps.map,maps.maplayer
manglers = gn24_to_24.ResourceBaseMangler,gn24_to_24.LayerMangler,gn24_to_24.LayerAttributesMangler,gn24_to_24.DefaultMangler,gn24_to_24.MapLayersMangler

This section is the most complex one. Usually you don’t need to modify it. Only an expert user who knows Python and GeoNode model structure should modify this section.

What its properties mean:

	apps; this is an ordered list of GeoNode Object Models (or DJango apps). The backup / restore procedure will dump / restore the fixtures in a portable format.

	dumps; this is the list of files associated to the DJango apps. The order must be the same of the property above. Each name represents the file name where to dump / read the single app fixture.

	migrations; some fixtures must be enriched or updated before restored on the target model. This section allows to associate specific manglers to the fixtures. Manglers are simple Python classes which simply converts some attributes to other formats.

	manglers; the Python mangler class to execute accorndingly to the fixture indicated by the migrations property. Manglers classes must be located into he geonode/base/management/commands/lib` folder.

Note

Manglers must be used when migrating from a GeoNode version to another one, i.e. where the original model differs from the target one. With the default distribution are provided manglers to convert from GeoNode 2.0 to GeoNode 2.4. Other versions may require other manglers or updates to the default ones.

Mangler Example

As specified on the section above, manglers are Python classes allowing developers to enrich / modify a fixture in order to fit the target GeoNode model.

The structure of a mangler is quite simple. Lets examine the ResourceBaseMangler of the gn_20_to_24 library, a mangler used to convert a GeoNode 2.0 Resource Base to a GeoNode 2.4 one.

class ResourceBaseMangler(DefaultMangler):

 def default(self, obj):
 # Let the base class default method raise the TypeError
 return json.JSONEncoder.default(self, obj)

 def decode(self, json_string):
 """
 json_string is basicly string that you give to json.loads method
 """
 default_obj = super(ResourceBaseMangler, self).decode(json_string)

 # manipulate your object any way you want
 #
 upload_sessions = []
 for obj in default_obj:
 obj['pk'] = obj['pk'] + self.basepk

 obj['fields']['featured'] = False
 obj['fields']['rating'] = 0
 obj['fields']['popular_count'] = 0
 obj['fields']['share_count'] = 0
 obj['fields']['is_published'] = True
 obj['fields']['thumbnail_url'] = ''

 if 'distribution_url' in obj['fields']:
 if not obj['fields']['distribution_url'] is None and 'layers' in obj['fields']['distribution_url']:

 obj['fields']['polymorphic_ctype'] = ["layers", "layer"]

 try:
 p = '(?P<protocol>http.*://)?(?P<host>[^:/]+).?(?P<port>[0-9]*)(?P<details_url>.*)'
 m = re.search(p, obj['fields']['distribution_url'])
 if 'http' in m.group('protocol'):
 obj['fields']['detail_url'] = self.siteurl + m.group('details_url')
 else:
 obj['fields']['detail_url'] = self.siteurl + obj['fields']['distribution_url']
 except:
 obj['fields']['detail_url'] = obj['fields']['distribution_url']

 else:
 obj['fields']['polymorphic_ctype'] = ["maps", "map"]

 try:
 obj['fields'].pop("distribution_description", None)
 except:
 pass

 try:
 obj['fields'].pop("distribution_url", None)
 except:
 pass

 try:
 obj['fields'].pop("thumbnail", None)
 except:
 pass

 upload_sessions.append(self.add_upload_session(obj['pk'], obj['fields']['owner']))

 default_obj.extend(upload_sessions)

 return default_obj

 def add_upload_session(self, pk, owner):
 obj = dict()

 obj['pk'] = pk
 obj['model'] = 'layers.uploadsession'

 obj['fields'] = dict()
 obj['fields']['user'] = owner
 obj['fields']['traceback'] = None
 obj['fields']['context'] = None
 obj['fields']['error'] = None
 obj['fields']['processed'] = True
 obj['fields']['date'] = datetime.datetime.now().strftime("%Y-%m-%dT%H:%M:%S")

 return obj

	It extends the DefaultMangler.

The DefaultMangler is a basic class implementing a JSONDecoder

class DefaultMangler(json.JSONDecoder):

 def __init__(self, *args, **kwargs):

 self.basepk = kwargs.get('basepk', -1)
 self.owner = kwargs.get('owner', 'admin')
 self.datastore = kwargs.get('datastore', '')
 self.siteurl = kwargs.get('siteurl', '')

 super(DefaultMangler, self).__init__(*args)

 def default(self, obj):
 # Let the base class default method raise the TypeError
 return json.JSONEncoder.default(self, obj)

 def decode(self, json_string):
 """
 json_string is basicly string that you give to json.loads method
 """
 default_obj = super(DefaultMangler, self).decode(json_string)

 # manipulate your object any way you want
 #

 return default_obj

By default this mangler unmarshalls GeoNode Object Model from JSON and returns it to the management command.

The GeoNode Object Model can be modified while decoding by extending the def decode(self, json_string) method.

	json_string; actual parameter contains the JSON representation of the fixture.

	default_obj; is the Python object decoded from the JSON representation of the fixture.

	It overrides the def decode(self, json_string) method.

The decoded Python object can be enriched / modified before returing it to the management command.

From Command Line

The following sections shows instructions on how to perform backup / restore from the command line by using the Admin Management Commands.

In order to obtain a basic user guide for the management command from the command line, just run

python manage.py backup --help

python manage.py restore --help

--help will provide the list of available command line options with a brief description.

It is worth notice that both commands allows the following option

python manage.py backup --force / -f

python manage.py restore --force / -f

Which will instruct the management command to not ask for confirmation from the user. It enables bascially a non-interactive mode.

Backup

In order to perform a backup just run the command:

python manage.py backup --backup-dir=<target_bk_folder_path>

The management command will automatically generate a .zip archive file on the target folder in case of success.

Restore

In order to perform a restore just run the command:

python manage.py restore --backup-file=<target_restore_file_path>

Restore requires the path of one .zip archive containing the backup fixtures.

Warning

The Restore will overwrite the whole target GeoNode / GeoServer users, catalog and database, so be very carefull.

From GeoNode Admin GUI

	Login as admin and click on Admin menu option

[image: ../../_images/backup001.png]

	Look for Backups on Base section

[image: ../../_images/backup002.png]

	Add a new backup

[image: ../../_images/backup003.png]

	Insert a Name and a Description; also you must provide the Base folder where the backups will be stored

[image: ../../_images/backup004.png]

Warning

the Base folder must be fully writable from both geonode and httpd server system users.

	Click on save and go back to the Backups list main section

[image: ../../_images/backup005.png]

	The new Backup is not ready until you perform the Run Backup action; in order to do that select the backup to run and from the Action menu select Run the Backup

[image: ../../_images/backup006.png]

Note

A Backup is not ready until the Location attribute is filled

[image: ../../_images/backup007.png]

	Click on Yes, I'msure on the next section in order to perform the Backup

[image: ../../_images/backup008.png]

Note

The server page will wait for the Backup to finish (or fail).

	The server page will wait for the Backup to finish (or fail); at the end of the Backup you will be redirected to the main list page.

[image: ../../_images/backup009.png]

Note

At a successfull run, the Location attribute is filled with the full path of the backup archive

[image: ../../_images/backup010.png]

Warning

A Backup can always being updated later and / or executed again. The Location attribute will be updated accorndingly.

	Execute as many Backups as you want; they can all point to the same Base Folder, the new backups will generate new unique archive files any time.

[image: ../../_images/backup011.png]

	In order to Restore a zip archive, just select the instance to restore from the list and from the Action menu lunch the Run the Restore option.

[image: ../../_images/backup012.png]

	Click on Yes, I'msure on the next section in order to perform the Backup

[image: ../../_images/backup008.png]

Note

The server page will wait for the Backup to finish (or fail).

Warning

The following target GeoNode folders must be fully writable from both geonode and httpd server system users

	geoserver_data_dir/data

	geonode / settings.MEDIA_ROOT

	geonode / settings.STATIC_ROOT

	geonode / settings.STATICFILES_DIRS

	geonode / settings.TEMPLATE_DIRS

	geonode / settings.LOCALE_PATHS

Warning

The Restore will overwrite the whole target GeoNode / GeoServer users, catalog and database, so be very carefull.

Developers Workshop

Welcome to the GeoNode Training Developers Workshop documentation vlatest.

This workshop will teach how to develop with and for the GeoNode [http://geonode.org] software application.
This module will introduce you to the components that GeoNode is built with, the standards that it supports and the services it provides based on those standards, and an overview its architecture.

	Prerequisites

	GeoNode is a web based GIS tool, and as such, in order to do development on GeoNode itself or to integrate it into your own application, you should be familiar with basic web development concepts as well as with general GIS concepts.

	Introduction to GeoNode development

	This module will introduce you to the components that GeoNode is built with, the standards that it supports and the services it provides based on those standards, and an overview its architecture.

	Django Overview

	This section introduces some basic concepts of DJango, the Python based web framework on top of which GeoNode has been developed.

Django’s primary goal is to ease the creation of complex, database-driven websites. Django emphasizes reusability and “pluggability” of components,
rapid development, and the principle of don’t repeat yourself.
Python is used throughout, even for settings, files, and data models.

Django also provides an optional administrative create, read, update and delete interface that is generated dynamically through introspection and configured via admin models.

	Development Prerequsites and Core Modules

	This module will introduce you to the basic tools and skills required to start actively developing GeoNode.

	Install GeoNode for Development

	This module shows a step-by-step guide for the setup of a GeoNode Develeopment Environent on an Ubuntu system.

For other Linux distributions the commands are similar, the difference is mainly on the packages names.

Note

For Windows: (Install GeoNode for Development (Windows))

	GeoNode debugging techniques

	GeoNode can be difficult to debug as there are several different components involved. This module shows some tecniques to debug the different parts of GeoNode.

	GeoNode APIs

	This module provides an overview of the core modules and libraries used by GeoNode and teach to the user how to use them through some guided examples.

	Testing in GeoNode

	This section explain how to run the tests on GeoNode.

	Contributing to GeoNode

	Basic concepts about GitHub OpenSource Projects and best practices.

Introduction to GeoNode development

This module will introduce you to the components that GeoNode is built with, the standards that it supports and the services it provides based on those standards, and an overview its architecture.

GeoNode is a web based GIS tool, and as such, in order to do development on GeoNode itself or to integrate it into your own application, you should be familiar with basic web development concepts as well as with general GIS concepts.

A set of reference links on these topics is included at the end of this module.

	Standards
	Open Geospatial Consortium (OGC) Standards

	Web Standards

	Exercises
	Components and Services

	OGC Standards

Development References

Basic Web based GIS Concepts and Background

	OGC Services

	http://www.opengeospatial.org/

	http://en.wikipedia.org/wiki/Open_Geospatial_Consortium

	Web Application Architecture

	http://en.wikipedia.org/wiki/Web_application

	http://www.w3.org/2001/tag/2010/05/WebApps.html

	http://www.amazon.com/Web-Application-Architecture-Principles-Protocols/dp/047051860X

	AJAX and REST

	http://en.wikipedia.org/wiki/Ajax_(programming)

	http://en.wikipedia.org/wiki/Representational_state_transfer

	OpenGeo Suite

	http://workshops.opengeo.org/suiteintro/

	http://suite.opengeo.org/opengeo-docs/

	GeoServer Administration

	http://suite.opengeo.org/opengeo-docs/geoserver/

	https://docs.google.com/a/opengeo.org/presentation/d/15fvUDYg0TO6WGFQlMLM2J1qiTVBYpfjCp0aQBDT0GrM/edit#slide=id.g2e4bd7ac_0_35

	http://suite.opengeo.org/docs/sysadmin/index.html#sysadmin

	PostgreSQL and PostGIS Administration
- http://workshops.opengeo.org/postgis-intro/
- http://workshops.opengeo.org/postgis-spatialdbtips/

Core development tools and libraries

	python

	http://docs.python.org/2/tutorial/

	http://www.learnpython.org/

	http://learnpythonthehardway.org/book/

	django

	https://docs.djangoproject.com/en/dev/intro/tutorial01/

	https://code.djangoproject.com/wiki/Tutorials

	javascript

	http://www.crockford.com/javascript/inheritance.html

	http://geoext.org/tutorials/quickstart.html

	jquery

	http://www.w3schools.com/jquery/default.asp

	http://docs.jquery.com/Tutorials:Getting_Started_with_jQuery

	http://www.jquery-tutorial.net/

	bootstrap

	http://twitter.github.io/bootstrap/

	http://www.w3resource.com/twitter-bootstrap/tutorial.php

	geotools/geoscript/geoserver

	http://docs.geotools.org/stable/tutorials/feature/csv2shp.html

	http://geoscript.org/tutorials/index.html

	http://docs.geotools.org/stable/tutorials/

	https://github.com/dwins/gsconfig.py/blob/master/README.rst

	geopython

	http://pycsw.org/docs/documentation.html

	http://geopython.github.io/OWSLib/

	https://github.com/toblerity/shapely

	https://github.com/sgillies/Fiona

	http://pypi.python.org/pypi/pyproj

	gdal/ogr

	http://www.gdal.org/gdal_utilities.html

	http://www.gdal.org/ogr_utilities.html

Standards

GeoNode is based on a set of Open Geospatial Consortium (OGC) standards. These standards enable GeoNode installations to be interoperable with a wide variety of tools that support these OGC standards and enable federation with other OGC compliant services and infrastructure. Reference links about these standards are also included at the end of this module.

GeoNode is also based on Web Standards …

Open Geospatial Consortium (OGC) Standards

Web Map Service (WMS)

The Web Map Service (WMS) specification defines an interface for requesting rendered map images across the web. It is used within GeoNode to display maps in the pages of the site and in the GeoExplorer application to display rendered layers based on default or custom styles.

Web Feature Service (WFS)

The Web Feature Service (WFS) specification defines an interface for reading and writing geographic features across the web. It is used within GeoNode to enable downloading of vector layers in various formats and within GeoExplorer to enable editing of Vector Layers that are stored in a GeoNode.

Web Coverage Service (WCS)

The Web Coverage Service (WCS) specification defines an interface for reading and writing geospatial raster data as “coverages” across the web. It is used within GeoNode to enable downloading of raster layers in various formats.

Catalogue Service for Web (CSW)

The Catalogue Service for Web (CSW) specification defines an interface for exposing a catalogue of geospatial metadata across the web. It is used within GeoNode to enable any application to search GeoNode’s catalogue or to provide federated search that includes a set of GeoNode layers within another application.

Tile Mapping Service (TMS/WMTS)

The Tile Mapping Service (TMS) specification defines and interface for retrieving rendered map tiles over the web. It is used within geonode to enable serving of a cache of rendered layers to be included in GeoNode’s web pages or within the GeoExplorer mapping application. Its purpose is to improve performance on the client vs asking the WMS for rendered images directly.

Web Standards

HTML

HyperText Markup Language, commonly referred to as HTML, is the
standard markup language used to create web pages. 1 Web
browsers can read HTML files and render them into visible or audible
web pages. HTML describes the structure of a website semantically
along with cues for presentation, making it a markup language, rather
than a programming language.

HTML elements form the building blocks of all websites. HTML allows
images and objects to be embedded and can be used to create
interactive forms. It provides a means to create structured
documents by denoting structural semantics for text such as headings,
paragraphs, lists, links, quotes and other items.

The language is written in the form of HTML elements consisting of
tags enclosed in angle brackets (like < >). Browsers do not display
the HTML tags and scripts, but use them to interpret the content of the
page.

HTML can embed scripts written in languages such as JavaScript
which affect the behavior of HTML web pages. Web browsers can also refer
to Cascading Style Sheets (CSS) to define the look and layout of text
and other material. The World Wide Web Consortium (W3C), maintainer
of both the HTML and the CSS standards, has encouraged the use of CSS
over explicit presentational HTML since 1997.

CSS

Cascading Style Sheets (CSS) is a style sheet language used
for describing the presentation of a document written in a markup
language. 2 Although most often used to set the visual style of
web pages and user interfaces written in HTML and XHTML, the
language can be applied to any XML document, including plain XML,
SVG and XUL, and is applicable to rendering in speech, or on
other media. Along with HTML and JavaScript, CSS is a cornerstone
technology used by most websites to create visually engaging webpages,
user interfaces for web applications, and user interfaces for many
mobile applications. 3

CSS is designed primarily to enable the separation of document content
from document presentation, including aspects such as the layout,
colors, and fonts. 4 This separation can improve content
accessibility, provide more flexibility and control in the
specification of presentation characteristics, enable multiple HTML
pages to share formatting by specifying the relevant CSS in a separate
.css file, and reduce complexity and repetition in the structural
content, such as semantically insignificant tables that were widely
used to format pages before consistent CSS rendering was available in
all major browsers. CSS makes it possible to separate presentation
instructions from the HTML content in a separate file or style section
of the HTML file. For each matching HTML element, it provides a list
of formatting instructions. For example, a CSS rule might specify that
“all heading 1 elements should be bold”, leaving pure semantic HTML
markup that asserts “this text is a level 1 heading” without formatting
code such as a <bold> tag indicating how such text should be
displayed.

This separation of formatting and content makes it possible to present
the same markup page in different styles for different rendering
methods, such as on-screen, in print, by voice (when read out by a
speech-based browser or screen reader) and on Braille-based,
tactile devices. It can also be used to display the web page differently
depending on the screen size or device on which it is being viewed.
Although

REST

In computing, Representational State Transfer (REST) is the
software architectural style of the World Wide Web. 5 6 7
REST gives a coordinated set of constraints to the design of components
in a distributed hypermedia system that can lead to a higher
performing and more maintainable architecture.

To the extent that systems conform to the constraints of REST they can
be called RESTful. RESTful systems typically, but not always,
communicate over the Hypertext Transfer Protocol with the same HTTP
verbs (GET, POST, PUT, DELETE, etc.) which web browsers use to
retrieve web pages and to send data to remote servers. 8 REST
interfaces usually involve collections of resources with
identifiers, for example /people/tom, which can be operated upon
using standard verbs, such as DELETE /people/tom.

	1

	Hypertext Markup Language | Definition of hypertext markup language by Merriam-Webster [http://www.merriam-webster.com/dictionary/hypertext%20markup%20language]

	2

	“CSS developer guide” [https://developer.mozilla.org/en-US/docs/Web/Guide/CSS]. Mozilla Developer Network. Retrieved 2015-09-24

	3

	“Web-based Mobile Apps of the Future Using HTML 5, CSS and JavaScript” [http://www.htmlgoodies.com/beyond/article.php/3893911/Web-based-Mobile-Apps-of-the-Future-Using-HTML-5-CSS-and-JavaScript.htm]. HTMLGoodies. Retrieved October 2014.

	4

	“What is CSS?” [http://www.w3.org/standards/webdesign/htmlcss#whatcss]. World Wide Web Consortium. Retrieved December 2010.

	5

	Fielding, R. T.; Taylor, R. N. (2000). “Principled design of the modern Web architecture”. pp. 407–416. doi:10.1145/337180.337228 [https://dx.doi.org/10.1145%2F337180.337228].

	6

	Richardson, Leonard; Sam Ruby (2007), RESTful web service [http://books.google.com/books?id=XUaErakHsoAC], O’Reilly Media, ISBN 978-0-596-52926-0 [https://en.wikipedia.org/wiki/Special:BookSources/978-0-596-52926-0], retrieved 18 January 2011, The main topic of this book is the web service architectures which can be considered RESTful: those which get a good score when judged on the criteria set forth in Roy Fielding’s dissertation.”

	7

	Richardson, Leonard; Mike Amundsen (2013), RESTful web APIs [http://www.amazon.com/RESTful-Web-APIs-Leonard-Richardson/dp/1449358063/ref=sr_1_1?ie=UTF8&qid=1442372039&sr=8-1&keywords=restful+web+apis], O’Reilly Media, ISBN 978-1-449-35806-8 [https://en.wikipedia.org/wiki/Special:BookSources/978-1-449-35806-8], retrieved 15 September 2015, The Fielding disertation explains the decisions behind the design of the Web.”

	8

	Fielding, Roy Thomas (2000). “Chapter 5: Representational State Transfer (REST)” [http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm]. Architectural Styles and the Design of Network-based Software Architectures (Ph.D.). University of California, Irvine. This chapter introduced the Representational State Transfer (REST) architectural style for distributed hypermedia systems. REST provides a set of architectural constraints that, when applied as a whole, emphasizes scalability of component interactions, generality of interfaces, independent deployment of components, and intermediary components to reduce interaction latency, enforce security, and encapsulate legacy systems.”

Exercises

Components and Services

Note

Hint, if bash-completion is installed, try <TAB><TAB> to get completions.

	
	start/stop services

	$ sudo service apache2
$ sudo service apache2 reload
$ sudo service tomcat7
$ sudo service postgresql

	
	basic psql interactions

	$ sudo su - postgres
$ psql
=> help # get help
=> \? # psql specific commands
=> \l # list databases
=> \c geonode # switch database
=> \ds # list tables
=> \dS layers_layer # describe table

OGC Standards

WMS

	Use the layer preview functionality in GeoServer to bring up a web map.

	Copy a the URL for the image in the map.

	Alter URL parameters for the request.

	Use curl to get the capabilities document

$ curl 'http://localhost/geoserver/wms?request=getcapabilities'

More: http://docs.geoserver.org/stable/en/user/services/wms/index.html

WFS

	Describe a feature type using curl (replace ws:name with your layer)

$ curl 'http://localhost/geoserver/wfs?request=describefeaturetype&name=ws:name

More: http://docs.geoserver.org/stable/en/user/services/wfs/reference.html

Django Overview

This section introduces some basic concepts of DJango, the Python based web framework on top of which GeoNode has been developed.

The main objective of Django is to facilitate the creation of complex sites oriented databases. Django emphasizes reusability and “pluggability” of components, rapid development, and the principle of not repeating yourself. Python is used everywhere, even for settings, files, and data models.

Django also provides an administrative interface to create, read, update and delete models that is dynamically generated by introspection and configured through the Administrative Templates.

	Getting Started With Django
	Object-relational mapper

	URLs and views

	Templates

	Forms

	Authentication

	Admin

	Internationalization

	Security

Getting Started With Django

Object-relational mapper

Data models can be defined entirely in Python. DJango makes available a rich, dynamic database-access API for free, but it is still possible to write SQL if needed.

Hint

The following documentation is based on official documentation [https://docs.djangoproject.com/en] of the project Django.

Note

The following examples are taken from the official Django documentation for the sole purpose of introducing the general concepts.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	class Band(models.Model):
 """A model of a rock band."""
 name = models.CharField(max_length=200)
 can_rock = models.BooleanField(default=True)

class Member(models.Model):
 """A model of a rock band member."""
 name = models.CharField("Member's name", max_length=200)
 instrument = models.CharField(choices=(
 ('g', "Guitar"),
 ('b', "Bass"),
 ('d', "Drums"),
),
 max_length=1
)
 band = models.ForeignKey("Band")

Models

A model is a Python class containing the essential fields and behaviors of the data stored on the DB. Generally, each model maps to a single database table.

	Each model is a Python class that subclasses django.db.models.Model.

	Each attribute of the model represents a database field.

	A model is an automatically-generated database-access API; see Making queries.

Quick example

Note

The following examples are taken from the official Django documentation for the sole purpose of introducing the general concepts.

This example model defines a Person, which has a first_name and last_name:

	1
2
3
4
5

	from django.db import models

class Person(models.Model):
 first_name = models.CharField(max_length=30)
 last_name = models.CharField(max_length=30)

first_name and last_name are fields of the model. Each field is specified as a class attribute, and each attribute maps to a database column.

The above Person model would create a database table like this:

	1
2
3
4
5

	CREATE TABLE myapp_person (
 "id" serial NOT NULL PRIMARY KEY,
 "first_name" varchar(30) NOT NULL,
 "last_name" varchar(30) NOT NULL
);

Some technical notes:

	The name of the table, myapp_person, is automatically derived from some model metadata but can be overridden.

	An id field is added automatically, but this behavior can be overridden.

	The CREATE TABLE SQL in this example is formatted using PostgreSQL syntax, but it’s worth noting Django uses SQL tailored to the database backend specified in the settings file.

Using models

Once models have been defined, Django must be instructed on how to use those models.
This is possible by editing the DJango settings file and changing the INSTALLED_APPS setting to add the name of the module that contains the model class.

For example, if the models for the application is defined in the module myapp.models, INSTALLED_APPS should read, in part:

	1
2
3
4
5

	INSTALLED_APPS = (
 #...
 'myapp',
 #...
)

Warning

When you add new apps to INSTALLED_APPS, be sure to run manage.py migrate, optionally making migrations for them first with manage.py makemigrations.

Note

GeoNode uses the specific command manage.py syncdb to perform the models update and migration.

Fields

The list of DB fields is reflected (and specified) by the model class attributes.

Warning

Be careful not to choose field names that conflict with the models API like clean, save, or delete.

Example:

Note

The following examples are taken from the official Django documentation for the sole purpose of introducing the general concepts.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	from django.db import models

class Musician(models.Model):
 first_name = models.CharField(max_length=50)
 last_name = models.CharField(max_length=50)
 instrument = models.CharField(max_length=100)

class Album(models.Model):
 artist = models.ForeignKey(Musician)
 name = models.CharField(max_length=100)
 release_date = models.DateField()
 num_stars = models.IntegerField()

More: Field Types [https://docs.djangoproject.com/en/1.8/topics/db/models/#field-types]

Model methods

Custom methods on a model can be used to add custom “row-level” functionality to an object.
This is a valuable technique for keeping business logic in one place.

For example, the following model has a few custom methods:

Note

The following examples are taken from the official Django documentation for the sole purpose of introducing the general concepts.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

	from django.db import models

class Person(models.Model):
 first_name = models.CharField(max_length=50)
 last_name = models.CharField(max_length=50)
 birth_date = models.DateField()

 def baby_boomer_status(self):
 "Returns the person's baby-boomer status."
 import datetime
 if self.birth_date < datetime.date(1945, 8, 1):
 return "Pre-boomer"
 elif self.birth_date < datetime.date(1965, 1, 1):
 return "Baby boomer"
 else:
 return "Post-boomer"

 def _get_full_name(self):
 "Returns the person's full name."
 return '%s %s' % (self.first_name, self.last_name)
 full_name = property(_get_full_name)

The last method in this example is a property [https://docs.djangoproject.com/en/1.8/glossary/#term-property].

The model instance reference [https://docs.djangoproject.com/en/1.8/ref/models/instances/] has a complete list of methods automatically given to each model [https://docs.djangoproject.com/en/1.8/ref/models/instances/#model-instance-methods].
It is possible to override most of these; see overriding predefined model methods [https://docs.djangoproject.com/en/1.8/topics/db/models/#overriding-predefined-model-methods]

More: Models Methods [https://docs.djangoproject.com/en/1.8/topics/db/models/#model-methods]

Making queries [https://docs.djangoproject.com/en/1.8/topics/db/queries/#making-queries]

Django automatically gives a database-abstraction API that allows to create, retrieve, update and delete objects.

As an example:

Note

The following examples are taken from the official Django documentation for the sole purpose of introducing the general concepts.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

	from django.db import models

class Blog(models.Model):
 name = models.CharField(max_length=100)
 tagline = models.TextField()

 def __str__(self): # __unicode__ on Python 2
 return self.name

class Author(models.Model):
 name = models.CharField(max_length=50)
 email = models.EmailField()

 def __str__(self): # __unicode__ on Python 2
 return self.name

class Entry(models.Model):
 blog = models.ForeignKey(Blog)
 headline = models.CharField(max_length=255)
 body_text = models.TextField()
 pub_date = models.DateField()
 mod_date = models.DateField()
 authors = models.ManyToManyField(Author)
 n_comments = models.IntegerField()
 n_pingbacks = models.IntegerField()
 rating = models.IntegerField()

 def __str__(self): # __unicode__ on Python 2
 return self.headline

Creating objects

As already said before, a model class represents a database table, and an instance of that class represents a particular record in the database table.

To create an object, instantiate it using keyword arguments to the model class, then call save() to save it to the database.

Assuming models live in a file mysite/blog/models.py, here’s an example:

Note

The following examples are taken from the official Django documentation for the sole purpose of introducing the general concepts.

	1
2
3

	>>> from blog.models import Blog
>>> b = Blog(name='Beatles Blog', tagline='All the latest Beatles news.')
>>> b.save()

This performs an INSERT SQL statement behind the scenes. Django doesn’t hit the database until you explicitly call save().
The save() method has no return value.

	1
2

	>>> b5.name = 'New name'
>>> b5.save()

This performs an UPDATE SQL statement behind the scenes. Django doesn’t hit the database until you explicitly call save().

Retrieving objects

Retrieving objects from the database can be done by constructing a QuerySet via a Manager on the model class.

A QuerySet represents a collection of objects from the database.
It can have zero, one or many filters. Filters narrow down the query results based on the given parameters.
In SQL terms, a QuerySet equates to a SELECT statement, and a filter is a limiting clause such as WHERE or LIMIT.

Each model has at least one Manager, and it’s called objects by default.

It can be accessed directly via the model class, like so:

Note

The following examples are taken from the official Django documentation for the sole purpose of introducing the general concepts.

	1
2
3
4
5
6
7
8

	>>> Blog.objects
<django.db.models.manager.Manager object at ...>
>>> b = Blog(name='Foo', tagline='Bar')
>>> b.objects
Traceback:
 ...
AttributeError: "Manager isn't accessible via Blog instances."
Note

Managers are accessible only via model classes, rather than from model instances, to enforce a separation between “table-level” operations and “record-level” operations.
The Manager is the main source of QuerySets for a model. For example, Blog.objects.all() returns a QuerySet that contains all Blog objects in the database.

The simplest way to retrieve objects from a table is to get all of them. To do this, use the all() method on a Manager:

Note

The following examples are taken from the official Django documentation for the sole purpose of introducing the general concepts.

	1

	>>> all_entries = Entry.objects.all()

The all() method returns a QuerySet of all the objects in the database.
The QuerySet returned by all() describes all objects in the database table.
To select only a subset of the complete set of objects, it must be refined by adding filter conditions.

The two most common ways to refine a QuerySet are:

filter(**kwargs)

Returns a new QuerySet containing objects that match the given lookup parameters.

exclude(**kwargs)

Returns a new QuerySet containing objects that do not match the given lookup parameters.
The lookup parameters (**kwargs in the above function definitions) should be in the format described in Field lookups below.

For example, to get a QuerySet of blog entries from the year 2006, use filter() like so:

Note

The following examples are taken from the official Django documentation for the sole purpose of introducing the general concepts.

	1

	Entry.objects.filter(pub_date__year=2006)

With the default manager class, it is the same as:

	1

	Entry.objects.all().filter(pub_date__year=2006)

The result of refining a QuerySet is itself a QuerySet, so it’s possible to chain refinements together.

For example:

Note

The following examples are taken from the official Django documentation for the sole purpose of introducing the general concepts.

	1
2
3
4
5
6
7

	>>> Entry.objects.filter(
... headline__startswith='What'
...).exclude(
... pub_date__gte=datetime.date.today()
...).filter(
... pub_date__gte=datetime(2005, 1, 30)
...)

This takes the initial QuerySet of all entries in the database, adds a filter, then an exclusion, then another filter.
The final result is a QuerySet containing all entries with a headline that starts with “What”, that were published between January 30, 2005, and the current day.

More: Making queries [https://docs.djangoproject.com/en/1.8/topics/db/queries/#making-queries]

URLs and views

A clean elegant URL scheme is an important detail in a high-quality Web application.
Django encourages beautiful URL design and does not put junk in URLs, like .php or .asp.

In DJango a Python module called URLconf is like a table of contents for the application.
It contains a simple mapping between URL patterns and the views.

Note

The following examples are taken from the official Django documentation for the sole purpose of introducing the general concepts.

	1
2
3
4
5
6
7
8

	from django.conf.urls import url
from . import views

urlpatterns = [
 url(r'^bands/$', views.band_listing, name='band-list'),
 url(r'^bands/(\d+)/$', views.band_detail, name='band-detail'),
 url(r'^bands/search/$', views.band_search, name='band-search'),
]

	1
2
3
4
5
6

	from django.shortcuts import render

def band_listing(request):
 """A view of all bands."""
 bands = models.Band.objects.all()
 return render(request, 'bands/band_listing.html', {'bands': bands})

More: URL dispatcher [https://docs.djangoproject.com/en/1.8/topics/http/urls/]

Templates

Django’s template language allows developers to put logic into the HTML:

Note

The following examples are taken from the official Django documentation for the sole purpose of introducing the general concepts.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	<html>
 <head>
 <title>Band Listing</title>
 </head>
 <body>
 <h1>All Bands</h1>

 {% for band in bands %}

 <h2>{{ band.name }}</h2>
 {% if band.can_rock %}<p>This band can rock!</p>{% endif %}

 {% endfor %}

 </body>
</html>

More: Templates [https://docs.djangoproject.com/en/1.8/topics/templates/]

Forms

Django provides a library that handles rendering HTML forms, validation of data submitted by users, and converting the data to native Python types.
Django also provides a way to generate forms from your existing models and to use these forms to create and update data.

Note

The following examples are taken from the official Django documentation for the sole purpose of introducing the general concepts.

	1
2
3
4
5
6
7

	from django import forms

class BandContactForm(forms.Form):
 subject = forms.CharField(max_length=100)
 message = forms.CharField()
 sender = forms.EmailField()
 cc_myself = forms.BooleanField(required=False)

GET and POST

GET and POST are the only HTTP methods to use when dealing with forms.

Django’s login form is returned using the POST method, in which the browser bundles up the form data, encodes it for transmission, sends it to the server, and then receives back its response.

GET, by contrast, bundles the submitted data into a string, and uses this to compose a URL. The URL contains the address where the data must be sent, as well as the data keys and values.
You can see this in action if you do a search in the Django documentation, which will produce a URL of the form https://docs.djangoproject.com/search/?q=forms&release=1.

GET and POST are typically used for different purposes.

Any request that could be used to change the state of the system - for example, a request that makes changes in the database - should use POST. GET should be used only for requests that do not affect the state of the system.

GET would also be unsuitable for a password form, because the password would appear in the URL, and thus, also in browser history and server logs, all in plain text. Neither would it be suitable for large quantities of data, or for binary data, such as an image. A Web application that uses GET requests for admin forms is a security risk: it can be easy for an attacker to mimic a form’s request to gain access to sensitive parts of the system. POST, coupled with other protections like Django’s CSRF protection offers more control over access.

On the other hand, GET is suitable for things like a web search form, because the URLs that represent a GET request can easily be bookmarked, shared, or resubmitted.

More: Working With Forms [https://docs.djangoproject.com/en/1.8/topics/forms/#working-with-forms]

Authentication

Django supports a full-featured and secure authentication system. It handles user accounts, groups, permissions and cookie-based user sessions.

Note

The following examples are taken from the official Django documentation for the sole purpose of introducing the general concepts.

	1
2
3
4
5
6
7

	from django.contrib.auth.decorators import login_required
from django.shortcuts import render

@login_required
def my_protected_view(request):
 """A view that can only be accessed by logged-in users"""
 return render(request, 'protected.html', {'current_user': request.user})

More: User authentication in Django [https://docs.djangoproject.com/en/stable/topics/auth/]

Admin

One of the most powerful parts of Django is its automatic admin interface.
It reads metadata from models in order to provide a powerful and ready-to-use GUI for CRUD operations against the model.

Note

The following examples are taken from the official Django documentation for the sole purpose of introducing the general concepts.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	from django.contrib import admin
from bands.models import Band, Member

class MemberAdmin(admin.ModelAdmin):
 """Customize the look of the auto-generated admin for the Member model"""
 list_display = ('name', 'instrument')
 list_filter = ('band',)

admin.site.register(Band) # Use the default options
admin.site.register(Member, MemberAdmin) # Use the customized options

Note

The advanced workshop for Developers will provide more details on GeoNode specific models and admin interface

More: The Django admin site [https://docs.djangoproject.com/en/stable/ref/contrib/admin/]

Internationalization

Django offers full support for translating text into different languages, plus locale-specific formatting of dates, times, numbers and time zones.
It lets developers and template authors specify which parts of their apps should be translated or formatted for local languages and cultures,
and it uses these hooks to localize Web applications for particular users according to their preferences.

Note

The following examples are taken from the official Django documentation for the sole purpose of introducing the general concepts.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	from django.shortcuts import render
from django.utils.translation import ugettext

def homepage(request):
 """
 Shows the homepage with a welcome message that is translated in the
 user's language.
 """
 message = ugettext('Welcome to our site!')
 return render(request, 'homepage.html', {'message': message})

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

	{% load i18n %}
<html>
 <head>
 <title>{% trans 'Homepage - Hall of Fame' %}</title>
 </head>
 <body>
 {# Translated in the view: #}
 <h1>{{ message }}</h1>
 <p>
 {% blocktrans count member_count=bands.count %}
 Here is the only band in the hall of fame:
 {% plural %}
 Here are all the {{ member_count }} bands in the hall of fame:
 {% endblocktrans %}
 </p>

 {% for band in bands %}

 <h2>{{ band.name }}</h2>
 {% if band.can_rock %}<p>{% trans 'This band can rock!' %}</p>{% endif %}

 {% endfor %}

 </body>
</html>

Note

The advanced workshop for Developers will provide more details on how to create languages and translations on GeoNode using Transifex [https://www.transifex.com/]

More: Internationalization and localization [https://docs.djangoproject.com/en/stable/topics/i18n/]

Security

Django provides multiple protections against:

	
	Clickjacking

	Clickjacking is a type of attack where a malicious site wraps another site in a frame. This attack can result in an unsuspecting user being tricked into performing unintended actions on the target site.

The X-Frame-Options middleware contained in a form allow a supporting browser to prevent a site from being rendered inside a frame

	
	Cross site scripting (XSS)

	XSS attacks allow a user to inject client side scripts into the browsers of other users. This is usually achieved by storing the malicious scripts in the database where it will be retrieved and displayed to other users, or by getting users to click a link which will cause the attacker’s JavaScript to be executed by the user’s browser. However, XSS attacks can originate from any untrusted source of data, such as cookies or Web services, whenever the data is not sufficiently sanitized before including in a page.

	
	Cross site request forgery (CSRF)

	CSRF attacks allow a malicious user to execute actions using the credentials of another user without that user’s knowledge or consent.

CSRF protection works by checking for a nonce in each POST request. This ensures that a malicious user cannot simply “replay” a form POST to your Web site and have another logged in user unwittingly submit that form. The malicious user would have to know the nonce, which is user specific (using a cookie).

	
	SQL injection

	SQL injection is a type of attack where a malicious user is able to execute arbitrary SQL code on a database. This can result in records being deleted or data leakage.

	
	Host header validation

	Django uses the Host header provided by the client to construct URLs in certain cases.
While these values are sanitized to prevent Cross Site Scripting attacks, a fake Host value can be used for Cross-Site Request Forgery, cache poisoning attacks, and poisoning links in emails.

Because even seemingly-secure web server configurations are susceptible to fake Host headers, Django validates Host headers against the ALLOWED_HOSTS setting in the django.http.HttpRequest.get_host() method.

This validation only applies via get_host(); if your code accesses the Host header directly from request.META you are bypassing this security protection.

	
	SSL/HTTPS

	It is always better for security, though not always practical in all cases, to deploy your site behind HTTPS. Without this, it is possible for malicious network users to sniff authentication credentials or any other information transferred between client and server, and in some cases – active network attackers – to alter data that is sent in either direction.

Django provides some settings to secure your site unser SSL/HTTPS.

Warning

While Django provides good security protection out of the box, it is still important to properly deploy your application and take advantage of the security protection of the Web server, operating system and other components.

	Make sure that your Python code is outside of the Web server’s root. This will ensure that your Python code is not accidentally served as plain text (or accidentally executed).

	Take care with any user uploaded files.

	Django does not throttle requests to authenticate users. To protect against brute-force attacks against the authentication system, you may consider deploying a Django plugin or Web server module to throttle these requests.

	Keep your SECRET_KEY a secret.

	It is a good idea to limit the accessibility of your caching system and database using a firewall.

More: Security in Django [https://docs.djangoproject.com/en/stable/topics/security/]

Development Prerequsites and Core Modules

This module will introduce you to the basic tools and skills required to start actively developing GeoNode.

	GeoNode’s Development Prerequisites
	Basic Shell Tools

	Python Development Tools

	Django

	GeoNode’s Core Modules
	geonode.layers

	geonode.maps

	geonode.security

	geonode.search

	geonode.catalogue

	geonode.geoserver

	geonode.people

	geoexplorer

	Static Site

	Exercises
	Shell and Utilities

	Python

GeoNode’s Development Prerequisites

Basic Shell Tools

ssh and sudo

ssh and sudo are very basic terminal skills which you will need to deploy, maintain and develop with GeoNode. If you are not already familiar with their usage, you should review the basic descriptions below and follow the external links to learn more about how to use them effectively as part of your development workflow.

ssh is the network protocol used to connect to a remote server where you run your GeoNode instance whether on your own network or on the cloud. You will need to know how to use an the ssh command from the terminal on your unix machine or how to use a ssh client like putty or winscp on windows. You may need to use pki certificates to connect to your remove server, and should be familiar with the steps and options necessary to connect this way. More information about ssh can be found in the links below.

	http://winscp.net/eng/docs/ssh

sudo is the command used to execute a terminal command as the superuser when you are logged in with a normal user. You will to use sudo in order to start, stop and restart key services on your GeoNode instance. If you are not able to grant yourself these privileges on the machine you are using for your GeoNode instance, you may need to consult with your network administrator to arrange for your user to be granted sudo permissions. More information about sudo can be found in the links below.

	http://en.wikipedia.org/wiki/Sudo

bash

Bash is the most common unix shell which will usually be the default on servers where you will be deploying your GeoNode instance. You should be familiar with the most common bash commands in order to be able to deploy, maintain and modify a geonode instance. More information about Bash and common bash commands can be found in the links below.

	http://en.wikipedia.org/wiki/Bash_(Unix_shell)

apt

apt is the packaging tool that is used to install GeoNode on ubuntu and other debian based systems. You will need to be familiar with adding Personal Package Archives to your list of install sources, and will need to be familiar with basic apt commands. More information about apt can be found in the links below.

	http://en.wikipedia.org/wiki/Advanced_Packaging_Tool

Python Development Tools

The GeoNode development process relies on several widely used python development tools in order to make things easier for developers and other users of the systems that GeoNode developers work on or where GeoNodes are deployed. They are considered best practices for modern python development, and you should become familiar with these basic tools and be comfortable using them on your own projects and systems.

virtualenv

virtualenv is a tool used to create isolated python development environments such that the the versions of project dependencies are sandboxed from the system-wide python packages. This eliminates the commonly encountered problem of different projects on the same system using different versions of the same library. You should be familiar with how to create and activate virtual environments for the projects you work on. More information about virtualenv can be found in the links below.

	http://pypi.python.org/pypi/virtualenv

	http://www.virtualenv.org/en/latest/

virtualenvwrapper is a wrapper around the virtualenv package that makes it easier to create and switch between virtual environments as you do development. Using it will make your life much easier, so its recommended that you install and configure it and use its commands as part of your virtualenv workflow. More info about virtualenvwrapper can be found in the links below.

	http://www.doughellmann.com/projects/virtualenvwrapper/

pip

pip is a tool for installing and managing python packages. Specifically it is used to install and upgrade packages found in the Python Pacakge Index. GeoNode uses pip to install itself, and to manage all of the python dependencies that are needed as part of a GeoNode instance. As you learn to add new modules to your geonode, you will need to become familiar with the use of pip and about basic python packaging usage. More information about pip can be found in the links below.

	http://www.pip-installer.org/en/latest/

	http://pypi.python.org/pypi/pip

	http://en.wikipedia.org/wiki/Pip_(Python)

miscellaneous

ipython is a set of tools to make your python development and debugging experience easier. The primary tool you want to use is an interactive shell that adds introspection, integrated help and command completion and more. While not strictly required to do GeoNode development, learning how to use ipython will make your development more productive and pleasant. More information about ipython can be found in the links below.

	http://ipython.org/

	http://pypi.python.org/pypi/ipython

	https://github.com/ipython/ipython

	http://en.wikipedia.org/wiki/IPython

pdb is a standard python module that is used to interactively debug your python code. It supports setting conditional breakpoints so you can step through the code line by line and inspect your variables and perform arbitrary execution of statements. Learning how to effectively use pdb will make the process of debugging your application code significantly easier. More information about pdb can be found in the links below.

	http://docs.python.org/2/library/pdb.html

Django

GeoNode is built on top of the Django web framework, and as such, you will need to become generally familiar with Django itself in order to become a productive GeoNode developer. Django has excellent documentation, and you should familiarize yourself with Django by following the Django workshop and reading through its documentation as required.

Model Template View

Django is based on the Model Template View paradigm (more commonly called Model View Controller). Models are used to define objects that you use in your application and Django’s ORM is used to map these models to a database. Views are used to implement the business logic of your application and provide objects and other context for the templates. Templates are used to render the context from views into a page for display to the user. You should become familiar with this common paradigm used in most modern web frameworks, and how it is specifically implemented and used in Django. The Django tutorial itself is a great place to start. More information about MTV in Django can be found in the links below.

	http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

	http://www.codinghorror.com/blog/2008/05/understanding-model-view-controller.html

	https://docs.djangoproject.com/en/1.4/

HTTP Request Response

Django and all other web frameworks are based on the HTTP Request Response cycle. Requests come in to the server from remote clients which are primarily web browsers, but also can be api clients, and the server returns with a Response. You should be familiar with these very basic HTTP principles and become familiar with the way that Django implements them. More information about HTTP, Requests and Responses and Djangos implementation in the links below.

	http://devhub.fm/http-requestresponse-basics/

	http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

	https://docs.djangoproject.com/en/dev/ref/request-response/

Management Commands

Django projects have access to a set of management commands that are used to manage your project. Django itself provides a set of these commands, and django apps (including GeoNode) can provide their own. Management commands are used to do things like synchronize your models with your database, load data from fixtures or back up your database with fixtures, start the development server, initiate the debugger and many other things. GeoNode provides management commands for synchronizing with a GeoServer or updating the layers already in your GeoNode. You should become familiar with the basic management commands that come with Django, and specifically with the commands that are part of GeoNode. The GeoNode specific commands are covered in section. More information about management commands can be found in the links below.

	https://docs.djangoproject.com/en/dev/ref/django-admin/

Django Admin Interface

Django provides a build-in management console that administrators and developers can use to look at the data in the database that is part of the installed applications. Administrators can use this console to perform many common administration tasks that are a necessary part of running a GeoNode instance, and as a developer, you will use this interface during your development process to inspect the database and the data stored in your models. More information about the django admin interface can be found in the links below.

	https://docs.djangoproject.com/en/dev/ref/contrib/admin/

Template Tags

Django templates make use of a set of tags to inject, filte and format content into a rendered HTML page. Django itself includes a set of built-in template tags and filters that you will use in your own templates, and GeoNode provides a geonode specific set of tags that are used in the GeoNode templates. You should become familiar with the built-in tag set and with GeoNode’s specific tags as you work on developing your own templates or extending from GeoNode’s. More information about Django template tags can be found in the links below.

	https://docs.djangoproject.com/en/dev/ref/templates/builtins/

GeoNode’s Core Modules

GeoNode is made up of a set of core Django pluggable modules (known as apps in Django) that provide the functionality of the application. Together they make up the key components of a GeoNode site. While your own use case and implementation may not require that you work directly on these modles, it is important that you become familiar with their layout, structure and the functionality that they provide. You may need to import these apps into your own apps, and as such, becoming familiar with them is an important step in becoming a proficient GeoNode developer.

geonode.layers

geonode.layers is the most key GeoNode module. It is used to represent layers of data stored in a GeoNode’s paired GeoServer. The layer model class inherits fields from the ResourceBase class which provides all of the fields necessary for the metadata catalogue, and adds fields that map the object to its corresponding layer in GeoServer. When your users upload a layer via the user interface, the layer is imported to GeoServer and a record is added to GeoNode’s database to represent that GeoServer layer within GeoNode itself.

The Layer model class provides a set of helper methods that are used to perform operations on a Layer object, and also to return things such as the list of Download or Metadata links for that layer. Additional classes are used to model the layers Attributes, Styles, Contacts and Links. The Django signals framework is used to invoke specific functions to synchronize with GeoServer before and after the layer is saved.

The views in the layers app are used to perform functions such as uploading, replacing, removing or changing the points of contact for a layer, and views are also used to update layer styles, download layers in bulk or change a layers permissions.

The forms module in the layer app is used to drive the user interface forms necessary for performing the business logic that the views provide.

The Layers app also includes a set of templates that are paired with views and used to drive the user interface. A small set of layer template tags is also used to help drive the layer explore and search pages.

Some helper modules such as geonode.layers.metadata and geonode.layers.ows are used by the layer views to perform specific functions and help keep the main views module more concise and legible.

Additionally, the GeoNode specific management commands are a part of the geonode.layers app.

You should spend some time to review the layers app through GitHubs code browsing interface.

https://github.com/GeoNode/geonode/tree/master/geonode/layers

geonode.maps

The geonode.maps app is used to group together GeoNodes multi layer map functionality. The Map and MapLayer objects are used to model and implement maps created with the GeoExplorer application. The Map object also extends from the ResourceBase class which provides the ability to manage a full set of metadata fields for a Map.

The views in the maps app perform many of the same functions as the views in the layers app such as adding, changing, replacing or removing a map and also provide the endpoints for returning the map configuration from the database that is used to initialize the GeoExplorer app.

The maps app also includes a set of forms, customization of the Django admin, some utility functions and a set of templates and template tags.

You can familiarize yourself with the maps app on GitHub.

https://github.com/GeoNode/geonode/tree/master/geonode/layers

geonode.security

The geonode.security app is used to provide object level permissions within the GeoNode Django application. It is a custom Django authentication backend and is used to assign Generic, User and Group Permissions to Layers, Maps and other objects in the GeoNode system. Generic permissions are used to enable public anonymous or authenticated viewing and/or editing of your data layers and maps, and User and Group specific permissions are used to allow specific users or groups to access and edit your layers.

geonode.search

The geonode.search module provides the search API that is used to drive the GeoNode search pages. It is configured to index layers, maps, documents and profiles, but is extensible to allow you to use it to index your own model classes. This module is currently based on the Django ORM and as such has a limited set of search features, but the GeoNode development team is actively working on making it possible to use this module with more feature-rich search engines.

geonode.catalogue

The geonode.catalogue app provides a key set of metadata catalogue functions within GeoNode itself. GeoNode is configured to use an integrated version of the pycsw library to perform these functions, but can also be configured to use any OGC compliant CS-W implementation such as GeoNetwork or Deegree. The metadata app allows users to import and/or edit metadata for their layers, maps and documents, and it provides an OGC compliant search interface for use in federating with other systems.

geonode.geoserver

The geonode.geoserver module is used to interact with GeoServer from within GeoNode’s python code. It relies heavily on the gsconfig library which addresses GeoServer’s REST configuration API. Additionally, the geonode.geoserver.uploader module is used to interact with GeoServers Importer API for uploading and configuring layers.

geonode.people

The geonode.people module is used to model and store information about both GeoNode users and people outside of the system who are listed as Points of Contact for particular layers. It is the foundational module for GeoNode’s social features. It provides a set of forms for users to edit and manage their own profiles as well as to view and interact with the profiles of other users.

geoexplorer

GeoNode’s core GIS client functions are performed by GeoExplorer. The GeoExplorer app is in turn based on GeoExt, OpenLayers and ExtJS. It provides functionality for constructing maps, styling layers and connecting to remote services. GeoExplorer is the reference implementation of the OpenGeo Suite SDK which is based on GXP. GeoNode treats GeoExplorer as an external module that is used out of the box in GeoNode, but it is possible for you to create your own Suite SDK app and integrate it with GeoNode.

Static Site

The front end of GeoNode is composed of a set of core templates, specific templates for each module, cascading style sheets to style those pages and a set of javascript modules that provide the interactive functionality in the site.

Templates

GeoNode includes a basic set of core templates that use Django’s template inheritance system to provide a modular system for constructing the web pages in GeoNode’s interface. These core templates drive the overall page layout and things like the home page. You will start the process of customizing your GeoNode instance by overriding these templates, so you should familiarize yourself with their
tructure and how they inherit from each other to drive the pages.

Additionally, most of the apps described above have their own set of templates that are used to drive the pages for each module. You may also want to override these templates for your own purposes and as such should familiarize yourself with a few of the key ones.

CSS

GeoNode’s css is based on Twitter’s Bootstrap Library which uses the lessc dynamic stylesheet language. GeoNode extends from the basic Boostrap style and you are able to create your own bootstrap based style to customize the look and feel of your own GeoNode instance. Sites like bootswatch.com also provide ready made styles that you can simply drop in to your project to change the style.

Javascript

The interactive functionality in GeoNode pages is provided by the jQuery javascript framework and a set of jQuery plugins. The core set of GeoNode javascript modules closely aligns with the apps described above, and there are also a few pieces of functionality provided as javascript modules that are used through out all of the apps. You are able to add your own jQuery code and/or plugins to perform interactive functionality in your own application.

Exercises

Shell and Utilities

	ssh into your virtual machine or other instance

	sudo to modify the sshd_config settings to verify disabling of dns resolution (UseDNS=no)

	install a command line helper

$ sudo apt-get install bash-completion

	exercise command completion

$ apt-get install <TAB><TAB>

	activate/deactivate the virtualenv on your instance

$ source /var/lib/geonode/bin/activate
$ deactivate

	set the DJANGO_SETTINGS_MODULE env variable

$ export DJANGO_SETTINGS_MODULE=geonode.settings

	install the httpie utility via pip

$ pip install httpie
$ http http://localhost/geoserver/rest
$ http -a admin http://localhost/geoserver/rest
<type in password - geoserver>

Python

	launch ipython and experiment

> x = "some text"
> x.<TAB><TAB>
> x.split.__doc__
> ?

	execute a script with ipython and open the REPL

$ echo "twos = [x*2 for x in range(5)]" > test.py
$ ipython -i test.py
> twos

Install GeoNode for Development

In order to install Geonode 2.0 in developing mode on Ubuntu 12.04 the following steps are required:

Note

For Windows: (Install GeoNode for Development (Windows))

Summary of the installation steps

	Retrieve latest apt-get list

	Install build tools and libraries

	Install dependencies (Python, Postgresql and Java) and supporting tools

	Add Nodejs PPA and other tools required for static development

	Set up a virtual environment (virtualenv)

	Clone geonode from github and install it in the virtual environment

	Run paver to get install geoserver and start the development servers

	Compile and Start the server

	Start Geonode instance

	To stop the server

	Next create a superuser for your django geonode

Note

The following steps have to be executed in your terminal. The steps have to be done as a root user, therefore don´t forget to type sudo in front!

Warning

Don’t forget to stop the GeoNode Production services if enabled

service apahe2 stop
service tomcat7 stop

	If possible log as root user, open a terminal and cd /home/geonode/dev

	Retrieve latest apt-get list

$ sudo apt-get update

	Install build tools and libraries

$ sudo apt-get install -y build-essential libxml2-dev libxslt1-dev libpq-dev zlib1g-dev

	Install dependencies

Python native dependencies

$ sudo apt-get install -y python-dev python-imaging python-lxml python-pyproj python-shapely python-nose python-httplib2 python-pip python-software-properties

Install Python Virtual Environment

$ sudo pip install virtualenvwrapper

Postgresql

Note

The following steps must be executed only if you don’t have PostgreSQL and PostGIS already installed on your system (see Install GeoNode Application)

$ sudo apt-get install postgresql-9.3-postgis-2.1 postgresql-9.3-postgis-scripts

Change postgres UNIX password

$ sudo passwd -u postgres # change password expiry infromation

$ sudo passwd postgres # change unix password for postgres

Create geonode role and database

$ su postgres
$ createdb geonode_dev
$ createdb geonode_dev-imports
$ psql
 postgres=#
 postgres=# \password postgres
 postgres=# CREATE USER geonode_dev WITH PASSWORD 'geonode_dev'; # should be same as password in setting.py
 postgres=# GRANT ALL PRIVILEGES ON DATABASE "geonode_dev" to geonode_dev;
 postgres=# GRANT ALL PRIVILEGES ON DATABASE "geonode_dev-imports" to geonode_dev;
 postgres=# \q

$ psql -d geonode_dev-imports -c 'CREATE EXTENSION postgis;'
$ psql -d geonode_dev-imports -c 'GRANT ALL ON geometry_columns TO PUBLIC;'
$ psql -d geonode_dev-imports -c 'GRANT ALL ON spatial_ref_sys TO PUBLIC;'

$ exit

Edit PostgreSQL configuration file

sudo gedit /etc/postgresql/9.3/main/pg_hba.conf

Scroll to the bottom of the file and edit this line

"local" is for Unix domain socket connections only
local all all peer

As follows

"local" is for Unix domain socket connections only
local all all trust

Restart PostgreSQL to make the changes effective

sudo service postgresql restart

Java dependencies

Note

The following steps must be executed only if you don’t have a Java JDK or JRE already installed on your system (see Install GeoNode Application)

$ sudo apt-get install -y --force-yes openjdk-6-jdk --no-install-recommends

supporting tools

$ sudo apt-get install -y ant maven2 git gettext

	Set up a virtual environment

Here is where Geonode will later be running.

Add the virtualenvwrapper to your new environement.

$ cd /home/geonode/dev

$ export VIRTUALENVWRAPPER_PYTHON=/usr/bin/python
$ export WORKON_HOME=/home/geonode/dev/.venvs
$ source /usr/local/bin/virtualenvwrapper.sh
$ export PIP_DOWNLOAD_CACHE=$HOME/.pip-downloads

On Ubuntu, you can add the above settings to your .bashrc file and reload the settings running

$ echo export VIRTUALENVWRAPPER_PYTHON=/usr/bin/python >> ~/.bashrc
$ echo export WORKON_HOME=/home/geonode/dev/.venvs >> ~/.bashrc
$ echo source /usr/local/bin/virtualenvwrapper.sh >> ~/.bashrc
$ echo export PIP_DOWNLOAD_CACHE=$HOME/.pip-downloads >> ~/.bashrc

$ source ~/.bashrc

Set up the local virtual environment for Geonode

$ mkvirtualenv geonode
$ workon geonode # or $ source /home/geonode/dev/.venvs/geonode/bin/activate

This creates a new directory where you want your project to be and creates a new virtualenvironment

	Get the code

To download the latest geonode version from github, the command clone is used

Note

If you are following the GeoNode training, skip the following command.
You can find the cloned repository in /home/geonode/dev

$ git clone https://github.com/GeoNode/geonode.git

	Add Nodejs PPA and other tools required for static development

This is required for static development

Note

If you are following GeoNode’s training, nodejs is already installed in the
Virtual Machine skip the first three command and jump to cd geonode/geonode/static

$ sudo add-apt-repository -y ppa:chris-lea/node.js
$ sudo apt-get update
$ sudo apt-get install -y nodejs
$ cd geonode/geonode/static
$ npm install --save-dev

If the last command does not work, you can run it manually like this:

$ npm install bower --save-dev
$ npm install grunt-cli --save-dev
$ npm install grunt-contrib-jshint --save-dev
$ npm install grunt-contrib-less --save-dev
$ npm install grunt-contrib-concat --save-dev
$ npm install grunt-contrib-copy --save-dev
$ npm install grunt-text-replace --save-dev
$ npm install grunt-contrib-uglify --save-dev
$ npm install grunt-contrib-cssmin --save-dev
$ npm install grunt-contrib-watch --save-dev

Every time you want to update the static files after making changes to the sources, go to geonode/static and run ‘grunt production’.

	Install GeoNode in the new active local virtualenv

$ cd /home/geonode/dev
$ pip install pip --upgrade
$ pip install -e geonode --use-mirrors

$ cd geonode

If the install fails because of an error related to pyproj not being verified (happens on pip 1.5), use the following:

$ pip install -e geonode --use-mirrors --allow-external pyproj --allow-unverified pyproj

	Create local_settings.py

Add the local_settings.py to your GeoNode instllation

$ cd /home/geonode/dev/geonode
$ cp geonode/local_settings.py.sample geonode/local_settings.py
$ gedit geonode/local_settings.py

Add the following lines to the local_settings.py

...

SITEURL = "http://localhost:8000/"

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.postgresql_psycopg2',
 'NAME': 'geonode_dev',
 'USER': 'geonode_dev',
 'PASSWORD': 'geonode_dev',
 },
 # vector datastore for uploads
 'datastore' : {
 'ENGINE': 'django.contrib.gis.db.backends.postgis',
 #'ENGINE': '', # Empty ENGINE name disables
 'NAME': 'geonode_dev-imports',
 'USER' : 'geonode_dev',
 'PASSWORD' : 'geonode_dev',
 'HOST' : 'localhost',
 'PORT' : '5432',
 }
}

OGC (WMS/WFS/WCS) Server Settings
OGC_SERVER = {
 'default' : {
 'BACKEND' : 'geonode.geoserver',
 'LOCATION' : 'http://localhost:8080/geoserver/',
 'PUBLIC_LOCATION' : 'http://localhost:8080/geoserver/',
 'USER' : 'admin',
 'PASSWORD' : 'geoserver',
 'MAPFISH_PRINT_ENABLED' : True,
 'PRINT_NG_ENABLED' : True,
 'GEONODE_SECURITY_ENABLED' : True,
 'GEOGIG_ENABLED' : False,
 'WMST_ENABLED' : False,
 'BACKEND_WRITE_ENABLED': True,
 'WPS_ENABLED' : False,
 'LOG_FILE': '%s/geoserver/data/logs/geoserver.log' % os.path.abspath(os.path.join(PROJECT_ROOT, os.pardir)),
 # Set to name of database in DATABASES dictionary to enable
 'DATASTORE': 'datastore',
 }
}

CATALOGUE = {
 'default': {
 # The underlying CSW implementation
 # default is pycsw in local mode (tied directly to GeoNode Django DB)
 'ENGINE': 'geonode.catalogue.backends.pycsw_local',
 # pycsw in non-local mode
 # 'ENGINE': 'geonode.catalogue.backends.pycsw_http',
 # GeoNetwork opensource
 # 'ENGINE': 'geonode.catalogue.backends.geonetwork',
 # deegree and others
 # 'ENGINE': 'geonode.catalogue.backends.generic',

 # The FULLY QUALIFIED base url to the CSW instance for this GeoNode
 'URL': '%scatalogue/csw' % SITEURL,
 # 'URL': 'http://localhost:8080/geonetwork/srv/en/csw',
 # 'URL': 'http://localhost:8080/deegree-csw-demo-3.0.4/services',

 # login credentials (for GeoNetwork)
 'USER': 'admin',
 'PASSWORD': 'admin',
 }
}

...

	Compile and Start the server for the first time

Align the DataBase structure

$ cd /home/geonode/dev/geonode
$ python manage.py syncdb --noinput

Warning

If the start fails because of an import error related to osgeo, then please consult the Install GDAL for Development.

The last step is to compile GeoServer and setup

$ paver setup

	Now we can start our geonode instance

Warning

Don’t forget to stop the GeoNode Production services if enabled

service apahe2 stop
service tomcat7 stop

$ paver start

Visit the geonode site by typing http://localhost:8000 into your browser window.

If you are using a different IP address (e.g 1.1.1.1), then start paver using the command below.

$ paver start -b 1.1.1.1:8000

Warning

If the start fails because of an import error related to osgeo, then please consult the Install GDAL for Development.

	To stop the server

type hold Ctrl c on your keyboard to stop the server

now type:

$ paver stop # to stop all django, geoserver services

	Next create a superuser for your django geonode

Create a superuser so you can log on to your local geonode installation at http://localhost:8000

$ python manage.py createsuperuser

Start working on Geonode the next day after install

With every restart of your machine, you have to restart geonode as well. That means, you will not be able to open http://localhost:8000 directly after starting your machine new. In order to be able to use geonode now, you have to activate your virtualenvironment and to start the development servers.

Note

username is the name of your machine and personal folder!

	Activate virtualenv

To activate your virtualenv you just need to type

$ workon geonode

or

$ source /home/geonode/dev/.venvs/geonode/bin/activate

Note

Be careful with the path, it might not be the same for you!

	Start the server

Warning

Don’t forget to stop the GeoNode Production services if enabled

service apahe2 stop
service tomcat7 stop

$ cd geonode
$ paver start_geoserver
$ paver start_django

Now you are able to access http://localhost:8000 again.

Note

Remember that you have to do these steps each time you restart your machine!!

Hint

Now you’ve followed these installation instructions, geonode is running in development mode. This also means that you are using all the default settings of geonode. If you want to change them, e.g use Tomcat instead of Jetty, or Postgresql instead of sqlite3, you may follow the steps from the section Configure Manually in GeoNode (vlatest) installation on Ubuntu 16.04.

GeoNode debugging techniques

GeoNode can be difficult to debug as there are several different components
involved:

	Browser - includes HTML/CSS issues, JavaScript, etc.

	Django - GeoNode HTML views and web APIs

	GeoServer - Core Wxx services and Platform REST APIs

When attempting to diagnose a specific problem, often the order of investigation
mirrors the order above - that is, start with the client: Is this a bug in code
running on the browser. If not, step to the next level: the Django responses to
client requests. Often this is possible via the browser using the correct tools.
Many requests require Django communications with GeoServer. This is the next
stage of investigation if a specific bug does not appear to originate in Django
or the client.

The following section covers techniques to help diagnose and debug errors.

	Debugging GeoNode in the Browser
	Net Tab

	DOM Tab

	Script Tab

	HTML Tab

	Debugging GeoExplorer

	Debugging GeoNode’s Python Components
	Logging

	PDB

	Debugging GeoServer
	Logging

	Advanced Troubleshooting

	Using Django to Help Debug

Debugging GeoNode in the Browser

This section covers some techniques for debugging browser and Django related
response bugs using the Firefox web browser extension named Firebug. The concepts
covered apply to other browser’s tools but may vary in terminology.

Another Firefox extension worth noting is ‘jsonview’. This extension supports
formatted viewing of JSON responses and integrates well with Firebug.

References:

	https://getfirebug.com/faq/

	http://jsonview.com/

Net Tab

The net tab allows viewing all of the network traffic from the browser. The subtabs (like the selected “Images” tab) allow filtering by the type of traffic.

[image: ../../_images/firebug-net.png]
Firebug Net Tab

In this screen-shot, the mouse hover displays the image content and the full URL requested. One can right-click to copy-paste the URL or view in a separate tab. This is useful for obtaining test URLs. The grayed out entries show that the resource was cached via conditional-get (the 304 not modified). Other very useful advanced information includes the size of the response and the loading indicator graphics on the right. At the bottom, note the total size and timing information.

Net Tab Exercises

	Go to layers/maps/search pages and look at the various requests. Note
the XHR subtab. Look at the various request specific tabs: headers,
params, etc.

	Use the ‘disable browser cache’ option and see how it affects page
loads. Discuss advantages/challenges of caching.

DOM Tab

The DOM tab displays all of the top-level window objects. By drilling down, this can be a useful way to find out what’s going on in a page.

[image: ../../_images/firebug-dom.png]
Firebug DOM Tab

In this example, the mouse is hovering over the app object. Note the high level view of objects and their fields. The console tab allows interacting with the objects.

DOM Tab Exercises

	Drill down in the DOM tab.

	Use the console to interactively exercise jquery.

	Use the console to interact with the app/map or other page objects

Script Tab

The script tab allows viewing scripts and debugging.

[image: ../../_images/firebug-debug.png]

The screen-shot displays a breakpoint set at line 3, the current code is stopped at line 8 and the mouse hover is displaying the value of the variable ‘class_list’. On the right, the ‘Watch’ tab displays the various variables and scopes and offers a drill down view similar to the DOM view. The stack tab displays the execution stack context outside the current frame.

Script Tab Exercises

	Step through some code

	Look at various features: variables, scopes, DOM drill-down

HTML Tab

The HTML tag allows viewing and drilling down into the DOM. This is an incredibly useful feature when doing CSS or HTML work.

[image: ../../_images/firebug-html.png]

The screen-shot displays a search result ‘article’ element highlighted with padding and margin in yellow and purple. The DOM structure is displayed on the left and the right panel displays the specific style rules while the computed tab displays the effective style rules. The layout tab displays rulers and property values while the DOM tab displays a debug/DOM-like view of the actual object’s properties.

HTML Tab Exercises

	Identify elements, look at the tabs on the right

	Change styles, add new rules and styles

	Edit existing HTML elements via the raw and tree-view

Debugging GeoExplorer

In case you want to debug the GeoExplorer behaviour in your browser with
Firebug of Chromium Developer toolbar, you may do the following:

Install Boundless Suite:

$ git clone git://github.com/GeoNode/suite.git
$ cd suite
$ git submodule update --init --recursive

Run GeoExplorer in debug mode:

$ cd geoexplorer
$ ant debug

Check if GeoExplore is running at this url: http://localhost:9080

Edit the layers/templates/layers/layer_geoext_map.html file and replace this
line:

{% include "geonode/geo_header.html" %}

with this one:

{% include "geonode/geo_header_debug.html" %}

Debugging GeoNode’s Python Components

Logging

References:

	http://docs.python.org/2/library/logging.html

	https://docs.djangoproject.com/en/1.4/topics/logging/

Logging is controlled by the contents of the logging data structure defined in
the settings.py. The default settings distributed with GeoNode are
configured to only log errors. During development, it’s a good idea to override
the logging data structure with something a bit more verbose.

Output

In production, logging output will go into the apache error log. This is located
in /var/log/apache2/error.log. During development, logging output will,
by default, go to standard error.

Configuring

	Ensure the ‘console’ handler is at the appropriate level. It will ignore log
messages below the set level.

	Ensure the specific logger you’d like to use is set at the correct level.

	If attempting to log SQL, ensure DEBUG=True in your local_settings.py.

Debugging SQL

	To trace all SQL in django, configure the django.db.backends logger to
DEBUG

	To examine a specific query object, you can use the query field:
str(Layer.objects.all().query)

	You can gather more information by using django.db.connection.queries. When
DEBUG is enabled, query SQL and timing information is stored in this list.

Hints

	Don’t use print statements. They are easy to use in development mode but in
production they will cause failure.

	Take advantage of python. Instead of:

logging.info('some var ' + x + ' is not = ' + y)

Use:

logging.info('some var %s is not = %s', x, y)

Excercises:

	Enable logging of all SQL statements. Visit some pages and view the logging output.

	Using the python shell, use the queries object to demonstrate the results of specific queries.

PDB

Reference:

	http://docs.python.org/2/library/pdb.html

For the adventurous, pdb allows for an interactive debugging session. This
is only possible when running in a shell via manage.py runserver or
paver runserver.

To set a breakpoint, insert the following code before the code to debug.

import pdb; pdb.set_strace()

When execution reaches this statement, the debugger will activate. The commands
are noted in the link above. In addition to those debugger specific commands,
general python statements are supported. For example, typing the name of a
variable in scope will yield the value via string coersion. Typing “n” will execute the next line, “c” wil continue the execution of the program, “q” will quit.

Debugging GeoServer

Resources:

	http://docs.geoserver.org/stable/en/user/advanced/logging.html

	http://docs.geoserver.org/stable/en/user/production/troubleshooting.html

This section does not attempt to cover developer-level debugging in GeoServer as
this is a much larger topic involving many more tools. The goal here is to
provide ‘black-box’ techniques to help resolve and report problems.

Logging

GeoServer logging, while sometimes containing too much information, is the best
way to start diagnosing an issue in GeoNode once the other. To create a proper
error report for use in requesting support, providing any contextual logging
information is critical.

When using a standard geoserver installation, the GeoServer logs are located at
/usr/share/geoserver/data/logs/geoserver.log. The properties files that
control the varying rules are also located here.

Exercises

	Switch logging levels for various loggers.

	Look at the different logging profiles and discuss the loggers and levels.

	Learn how to read stacktraces, nested or otherwise.

Advanced Troubleshooting

JVM diagnostics and advanced troubleshooting techniques are covered in the
GeoServer documents linked to above. When providing information for a bug
report, these can be helpful but in-depth Java knowledge is required to fully
comprehend the output from some of these tools.

Exercises

	Look at jstack output

Using Django to Help Debug

The gsconfig library provides a rich interface to interacting with GeoServer’s
REST API. This allows high-level functions as well as viewing raw REST responses.

cat = Layer.objects.gs_catalog
cat.get_layers() # list of gsconfig layer objects
OR, for a specific layer
lyr = Layer.objects.get(id=1)
lyr.resource # specfic gsconfig layer object
lyr.resource.fetch() # get the XML from REST
lyr.resource.dom # reference to the parsed XML
from xml.etree.ElementTree import tostring
tostring(lyr.resource.dom)

GeoNode APIs

	GeoServer REST interface
	Introduction to REST concepts

	Using REST module

	REST configuration examples
	cURL

	PHP

	Python

	Java

	Ruby

	GeoServer Importer
	Installing the Importer extension

	Using the Importer extension

	Importer interface reference
	Data sources page

	Layer listing page

	Advanced import settings page

	Supported data formats

	REST API
	Importer concepts

	REST API Reference

	Importer REST API examples
	Mass configuring a directory of shapefiles

	Configuring a shapefile with no projection information

	Uploading a CSV file to PostGIS while transforming it

	Uploading and optimizing a GeoTiff with ground control points

	Adding a new granule into an existing mosaic

	Asynchronously fetching and importing data from a remote server

	GeoNode’s Ad-Hoc API
	gsconfig
	Installing

	Getting Help

	Sample Layer Creation Code

	Running Tests

	More Examples - Updated for GeoServer 2.4+

	gsimporter
	Installing

	Getting Help

	Running Tests

GeoServer REST interface

This module is a walkthrough the GeoServer REST capabilities and APIs. Here also will be presented and deeply inspected several methods and frameworks to handle with REST APIs and functions.

What you will learn

In this section you will learn:

	Introduction to REST concepts

	Using REST module

	REST configuration examples
	cURL

	PHP

	Python

	Java

	Ruby

Introducing REST concepts

REST (REpresentational State Transfer) is a simple approach to web services strongly based on the basic
HTTP infrastructure, such as URLs, HTTP methods and HTTP response codes.

The basic elements of a REST service are:

	Resource: each business entity is linked to a unique URL that represents it,
and allows for its retrieval and eventual modification. In GeoServer such resources are layers, stores,
styles and so on

	Connectedness: the various resources are linked to one another following significant relationships.
For example, in GeoServer a store contains a list of feature types or coverages, a layer is linked to a
style and a feature type/coverage, and so on (in other terms, the set of resources is supposed to
be crawable just like a web site).

	Representation: each resource can be represented in one or more way. For example in GeoServer resources
are normally represented as HTML, XML and JSON.

	Stateless-ness: each communication with the server is atomic and not related to the communications
happened before or after it. Whatever state needs to be managed needs to be stored as a publicly accessible
resource.

	HTTP methods reuse: each resource is manipulated via the common HTTP methods each having a common meaning,
summarized by the following table

	Method

	Description

	GET

	Retrieves the resource in the specified representation. Query parameters are often used to filter the contents of the returned resource, and sometimes to specify the desired representation format.

	HEAD

	Similar to GET, but instead of returning the full response it returns only the HTTP headers, which might contain information such as the last modification date of the resource

	PUT

	Stores the representation of a resource at a given URL. Used when the client already knows what the final URL of the resource will be

	POST

	Creates a new resource by either getting its contents in the request, or having some parameters to compute it. The main different is that the final URL of the created resource is not known to the client, and is returned by the server after creation via a redirect. It is also used to have the server perform certain actions that cannot be encoded as another method, for example, have it send a SMS (assuming creating a resource representing the SMS is not desirable)

	DELETE

	Destroys the specified resource.

The above results in a web services protocols that is easy to understand, implement and connect to from various
languages, and with good scalability characteristics.

The GeoServer rest interface is located at http://localhost:8083/geoserver/rest, by default a browser will show resources in HTML format allowing for a simple browsable interface to the GeoServer configuration.

http://localhost:8083/geoserver/rest

[image: ../../../_images/rest_browser_1.png]
Browsing the REST interface with HTML format

Follow the links into workspaces and then geosolutions and switch the format from .html to xml to see the XML representation:

http://localhost:8083/geoserver/rest/workspaces/geosolutions.xml

[image: ../../../_images/rest_browser_2.png]
The GeoSolutions workspace represented as XML

Using REST module

This section contains a number of examples which illustrate various uses of the REST data configuration api.

The GeoServer REST configuration module uses the REST principles to expose services allowing to edit the catalog, in particular to manage workspaces, stores, layers, styles and groups.

Note

The REST configuration extension has normally to be installed separately, it is not come out of the box.

The examples in this section use the cURL [http://curl.haxx.se/] utility, which is a handy command line tool for executing HTTP requests and transferring files.

	Open the Terminal and enter the following command:

curl -u admin:geoserver -v -XPOST -H "Content-type: text/xml" -d "<workspace><name>myworkspace</name></workspace>" http://localhost:8083/geoserver/rest/workspaces

the response should contains the following:

[image: ../../../_images/workspace1.png]
Create a new workspace via REST

	Go to the Workspaces section via Web interface to show the new workspace created

[image: ../../../_images/workspace2.png]
GET request to abtain new workspace details

	Get the new created workspace details entering the following:

curl -u admin:geoserver -XGET -H "Accept: text/xml" http://localhost:8083/geoserver/rest/workspaces/myworkspace

[image: ../../../_images/workspace3.png]
GET request to obtain new workspace details

	Publish the shapefile pointlands using the myworkspace workspace entering the following

	Linux:

curl -u admin:geoserver -H "Content-type: application/zip" -T /.../pointlands.zip http://localhost:8083/geoserver/rest/workspaces/myworkspace/datastores/pointlands/file.shp

	Windows:

curl -u admin:geoserver -H "Content-type: application/zip" -T /.../pointlands.zip http://localhost:8083/geoserver/rest/workspaces/myworkspace/datastores/pointlands/file.shp

	Go to the Layer Preview to show the layers in a OpenLayers Map.

[image: ../../../_images/shape1.png]
Showing the new layer created

[image: ../../../_images/shape2.png]
The new layers created

Note

If you previously followed the security portion of the workshop the layer won’t be accessible because the administrator does not have the required roles. Go back in the service security section and remove the rule limiting the GetMap requests.

	Retrieves the created data store as XML entering the following:

curl -u admin:geoserver -XGET http://localhost:8083/geoserver/rest/workspaces/myworkspace/datastores/pointlands.xml

<dataStore>
 <name>pointlands</name>
 <type>Shapefile</type>
 <enabled>true</enabled>
 <workspace>
 <name>myworkspace</name>
 <atom:link xmlns:atom="http://www.w3.org/2005/Atom" rel="alternate" href="http://localhost:8083/geoserver/rest/workspaces/myworkspace.xml" type="application/xml"/>
 </workspace>
 <connectionParameters>
 <entry key="url">file:${TRAINING_ROOT}/geoserver_data/data/myworkspace/pointlands/</entry>
 <entry key="namespace">http://myworkspace</entry>
 </connectionParameters>
 <__default>false</__default>
 <featureTypes>
 <atom:link xmlns:atom="http://www.w3.org/2005/Atom" rel="alternate" href="http://localhost:8083/geoserver/rest/workspaces/myworkspace/datastores/pointlands/featuretypes.xml" type="application/xml"/>
 </featureTypes>
</dataStore>

Note

By default when a shapefile is uploaded a feature type resource and the associated layer are automatically created.

	Retrieve the layer as XML entering the following:

curl -u admin:geoserver -XGET http://localhost:8083/geoserver/rest/layers/myworkspace:pointlands.xml

<layer>
 <name>pointlands</name>
 <type>VECTOR</type>
 <defaultStyle>
 <name>point</name>
 <atom:link xmlns:atom="http://www.w3.org/2005/Atom" rel="alternate" href="http://localhost:8083/geoserver/rest/styles/point.xml" type="application/xml"/>
 </defaultStyle>
 <resource class="featureType">
 <name>pointlands</name>
 <atom:link xmlns:atom="http://www.w3.org/2005/Atom" rel="alternate" href="http://localhost:8083/geoserver/rest/workspaces/myworkspace/datastores/pointlands/featuretypes/pointlands.xml" type="application/xml"/>
 </resource>
 <attribution>
 <logoWidth>0</logoWidth>
 <logoHeight>0</logoHeight>
 </attribution>
</layer>

Note

When the layer is created a default style named point is assigned to it.

	Create a new style named landmarks with the following SLD (using the GeoServer Admin UI):

<?xml version="1.0" encoding="ISO-8859-1"?>
<StyledLayerDescriptor version="1.0.0"
 xsi:schemaLocation="http://www.opengis.net/sld StyledLayerDescriptor.xsd"
 xmlns="http://www.opengis.net/sld"
 xmlns:ogc="http://www.opengis.net/ogc"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <!-- a Named Layer is the basic building block of an SLD document -->
 <NamedLayer>
 <Name>default_point</Name>
 <UserStyle>
 <!-- Styles can have names, titles and abstracts -->
 <Title>Default Point</Title>
 <Abstract>A sample style that draws a point</Abstract>
 <!-- FeatureTypeStyles describe how to render different features -->
 <!-- A FeatureTypeStyle for rendering points -->
 <FeatureTypeStyle>
 <Rule>
 <Name>rule1</Name>
 <Title>Red Square</Title>
 <Abstract>A 6 pixel square with a red fill and no stroke</Abstract>
 <PointSymbolizer>
 <Graphic>
 <Mark>
 <WellKnownName>triangle</WellKnownName>
 <Stroke>
 <CssParameter name="stroke">#66FF66</CssParameter>
 </Stroke>
 <Fill>
 <CssParameter name="fill">#66FF66</CssParameter>
 </Fill>
 </Mark>
 <Size>10</Size>
 </Graphic>
 </PointSymbolizer>
 </Rule>
 </FeatureTypeStyle>
 </UserStyle>
 </NamedLayer>
</StyledLayerDescriptor>

	Apply the existing landmarks style to the layer created myworkspace:pointlands (this operation does not overwrite the entire layer definition, updates it instead):

curl -u admin:geoserver -XPUT -H "Content-type: text/xml" -d "<layer><defaultStyle><name>landmarks</name></defaultStyle><enabled>true</enabled></layer>" http://localhost:8083/geoserver/rest/layers/myworkspace:pointlands

	Go to the Layer Preview to show the layers with the new landmarks style.

[image: ../../../_images/shpchanging2.png]
Viewing the layers with the new created style landmarks

REST configuration examples

This section contains a number of examples which illustrate various uses of the
REST configuration API. The examples are grouped by the language or environment used.

	cURL

	PHP

	Python

	Java

	Ruby

cURL

The examples in this section use cURL [http://curl.haxx.se/], a command line tool for executing HTTP requests and transferring files, to generate requests to GeoServer’s REST interface. Although the examples are based on cURL, they could be adapted for any HTTP-capable tool or library.
Please be aware, that cURL acts not entirely the same as a web-browser. In contrast to Mozilla Firefox or Google Chrome cURL will not escape special characters in your request-string automatically. To make sure, that your requests can be processed correctly, make sure, that characters like paranthesis, commas and the like are escaped before sending them via cURL.
If you use libcurl in PHP 5.5 or newer you can prepare the url-string using the function curl_escape. In older versions of PHP hmlspecialchars should do the job also.

Adding a new workspace

The following creates a new workspace named “acme” with a POST request:

Note

Each code block below contains a single command that may be extended over multiple lines.

curl -v -u admin:geoserver -XPOST -H "Content-type: text/xml" -d "<workspace><name>acme</name></workspace>" http://localhost/geoserver/rest/workspaces

If executed correctly, the response should contain the following:

< HTTP/1.1 201 Created
...
< Location: http://localhost/geoserver/rest/workspaces/acme

Note the Location response header, which specifies the location (URI) of the newly created workspace.

The workspace information can be retrieved as XML with a GET request:

curl -v -u admin:geoserver -XGET -H "Accept: text/xml" http://localhost/geoserver/rest/workspaces/acme

The response should look like this:

<workspace>
 <name>acme</name>
 <dataStores>
 <atom:link xmlns:atom="http://www.w3.org/2005/Atom" rel="alternate"
 href="http://localhost/geoserver/rest/workspaces/acme/datastores.xml"
 type="application/xml"/>
 </dataStores>
 <coverageStores>
 <atom:link xmlns:atom="http://www.w3.org/2005/Atom" rel="alternate"
 href="http://localhost/geoserver/rest/workspaces/acme/coveragestores.xml"
 type="application/xml"/>
 </coverageStores>
 <wmsStores>
 <atom:link xmlns:atom="http://www.w3.org/2005/Atom" rel="alternate"
 href="http://localhost/geoserver/rest/workspaces/acme/wmsstores.xml"
 type="application/xml"/>
 </wmsStores>
</workspace>

This shows that the workspace can contain “dataStores” (for vector data), “coverageStores” (for raster data), and “wmsStores” (for cascaded WMS servers).

Note

The Accept header is optional. The following request omits the Accept header, but will return the same response as above.

curl -v -u admin:geoserver -XGET http://localhost/geoserver/rest/workspaces/acme.xml

Uploading a shapefile

In this example a new store will be created by uploading a shapefile.

The following request uploads a zipped shapefile named roads.zip and creates a new store named roads.

Note

Each code block below contains a single command that may be extended over multiple lines.

curl -v -u admin:geoserver -XPUT -H "Content-type: application/zip" --data-binary @roads.zip http://localhost/geoserver/rest/workspaces/acme/datastores/roads/file.shp

The roads identifier in the URI refers to the name of the store to be created. To create a store named somethingelse, the URI would be http://localhost/geoserver/rest/workspaces/acme/datastores/somethingelse/file.shp

If executed correctly, the response should contain the following:

< HTTP/1.1 201 Created

The store information can be retrieved as XML with a GET request:

curl -v -u admin:geoserver -XGET http://localhost/geoserver/rest/workspaces/acme/datastores/roads.xml

The response should look like this:

<dataStore>
 <name>roads</name>
 <type>Shapefile</type>
 <enabled>true</enabled>
 <workspace>
 <name>acme</name>
 <atom:link xmlns:atom="http://www.w3.org/2005/Atom" rel="alternate"
 href="http://localhost/geoserver/rest/workspaces/acme.xml" type="application/xml"/>
 </workspace>
 <connectionParameters>
 <entry key="url">file:/C:/path/to/data_dir/data/acme/roads/</entry>
 <entry key="namespace">http://acme</entry>
 </connectionParameters>
 <__default>false</__default>
 <featureTypes>
 <atom:link xmlns:atom="http://www.w3.org/2005/Atom" rel="alternate"
 href="http://localhost/geoserver/rest/workspaces/acme/datastores/roads/featuretypes.xml"
 type="application/xml"/>
 </featureTypes>
</dataStore>

By default when a shapefile is uploaded, a feature type is automatically created. The feature type information can be retrieved as XML with a GET request:

curl -v -u admin:geoserver -XGET http://localhost/geoserver/rest/workspaces/acme/datastores/roads/featuretypes/tiger_roads.xml

If executed correctly, the response will be:

<featureType>
 <name>roads</name>
 <nativeName>roads</nativeName>
 <namespace>
 <name>acme</name>
 <atom:link xmlns:atom="http://www.w3.org/2005/Atom" rel="alternate"
 href="http://localhost/geoserver/rest/namespaces/acme.xml" type="application/xml"/>
 </namespace>
 ...
</featureType>

The remainder of the response consists of layer metadata and configuration information.

Note

Notice that the name of the Layer (and of the FeatureType) corresponds to the physical name of the ShapeFile contained into the archive.

Adding an existing shapefile

In the previous example a shapefile was uploaded directly to GeoServer by sending a zip file in the body of a PUT request. This example shows how to publish a shapefile that already exists on the server.

Consider a directory on the server /data/shapefiles that contains the shapefile rivers.shp. The following adds a new store for the shapefile:

Note

In order to execute the exercise, create a folder shapefiles somewhere on the server and extract there the shapefiles.zip.

curl -v -u admin:geoserver -XPUT -H "Content-type: text/plain" -d "file:///home/geonode/data/shapefiles/rivers.shp" http://localhost/geoserver/rest/workspaces/acme/datastores/rivers/external.shp

The external.shp part of the request URI indicates that the file is coming from outside the catalog.

If executed correctly, the response should contain the following:

< HTTP/1.1 201 Created

The shapefile will be added to the existing store and published as a layer.

To verify the contents of the store, execute a GET request. Since the XML response only provides details about the store itself without showing its contents, execute a GET request for HTML:

curl -v -u admin:geoserver -XGET http://localhost/geoserver/rest/workspaces/acme/datastores/rivers.html

Adding a directory of existing shapefiles

This example shows how to load and create a store that contains a number of shapefiles, all with a single operation. This example is very similar to the example above of adding a single shapefile.

Consider a directory on the server /data/shapefiles that contains multiple shapefiles. The following adds a new store for the directory.

Note

In order to execute the exercise, create a folder shapefiles somewhere on the server and extract there the shapefiles.zip.

curl -v -u admin:geoserver -XPUT -H "Content-type: text/plain" -d "file:///home/geonode/data/shapefiles/" "http://localhost/geoserver/rest/workspaces/acme/datastores/shapefiles/external.shp?configure=all"

Note the configure=all query string parameter, which sets each shapefile in the directory to be loaded and published.

If executed correctly, the response should contain the following:

< HTTP/1.1 201 Created

To verify the contents of the store, execute a GET request. Since the XML response only provides details about the store itself without showing its contents, execute a GET request for HTML:

curl -v -u admin:geoserver -XGET http://localhost/geoserver/rest/workspaces/acme/datastores/shapefiles.html

Creating a layer style

This example will create a new style on the server and populate it the contents of a local SLD file.

The following creates a new style named roads_style:

Note

Each code block below contains a single command that may be extended over multiple lines.

curl -v -u admin:geoserver -XPOST -H "Content-type: text/xml" -d "<style><name>roads_style</name><filename>roads.sld</filename></style>" http://localhost/geoserver/rest/styles

If executed correctly, the response should contain the following:

< HTTP/1.1 201 Created

This request uploads a file called roads.sld file and populates the roads_style with its contents:

curl -v -u admin:geoserver -XPUT -H "Content-type: application/vnd.ogc.sld+xml" -d @roads.sld http://localhost/geoserver/rest/styles/roads_style

If executed correctly, the response should contain the following:

< HTTP/1.1 200 OK

The SLD itself can be downloaded through a a GET request:

curl -v -u admin:geoserver -XGET http://localhost/geoserver/rest/styles/roads_style.sld

Changing a layer style

This example will alter a layer style. Prior to making any changes, it is helpful to view the existing configuration for a given layer.

Note

Each code block below contains a single command that may be extended over multiple lines.

The following retrieves the “acme:roads” layer information as XML:

curl -v -u admin:geoserver -XGET "http://localhost/geoserver/rest/layers/acme:tiger_roads.xml"

The response in this case would be:

<layer>
 <name>tiger_roads</name>
 <type>VECTOR</type>
 <defaultStyle>
 <name>line</name>
 <atom:link xmlns:atom="http://www.w3.org/2005/Atom" rel="alternate" href="http://localhost/geoserver/rest/styles/line.xml" type="application/xml"/>
 </defaultStyle>
 <resource class="featureType">
 <name>tiger_roads</name>
 <atom:link xmlns:atom="http://www.w3.org/2005/Atom" rel="alternate" href="http://localhost/geoserver/rest/workspaces/acme/datastores/roads/featuretypes/tiger_roads.xml" type="application/xml"/>
 </resource>
 <attribution>
 <logoWidth>0</logoWidth>
 <logoHeight>0</logoHeight>
 </attribution>
</layer>

When the layer is created, GeoServer assigns a default style to the layer that matches the geometry of the layer. In this case a style named line is assigned to the layer. This style can viewed with a WMS request:

http://localhost/geoserver/wms/reflect?layers=acme:tiger_roads

In this next example a new style will be created called roads_style and assigned to the “acme:roads” layer:

curl -v -u admin:geoserver -XPUT -H "Content-type: text/xml" -d "<layer><defaultStyle><name>roads_style</name></defaultStyle></layer>" http://localhost/geoserver/rest/layers/acme:tiger_roads

If executed correctly, the response should contain the following:

< HTTP/1.1 200 OK

The new style can be viewed with the same WMS request as above:

http://localhost/geoserver/wms/reflect?layers=acme:tiger_roads

Note that if you want to upload the style in a workspace (ie, not making it a global style),
and then assign this style to a layer in that workspace, you need first to create the style in the given workspace:

curl -u admin:geoserver -XPOST -H 'Content-type: text/xml' -d '<style><name>roads_style</name><filename>roads.sld</filename></style>' http://localhost/geoserver/rest/workspaces/acme/styles

Upload the file within the workspace:

curl -u admin:geoserver -XPUT -H 'Content-type: application/vnd.ogc.sld+xml' -d @roads.sld http://localhost/geoserver/rest/workspaces/acme/styles/roads_style

And finally apply that style to the layer. Note the use of the <workspace> tag in the XML:

curl -u admin:geoserver -XPUT -H 'Content-type: text/xml' -d '<layer><defaultStyle><name>roads_style</name><workspace>acme</workspace></defaultStyle></layer>' http://localhost/geoserver/rest/layers/acme:tiger_roads

Adding a PostGIS database

In this example a PostGIS database named nyc will be added as a new store.

Warning

This section assumes that a PostGIS database named nyc is present on the local system and is accessible by the user bob.

Note

In order to create and setup the database locally, follow the instructions at Create and Prepare the nyc Example DataBase

Create a new text file and add the following content to it. This will represent the new store. Save the file as nycDataStore.xml.

<dataStore>
 <name>nyc</name>
 <connectionParameters>
 <host>localhost</host>
 <port>5432</port>
 <database>nyc</database>
 <user>bob</user>
 <passwd>postgres</passwd>
 <dbtype>postgis</dbtype>
 </connectionParameters>
</dataStore>

The following will add the new PostGIS store to the GeoServer catalog:

Note

Each code block below contains a single command that may be extended over multiple lines.

curl -v -u admin:geoserver -XPOST -T nycDataStore.xml -H "Content-type: text/xml" http://localhost/geoserver/rest/workspaces/acme/datastores

If executed correctly, the response should contain the following:

< HTTP/1.1 200 OK

The store information can be retrieved as XML with a GET request:

curl -v -u admin:geoserver -XGET http://localhost/geoserver/rest/workspaces/acme/datastores/nyc.xml

The response should look like the following:

<dataStore>
 <name>nyc</name>
 <type>PostGIS</type>
 <enabled>true</enabled>
 <workspace>
 <name>acme</name>
 <atom:link xmlns:atom="http://www.w3.org/2005/Atom" rel="alternate"
 href="http://localhost/geoserver/rest/workspaces/acme.xml" type="application/xml"/>
 </workspace>
 <connectionParameters>
 <entry key="port">5432</entry>
 <entry key="dbtype">postgis</entry>
 <entry key="host">localhost</entry>
 <entry key="user">bob</entry>
 <entry key="database">nyc</entry>
 <entry key="namespace">http://acme</entry>
 </connectionParameters>
 <__default>false</__default>
 <featureTypes>
 <atom:link xmlns:atom="http://www.w3.org/2005/Atom" rel="alternate"
 href="http://localhost/geoserver/rest/workspaces/acme/datastores/nyc/featuretypes.xml"
 type="application/xml"/>
 </featureTypes>
</dataStore>

Adding a PostGIS table

In this example a table from the PostGIS database created in the previous example will be added as a featuretypes.

Warning

This example assumes the table has already been created and the tiger_roads Layer deleted in case you have executed the previous steps.

The following adds the table tiger_roads as a new feature type:

Note

Each code block below contains a single command that may be extended over multiple lines.

curl -v -u admin:geoserver -XPOST -H "Content-type: text/xml" -d "<featureType><name>tiger_roads</name></featureType>" http://localhost/geoserver/rest/workspaces/acme/datastores/nyc/featuretypes

The featuretype information can be retrieved as XML with a GET request:

curl -v -u admin:geoserver -XGET http://localhost/geoserver/rest/workspaces/acme/datastores/nyc/featuretypes/tiger_roads.xml

This layer can viewed with a WMS GetMap request:

http://localhost/geoserver/wms/reflect?layers=acme:tiger_roads

Creating a PostGIS table

In the previous example, a new feature type was added based on a PostGIS table that already existed in the database. The following example will not only create a new feature type in GeoServer, but will also create the PostGIS table itself.

Create a new text file and add the following content to it. This will represent the definition of the new feature type and table. Save the file as annotations.xml.

<featureType>
 <name>annotations</name>
 <nativeName>annotations</nativeName>
 <title>Annotations</title>
 <srs>EPSG:4326</srs>
 <attributes>
 <attribute>
 <name>the_geom</name>
 <binding>com.vividsolutions.jts.geom.Point</binding>
 </attribute>
 <attribute>
 <name>description</name>
 <binding>java.lang.String</binding>
 </attribute>
 <attribute>
 <name>timestamp</name>
 <binding>java.util.Date</binding>
 </attribute>
 </attributes>
</featureType>

This request will perform the feature type creation and add the new table:

Note

Each code block below contains a single command that may be extended over multiple lines.

curl -v -u admin:geoserver -XPOST -T annotations.xml -H "Content-type: text/xml" http://localhost/geoserver/rest/workspaces/acme/datastores/nyc/featuretypes

The result is a new, empty table named “annotations” in the “nyc” database, fully configured as a feature type.

The featuretype information can be retrieved as XML with a GET request:

curl -v -u admin:geoserver -XGET http://localhost/geoserver/rest/workspaces/acme/datastores/nyc/featuretypes/annotations.xml

Creating a layer group

Warning

This example assumes the tables has already been created and the tiger_roads, poly_landmarks, poi, giant_polygon Layers have been created.

$ curl -v -u admin:geoserver -XPOST -H "Content-type: text/xml" -d "<featureType><name>giant_polygon</name></featureType>" http://localhost/geoserver/rest/workspaces/acme/datastores/nyc/featuretypes

$ curl -v -u admin:geoserver -XPOST -H "Content-type: text/xml" -d "<featureType><name>poi</name></featureType>" http://localhost/geoserver/rest/workspaces/acme/datastores/nyc/featuretypes

$ curl -v -u admin:geoserver -XPOST -H "Content-type: text/xml" -d "<featureType><name>poly_landmarks</name></featureType>" http://localhost/geoserver/rest/workspaces/acme/datastores/nyc/featuretypes

In this example a layer group will be created, based on layers that already exist on the server.

Create a new text file and add the following content to it. This file will represent the definition of the new layer group. Save the file as nycLayerGroup.xml.

<layerGroup>
 <name>nyc</name>
 <layers>
 <layer>poi</layer>
 <layer>poly_landmarks</layer>
 <layer>tiger_roads</layer>
 </layers>
 <styles>
 <style>point</style>
 <style>polygon</style>
 <style>roads_style</style>
 </styles>
</layerGroup>

The following request creates the new layer group:

Note

Each code block below contains a single command that may be extended over multiple lines.

curl -v -u admin:geoserver -XPOST -d @nycLayerGroup.xml -H "Content-type: text/xml" http://localhost/geoserver/rest/layergroups

Note

The argument -d@filename.xml in this example is used to send a file as the body of an HTTP request with a POST method. The argument -T filename.xml used in the previous example was used to send a file as the body of an HTTP request with a PUT method.

This layer group can be viewed with a WMS GetMap request:

http://localhost/geoserver/wms/reflect?layers=nyc&format=openlayers

Retrieving component versions

This example shows how to retrieve the versions of the main components: GeoServer, GeoTools, and GeoWebCache:

Note

The code block below contains a single command that is extended over multiple lines.

curl -v -u admin:geoserver -XGET -H "Accept: text/xml" http://localhost/geoserver/rest/about/version.xml

The response will look something like this:

<about>
 <resource name="GeoServer">
 <Build-Timestamp>04-Aug-2015 11:00</Build-Timestamp>
 <Git-Revision>bca94d09e2e18839814a4b663ba8b0fca2130e47</Git-Revision>
 <Version>2.7-SNAPSHOT</Version>
 </resource>
 <resource name="GeoTools">
 <Build-Timestamp>29-Jul-2015 10:13</Build-Timestamp>
 <Git-Revision>f50be97a039cd06d43a87ec3cc101626f0ac9fd2</Git-Revision>
 <Version>13-SNAPSHOT</Version>
 </resource>
 <resource name="GeoWebCache">
 <Git-Revision>f6e0d39c29c2317d2839c52a84676935e5b046cf/f6e0d39c29c2317d2839c52a84676935e5b046cf</Git-Revision>
 <Version>1.7-SNAPSHOT</Version>
 </resource>
</about>

Retrieving manifests

This collection of examples shows how to retrieve the full manifest and subsets of the manifest as known to the ClassLoader.

Note

The code block below contains a single command that is extended over multiple lines.

curl -v -u admin:geoserver -XGET -H "Accept: text/xml" http://localhost/geoserver/rest/about/manifest.xml

The result will be a very long list of manifest information. While this can be useful, it is often desirable to filter this list.

Filtering over resource name

It is possible to filter over resource names using regular expressions. This example will retrieve only resources where the name attribute matches gwc-.*:

Note

The code block below contains a single command that is extended over multiple lines.

curl -v -u admin:geoserver -XGET -H "Accept: text/xml" http://localhost/geoserver/rest/about/manifest.xml?manifest=gwc-.*

The result will look something like this (edited for brevity):

<about>
 <resource name="gwc-2.3.0">
 ...
 </resource>
 <resource name="gwc-core-1.4.0">
 ...
 </resource>
 <resource name="gwc-diskquota-core-1.4.0">
 ...
 </resource>
 <resource name="gwc-diskquota-jdbc-1.4.0">
 ...
 </resource>
 <resource name="gwc-georss-1.4.0">
 ...
 </resource>
 <resource name="gwc-gmaps-1.4.0">
 ...
 </resource>
 <resource name="gwc-kml-1.4.0">
 ...
 </resource>
 <resource name="gwc-rest-1.4.0">
 ...
 </resource>
 <resource name="gwc-tms-1.4.0">
 ...
 </resource>
 <resource name="gwc-ve-1.4.0">
 ...
 </resource>
 <resource name="gwc-wms-1.4.0">
 ...
 </resource>
 <resource name="gwc-wmts-1.4.0">
 ...
 </resource>
</about>

Filtering over resource properties

Filtering is also available over resulting resource properties. This example will retrieve only resources with a property equal to GeoServerModule.

Note

The code blocks below contain a single command that is extended over multiple lines.

curl -u admin:geoserver -XGET -H "Accept: text/xml" http://localhost/geoserver/rest/about/manifest.xml?key=GeoServerModule

The result will look something like this (edited for brevity):

<about>
 <resource name="control-flow-2.3.0">
 <GeoServerModule>extension</GeoServerModule>
 ...
 </resource>
 ...
 <resource name="wms-2.3.0">
 <GeoServerModule>core</GeoServerModule>
 ...
 </resource>
</about>

It is also possible to filter against both property and value. To retrieve only resources where a property named GeoServerModule has a value equal to extension, append the above request with &value=extension:

curl -u admin:geoserver -XGET -H "Accept: text/xml" http://localhost/geoserver/rest/about/manifest.xml?key=GeoServerModule&value=extension

Uploading and modifying a image mosaic

The following command uploads a polyphemus.zip file containing the definition of a mosaic (along with at least one granule of the mosaic to initialize the resolutions, overviews and the like) and will configure all the coverages in it as new layers.

Note

The code blocks below contain a single command that is extended over multiple lines.

curl -u admin:geoserver -XPUT -H "Content-type:application/zip" --data-binary @polyphemus.zip http://localhost/geoserver/rest/workspaces/topp/coveragestores/polyphemus/file.imagemosaic

The following instead instructs the mosaic to harvest (or re-harvest) a single file into the mosaic, collecting its properties and updating the mosaic index:

curl -v -u admin:geoserver -XPOST -H "Content-type: text/plain" -d "file:///path/to/the/file/polyphemus_20130302.nc" "http://localhost/geoserver/rest/workspaces/topp/coveragestores/poly-incremental/external.imagemosaic"

Harvesting can also be directed towards a whole directory, as follows:

curl -v -u admin:geoserver -XPOST -H "Content-type: text/plain" -d "file:///path/to/the/mosaic/folder" "http://localhost/geoserver/rest/workspaces/topp/coveragestores/poly-incremental/external.imagemosaic"

The image mosaic index structure can be retrieved using something like:

curl -v -u admin:geoserver -XGET "http://localhost/geoserver/rest/workspaces/topp/coveragestores/polyphemus-v1/coverages/NO2/index.xml"

which will result in the following:

 <Schema>
 <attributes>
 <Attribute>
 <name>the_geom</name>
 <minOccurs>0</minOccurs>
 <maxOccurs>1</maxOccurs>
 <nillable>true</nillable>
 <binding>com.vividsolutions.jts.geom.Polygon</binding>
 </Attribute>
 <Attribute>
 <name>location</name>
 <minOccurs>0</minOccurs>
 <maxOccurs>1</maxOccurs>
 <nillable>true</nillable>
 <binding>java.lang.String</binding>
 </Attribute>
 <Attribute>
 <name>imageindex</name>
 <minOccurs>0</minOccurs>
 <maxOccurs>1</maxOccurs>
 <nillable>true</nillable>
 <binding>java.lang.Integer</binding>
 </Attribute>
 <Attribute>
 <name>time</name>
 <minOccurs>0</minOccurs>
 <maxOccurs>1</maxOccurs>
 <nillable>true</nillable>
 <binding>java.sql.Timestamp</binding>
 </Attribute>
 <Attribute>
 <name>elevation</name>
 <minOccurs>0</minOccurs>
 <maxOccurs>1</maxOccurs>
 <nillable>true</nillable>
 <binding>java.lang.Double</binding>
 </Attribute>
 <Attribute>
 <name>fileDate</name>
 <minOccurs>0</minOccurs>
 <maxOccurs>1</maxOccurs>
 <nillable>true</nillable>
 <binding>java.sql.Timestamp</binding>
 </Attribute>
 <Attribute>
 <name>updated</name>
 <minOccurs>0</minOccurs>
 <maxOccurs>1</maxOccurs>
 <nillable>true</nillable>
 <binding>java.sql.Timestamp</binding>
 </Attribute>
 </attributes>
 <atom:link xmlns:atom="http://www.w3.org/2005/Atom" rel="alternate" href="http://localhost/geoserver/rest/workspaces/topp/coveragestores/polyphemus-v1/coverages/NO2/index/granules.xml" type="application/xml"/>
</Schema>

Listing the existing granules can be performed as follows:

curl -v -u admin:geoserver -XGET "http://localhost/geoserver/rest/workspaces/topp/coveragestores/polyphemus-v1/coverages/NO2/index/granules.xml?limit=2"

This will result in a GML description of the granules, as follows:

<?xml version="1.0" encoding="UTF-8"?>
<wfs:FeatureCollection xmlns:gf="http://www.geoserver.org/rest/granules" xmlns:ogc="http://www.opengis.net/ogc" xmlns:wfs="http://www.opengis.net/wfs" xmlns:gml="http://www.opengis.net/gml">
 <gml:boundedBy>
 <gml:Box srsName="http://www.opengis.net/gml/srs/epsg.xml#4326">
 <gml:coord>
 <gml:X>5.0</gml:X>
 <gml:Y>45.0</gml:Y>
 </gml:coord>
 <gml:coord>
 <gml:X>14.875</gml:X>
 <gml:Y>50.9375</gml:Y>
 </gml:coord>
 </gml:Box>
 </gml:boundedBy>
 <gml:featureMember>
 <gf:NO2 fid="NO2.1">
 <gf:the_geom>
 <gml:Polygon>
 <gml:outerBoundaryIs>
 <gml:LinearRing>
 <gml:coordinates>5.0,45.0 5.0,50.9375 14.875,50.9375 14.875,45.0 5.0,45.0</gml:coordinates>
 </gml:LinearRing>
 </gml:outerBoundaryIs>
 </gml:Polygon>
 </gf:the_geom>
 <gf:location>polyphemus_20130301.nc</gf:location>
 <gf:imageindex>336</gf:imageindex>
 <gf:time>2013-03-01T00:00:00Z</gf:time>
 <gf:elevation>10.0</gf:elevation>
 <gf:fileDate>2013-03-01T00:00:00Z</gf:fileDate>
 <gf:updated>2013-04-11T10:54:31Z</gf:updated>
 </gf:NO2>
 </gml:featureMember>
 <gml:featureMember>
 <gf:NO2 fid="NO2.2">
 <gf:the_geom>
 <gml:Polygon>
 <gml:outerBoundaryIs>
 <gml:LinearRing>
 <gml:coordinates>5.0,45.0 5.0,50.9375 14.875,50.9375 14.875,45.0 5.0,45.0</gml:coordinates>
 </gml:LinearRing>
 </gml:outerBoundaryIs>
 </gml:Polygon>
 </gf:the_geom>
 <gf:location>polyphemus_20130301.nc</gf:location>
 <gf:imageindex>337</gf:imageindex>
 <gf:time>2013-03-01T00:00:00Z</gf:time>
 <gf:elevation>35.0</gf:elevation>
 <gf:fileDate>2013-03-01T00:00:00Z</gf:fileDate>
 <gf:updated>2013-04-11T10:54:31Z</gf:updated>
 </gf:NO2>
 </gml:featureMember>
</wfs:FeatureCollection>

Removing all the granules originating from a particular file (a NetCDF file can contain many) can be done as follows:

curl -v -u admin:geoserver -XDELETE "http://localhost/geoserver/rest/workspaces/topp/coveragestores/polyphemus-v1/coverages/NO2/index/granules.xml?filter=location='polyphemus_20130301.nc'"

Creating an empty mosaic and harvest granules

The next command uploads an empty.zip file.
This archive contains the definition of an empty mosaic (no granules in this case) through the following files:

datastore.properties (the postgis datastore connection params)
indexer.xml (The mosaic Indexer, note the CanBeEmpty=true parameter)
polyphemus-test.xml (The auxiliary file used by the NetCDF reader to parse schemas and tables)

Note

Make sure to update the datastore.properties file with your connection params and refresh the zip when done, before uploading it.

Note

The code blocks below contain a single command that is extended over multiple lines.

Note

The configure=none parameter allows for future configuration after harvesting

curl -u admin:geoserver -XPUT -H "Content-type:application/zip" --data-binary @empty.zip http://localhost/geoserver/rest/workspaces/topp/coveragestores/empty/file.imagemosaic?configure=none

The following instead instructs the mosaic to harvest a single polyphemus_20120401.nc file into the mosaic, collecting its properties and updating the mosaic index:

curl -v -u admin:geoserver -XPOST -H "Content-type: text/plain" -d "file:///path/to/the/file/polyphemus_20120401.nc" "http://localhost/geoserver/rest/workspaces/topp/coveragestores/empty/external.imagemosaic"

Once done you can get the list of coverages/granules available on that store.

curl -v -u admin:geoserver -XGET "http://localhost/geoserver/rest/workspaces/topp/coveragestores/empty/coverages.xml?list=all"

which will result in the following:

<list>
 <coverageName>NO2</coverageName>
 <coverageName>O3</coverageName>
</list>

Next step is configuring ONCE for coverage (as an instance NO2), an available coverage.

curl -v -u admin:geoserver -XPOST -H "Content-type: text/xm" -d @"/path/to/coverageconfig.xml" "http://localhost/geoserver/rest/workspaces/topp/coveragestores/empty/coverages"

Where coverageconfig.xml may look like this

<coverage>
 <name>NO2</name>
</coverage>

Note

When specifying only the coverage name, the coverage will be automatically configured

Master Password Change

The master password can be fetched wit a GET request.

curl -v -u admin:geoserver -XGET http://localhost/geoserver/rest/security/masterpw.xml

A generated master password may be -“}3a^Kh. Next step is creating an XML file.

File changes.xml

<masterPassword>
 <oldMasterPassword>-"}3a^Kh</oldMasterPassword>
 <newMasterPassword>geoserver1</newMasterPassword>
</masterPassword>

Changing the master password using the file:

curl -v -u admin:geoserver -XPUT -H "Content-type: text/xml" -d @change.xml http://localhost/geoserver/rest/security/masterpw.xml

PHP

The examples in this section use the server-side scripting language PHP [http://php.net/index.php/], a popular language for dynamic webpages. PHP has cURL functions [http://php.net/manual/en/ref.curl.php/] , as well as
XML functions [http://www.php.net/manual/en/refs.xml.php/], making it a convenient method for performing batch processing through the Geoserver REST interface. The following scripts execute single requests, but can be easily modified with looping structures to perform batch processing.

Note

In order to execute the examples just copy the script content into a test.php file and execute the following command:

$ php test.php

POST with PHP/cURL

The following script attempts to add a new workspace.

<?php
 // Open log file
 $logfh = fopen("GeoserverPHP.log", 'w') or die("can't open log file");

 // Initiate cURL session
 $service = "http://localhost:8080/geoserver/"; // replace with your URL
 $request = "rest/workspaces"; // to add a new workspace
 $url = $service . $request;
 $ch = curl_init($url);

 // Optional settings for debugging
 curl_setopt($ch, CURLOPT_RETURNTRANSFER, true); //option to return string
 curl_setopt($ch, CURLOPT_VERBOSE, true);
 curl_setopt($ch, CURLOPT_STDERR, $logfh); // logs curl messages

 //Required POST request settings
 curl_setopt($ch, CURLOPT_POST, True);
 $passwordStr = "admin:geoserver"; // replace with your username:password
 curl_setopt($ch, CURLOPT_USERPWD, $passwordStr);

 //POST data
 curl_setopt($ch, CURLOPT_HTTPHEADER,
 array("Content-type: application/xml"));
 $xmlStr = "<workspace><name>test_ws</name></workspace>";
 curl_setopt($ch, CURLOPT_POSTFIELDS, $xmlStr);

 //POST return code
 $successCode = 201;

 $buffer = curl_exec($ch); // Execute the curl request

 // Check for errors and process results
 $info = curl_getinfo($ch);
 if ($info['http_code'] != $successCode) {
 $msgStr = "# Unsuccessful cURL request to ";
 $msgStr .= $url." [". $info['http_code']. "]\n";
 fwrite($logfh, $msgStr);
 } else {
 $msgStr = "# Successful cURL request to ".$url."\n";
 fwrite($logfh, $msgStr);
 }
 fwrite($logfh, $buffer."\n");

 curl_close($ch); // free resources if curl handle will not be reused
 fclose($logfh); // close logfile

?>

The logfile should look something like:

* About to connect() to www.example.com port 80 (#0)
* Trying 123.456.78.90... * connected
* Connected to www.example.com (123.456.78.90) port 80 (#0)
* Server auth using Basic with user 'admin'
> POST /geoserver/rest/workspaces HTTP/1.1
Authorization: Basic sDsdfjkLDFOIedlsdkfj
Host: www.example.com
Accept: */*
Content-type: application/xml
Content-Length: 43

< HTTP/1.1 201 Created
< Date: Fri, 21 May 2010 15:44:47 GMT
< Server: Apache-Coyote/1.1
< Location: http://www.example.com/geoserver/rest/workspaces/test_ws
< Content-Length: 0
< Content-Type: text/plain
<
* Connection #0 to host www.example.com left intact
Successful cURL request to http://www.example.com/geoserver/rest/workspaces

* Closing connection #0

If the cURL request fails, a code other than 201 will be returned.
Here are some possible values:

	Code

	Meaning

	0

	Couldn’t resolve host; possibly a typo in host name

	201

	Successful POST

	30x

	Redirect; possibly a typo in the URL

	401

	Invalid username or password

	405

	Method not Allowed: check request syntax

	500

	Geoserver is unable to process the request,
e.g. the workspace already exists, the xml is malformed, …

For other codes see cURL Error Codes [http://curl.haxx.se/libcurl/c/libcurl-errors.html] and HTTP Codes [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html].

GET with PHP/cURL

The script above can be modified to perform a GET request to obtain
the names of all workspaces by replacing the code blocks for required
settings, data and return code with the following:

<?php
 // Required GET request settings
 // curl_setopt($ch, CURLOPT_GET, True); // CURLOPT_GET is True by default

 //GET data
 curl_setopt($ch, CURLOPT_HTTPHEADER, array("Accept: application/xml"));

 //GET return code
 $successCode = 200;
?>

The logfile should now include lines like:

> GET /geoserver/rest/workspaces HTTP/1.1

< HTTP/1.1 200 OK

DELETE with PHP/cURL

To delete the (empty) workspace we just created, the script is modified as follows:

<?php
 $request = "rest/workspaces/test_ws"; // to delete this workspace
?>

<?php
 //Required DELETE request settings
 curl_setopt($ch, CURLOPT_CUSTOMREQUEST, "DELETE");
 $passwordStr = "admin:geoserver"; // replace with your username:password
 curl_setopt($ch, CURLOPT_USERPWD, $passwordStr);

 //DELETE data
 curl_setopt($ch, CURLOPT_HTTPHEADER,
 array("Content-type: application/atom+xml"));

 //DELETE return code
 $successCode = 200;
?>

The log file will include lines like:

> DELETE /geoserver/rest/workspaces/test_ws HTTP/1.1

< HTTP/1.1 200 OK

Python

We are looking for volunteers to flesh out this section with examples.

In the meantime, anyone looking to do python scripting of the GeoServer REST config API should use gsconfig.py [https://github.com/dwins/gsconfig.py/wiki].
It is quite capable, and is used in production as part of GeoNode [http://geonode.org], so examples can be found in that codebase.
Documentation and examples can be found at the section GeoNode’s Ad-Hoc API.

Java

We are looking for volunteers to flesh out this section with examples.

In the meantime, anyone looking to do Java scripting of the GeoServer REST API should use GeoServer Manager [https://github.com/geosolutions-it/geoserver-manager/wiki/], a REST client library with minimal dependencies on external libraries.

Another option is gsrcj [http://code.google.com/p/gsrcj/]. This project is a GeoServer REST client written in Java with no extra dependencies on GeoServer/GeoTools, unlike the standard GeoServer REST module. The project has minimal documentation, but does include a Quickstart [http://code.google.com/p/gsrcj/wiki/Quickstart].

Ruby

The examples in this section use rest-client [http://github.com/archiloque/rest-client], a REST client for Ruby. There is also a project to create a GeoServer-specific REST client in Ruby: RGeoServer [https://github.com/rnz0/rgeoserver].

Once installed on a system, rest-client can be included in a Ruby script by adding require 'rest-client'.

GET and PUT Settings

Note

In order to execute the example just copy the script content into a test.ruby file and execute the following command:

$ ruby test.ruby

This example shows how to read the settings using GET, make a change and then use PUT to write the change to the server.

require 'json'
require 'rest-client'

url = 'http://admin:geoserver@localhost:8080/geoserver/rest/'

get the settings and parse the JSON into a Hash
json_text = RestClient.get(url + 'settings.json')
settings = JSON.parse(json_text)

settings can be found with the appropriate keys
global_settings = settings["global"]
jai_settings = global_settings["jai"]

change a value
jai_settings["allowInterpolation"] = true

put changes back to the server
RestClient.put(url + 'settings, settings.to_json, :content_type => :json)

GeoServer Importer

The Importer extension gives a GeoServer administrator an alternate, more-streamlined method for uploading and configuring new layers.

There are two primary advantages to using the Importer over the standard GeoServer data-loading workflow:

	Supports batch operations (loading and publishing multiple spatial files or database tables in one operation)

	Creates unique styles for each layer, rather than linking to the same (existing) styles.

This section will discuss the Importer extension.

	Installing the Importer extension

	Using the Importer extension

	Importer interface reference

	Supported data formats

	REST API

	Importer REST API examples

Installing the Importer extension

The Importer extension is an official extension, available on the GeoServer download [http://geoserver.org/download] page.

	Download the extension for your version of GeoServer. (If you see an option, select Core.)

Warning

Make sure to match the version of the extension to the version of GeoServer.

	Extract the archive and copy the contents into the GeoServer WEB-INF/lib directory.

	Restart GeoServer.

	To verify that the extension was installed successfully, open the web_admin and look for an Import Data option in the Data section on the left-side menu.

[image: ../../../_images/importer_link.png]
Importer extension successfully installed.

For additional information please see the section on Using the Importer extension.

Using the Importer extension

Here are step-by-step instructions to import multiple shapefiles in one operation. For more details on different types of operations, please see the Importer interface reference

	Find a directory of shapefiles and copy into your data_directory.

Note

You can always use the Natural Earth Quickstart [http://www.naturalearthdata.com/downloads/] data for this task.

	Log in as an administrator and navigate to the Data –> Import Data page.

	For select Spatial Files as the data source.

[image: ../../../_images/using_datasource.png]
Data source

	Click Browse to navigate to the directory of shapefiles to be imported.

	The web-based file browser will show as options your home directory, data directory, and the root of your file system (or drive). In this case, select Data directory

[image: ../../../_images/using_directory.png]
Directory

	Back on the main form, select Create new next to Workspace, and enter ne to denote the workspace.

Note

Make sure the Store field reads Create new as well.

[image: ../../../_images/using_workspace.png]
Import target workspace

	Click Next to start the import process.

	On the next screen, any layers available for import will be shown.

Note

Non-spatial files will be ignored.

[image: ../../../_images/using_layerlist.png]
Import layer list

	In most cases, all files will be ready for import, but if the the spatial reference system (SRS) is not recognized, you will need to manually input this but clicking Advanced

Note

You will need to manually input the SRS if you used the Natural Earth data above. For each layer click on Advanced and set reprojection to EPSG:4326.

[image: ../../../_images/using_advanced.png]
Advanced import settings

	Check the box next to each layer you wish to import.

[image: ../../../_images/using_layerlistchecked.png]
Setting the layers to import

	When ready, click Import.

Warning

Don’t click Done at this point, otherwise the import will be canceled.

	The results of the import process will be shown next to each layer.

	When finished, click Done.

Note

Recent import processes are listed at the bottom of the page. You may wish to visit these pages to check if any difficulties were encountered during the import process or import additional layers.

[image: ../../../_images/using_recent.png]
Recent imports

Importer interface reference

The Layer Importer user interface is a component of the GeoServer web interface. You can access it from the GeoServer web interface by clicking the Import Data link, found on the left side of the screen after logging in.

Data sources page

The front page of the Layer Importer is where the data source and format are set. The following options are displayed:

Choose a data source to import from

Select one of the following data sources to use for the import:

	Spatial Files (see Supported data formats for more details)

	PostGIS database

	Oracle database

	SQL Server database

[image: ../../../_images/sources_choosesourcefiles.png]
Choose a data source

The contents of the next section is dependent on the data source chosen here.

Configure the data source: Spatial Files

There is a single box for selecting a file or directory. Click the Browse link to bring up a file chooser. To select a file, click on it. To select a directory, click on a directory name to open it and then click OK.

[image: ../../../_images/sources_spatialfiles.png]
Spatial file data source

[image: ../../../_images/sources_filechooser.png]
File chooser for selecting spatial files

Configure the data source: PostGIS

Fill out fields for Connection type (Default or JNDI) Host, Port, Database name, Schema, Username to connect with, and Password.

There are also advanced connection options, which are common to the standard PostGIS store loading procedure. (See the PostGIS data store page in the GeoServer reference documentation.)

[image: ../../../_images/sources_postgis.png]
PostGIS data source connection

Configure the data source: Oracle

The parameter fields for the Oracle import are identical to that of PostGIS. The fields aren’t populated with default credentials with the exception of the port, which is set to 1521 by default.

Note

This option is only enabled if the Oracle extension is installed.

[image: ../../../_images/sources_oracle.png]
Oracle data source connection

Configure the data source: SQL Server

The parameter fields for the SQL Server import are identical to that of PostGIS. The fields aren’t populated with default credentials with the exception of the port, which is set to 4866 by default.

Note

This option is only enabled if the SQL Server extension is installed.

[image: ../../../_images/sources_sqlserver.png]
SQL Server data source connection

Specify the target for the import

This area specifies where in the GeoServer catalog the new data source will be stored. This does not affect file placement.

Select the name of an existing workspace and store.

[image: ../../../_images/sources_target.png]
Target workspace and store in GeoServer

Alternately, select Create New and type in a names for a new workspace or store. During the import process, these will be created.

[image: ../../../_images/sources_newworkspace.png]
Creating a new workspace and store

Recent imports

This section will list previous imports, and whether they were successful or not. Items can be removed from this list with the Remove button, but otherwise cannot be edited.

[image: ../../../_images/sources_recentimports.png]
Recent imports

When ready to continue to the next page, click Next.

Layer listing page

On the next page will be a list of layers found by the Layer Importer. The layers will be named according to the source content’s name (file name of database table name). For each entry there will be a Status showing if the source is ready to be imported.

All layers will be selected for import by default, but can be deselected here by unchecking the box next to each entry.

[image: ../../../_images/layerlist_select.png]
List of layers to be imported

A common issue during the import process is when a CRS cannot be determined for a given layer. In this case, a dialog box will display where the CRS can be declared explicitly. Enter the CRS and Click Apply.

[image: ../../../_images/layerlist_crs.png]
Declaring a CRS

When ready to perform the import, click Import.

Each selected layer will be added to the GeoServer catalog inside a new or existing store, and published as a layer.

After the import is complete the status area will refresh showing if the import was successful for each layer. If successful, a dialog box for previewing the layer will be displayed, with options for Layer Preview (OpenLayers), Google Earth, and GeoExplorer.

[image: ../../../_images/layerlist_success.png]
Layers successfully imported

Advanced import settings page

The Advanced link next to each layer will lead to the Advanced import settings page.

On this page, data can be set to be reprojected from one CRS to another during the import process. To enable reprojection, select the Reprojection box, and enter the source and target CRS.

In addition, on this page attributes can be renamed and their type changed. Click on the Add link under Attribute Remapping to select the attribute to alter, its type, and its new name. Click Apply when done.

Click Save when finished.

[image: ../../../_images/advanced.png]
Advanced layer list page

Supported data formats

The importer supports any format that GeoServer can use a data store
or coverage store. These include the most commonly used formats:

	Shapefile

	GeoTIFF

And a few additional formats:

	CSV

	KML

The following databases are supported:

	PostGIS

	Oracle

	Microsoft SQL Server

Note

Oracle and SQL Server require extra drivers to be installed.

	Install instructions for Oracle

	Install instructions for SQL Server

REST API

Importer concepts

The importer REST api is built around a tree of objects representing a single import, structured as follows:

	
	import

	
	target workspace

	data

	
	task (one or more)

	
	data

	layer

	transformation (one or more)

An import refers to the top level object and is a “session” like entity the state of the entire import. It maintains information relevant to the import as a whole such as user infromation, timestamps
along with optional information that is uniform along all tasks, such as a target workspace, the shared input data (e.g., a directory, a database).
An import is made of any number of task objects.

A data is the description of the source data of a import (overall) or a task. In case the import has a global data definition, this normally refers to an aggregate
store such as a directory or a database, and the data associated to the tasks refers to a single element inside such aggregation, such as a single file or table.

A task represents a unit of work to the importer needed to register one new layer, or alter an existing one, and contains the following information:

	The data being imported

	The target store that is the destination of the import

	The target layer

	The data of a task, referred to as its source, is the data to be processed as part of the task.

	The transformations that we need to apply to the data before it gets imported

This data comes in a variety of forms including:

	A spatial file (Shapefile, GeoTiff, KML, etc…)

	A directory of spatial files

	A table in a spatial database

	A remote location that the server will download data from

A task is classified as either “direct” or “indirect”. A direct task is one in which the data being imported requires no transformation to be imported.
It is imported directly. An example of such a task is one that involves simply importing an existing Shapefile as is.
An indirect task is one that does require a transformation to the original import data. An example of an indirect task is one that involves importing a Shapefile into an existing PostGIS database.
Another example of indirect task might involve taking a CSV file as an input, turning a x and y column into a Point, remapping a string column into a timestamp, and finally import the result into a PostGIS.

REST API Reference

All the imports

/imports

	Method

	Action

	Status Code/Headers

	Input

	Output

	Parameters

	GET

	Retrieve all imports

	200

	n/a

	Import Collection

	n/a

	POST

	Create a new import

	201 with Location header

	n/a

	Imports

	async=false/true

Retrieving the list of all imports

GET /imports

results in:

Status: 200 OK
Content-Type: application/json

 {
 "imports": [{
 "id": 0,
 "state": "COMPLETE",
 "href": "http://localhost:8080/geoserver/rest/imports/0"

 }, {
 "id": 1,
 "state": "PENDING",
 "href": "http://localhost:8080/geoserver/rest/imports/1"
 }]
 }

Creating a new import

Posting to the /imports path a import json object creates a new import session:

Content-Type: application/json

{
 "import": {
 "targetWorkspace": {
 "workspace": {
 "name": "scratch"
 }
 },
 "targetStore": {
 "dataStore": {
 "name": "shapes"
 }
 },
 "data": {
 "type": "file",
 "file": "/data/spearfish/archsites.shp"
 }
 }
}

The parameters are:

	Name

	Optional

	Description

	targetWorkspace

	Y

	The target workspace to import to

	targetStore

	Y

	The target store to import to

	data

	Y

	The data to be imported

The mere creation does not start the import, but it may automatically populate its tasks depending on the target.
For example, by referring a directory of shapefiles to be importer, the creation will automatically fill in a task to import each of the shapefiles as a new layer.

The response to the above POST request will be:

Status: 201 Created
Location: http://localhost:8080/geoserver/rest/imports/2
Content-Type: application/json

{
 "import": {
 "id": 2,
 "href": "http://localhost:8080/geoserver/rest/imports/2",
 "state": "READY",
 "targetWorkspace": {
 "workspace": {
 "name": "scratch"
 }
 },
 "targetStore": {
 "dataStore": {
 "name": "shapes",
 "type": "PostGIS"
 }
 },
 "data": {
 "type": "file",
 "format": "Shapefile",
 "href": "http://localhost:8080/geoserver/rest/imports/2/data",
 "file": "archsites.shp"
 },
 "tasks": [
 {
 "id": 0,
 "href": "http://localhost:8080/geoserver/rest/imports/2/tasks/0",
 "state": "READY"
 }
]
 }
}

The operation of populating the tasks can require time, especially if done against a large set of
files, or against a “remote” data (more on this later), in this case the POST request can include ?async=true
at the end of the URL to make the importer run it asynchronously.
In this case the import will be created in INIT state and will remain in such state until all
the data transfer and task creation operations are completed. In case of failure to fetch data
the import will immediately stop, the state will switch to the INIT_ERROR state,
and a error message will appear in the import context “message” field.

Import object

/imports/<importId>

	Method

	Action

	Status Code/Headers

	Input

	Output

	Parameters

	GET

	Retrieve import with id <importId>

	200

	n/a

	Imports

	n/a

	POST

	Execute import with id <importId>

	204

	n/a

	n/a

	async=true/false

	PUT

	Create import with proposed id <importId>. If the proposed id is
ahead of the current (next) id, the current id will be advanced. If the
proposed id is less than or equal to the current id, the current will be
used. This allows an external system to dictate the id management.

	201 with Location header

	n/a

	Imports

	n/a

	DELETE

	Remove import with id <importId>

	200

	n/a

	n/a

	n/a

The representation of a import is the same as the one contained in the import creation response.
The execution of a import can be a long task, as such, it’s possible to add async=true to the
request to make it run in a asynchronous fashion, the client will have to poll the import representation
and check when it reaches the “COMPLETE” state.

Data

A import can have a “data” representing the source of the data to be imported. The data can
be of different types, in particular, “file”, “directory”, “mosaic”, “database” and “remote”.
During the import initialization the importer will scan the contents of said resource, and
generate import tasks for each data found in it.

Most data types are discussed in the task section, the only type that’s specific to the whole
import context is the “remote” one, that is used to ask the importer to fetch the data from
a remote location autonomusly, without asking the client to perform an upload.

The representation of a remote resource looks as follows:

"data": {
 "type": "remote",
 "location": "ftp://fthost/path/to/importFile.zip",
 "username": "user",
 "password": "secret",
 "domain" : "mydomain"
}

The location can be any URI supported by Commons VFS [http://commons.apache.org/proper/commons-vfs/filesystems.html],
including HTTP and FTP servers. The username, password and domain elements are all optional,
and required only if the remote server demands an authentication of sorts.
In case the referred file is compressed, it will be unpacked as the download completes, and the
tasks will be created over the result of unpacking.

>>>>>>> 296f581… [GEOS-7049] Allow autonomous and asynchonous data fetching in importer REST api
Tasks
^^^^^

/imports/<importId>/tasks

	Method

	Action

	Status Code/Headers

	Input

	Output

	GET

	Retrieve all tasks for import with id <importId>

	200

	n/a

	Task Collection

	POST

	Create a new task

	201 with Location header

	Multipart form data

	Tasks

Getting the list of tasks

GET /imports/0/tasks

Results in:

Status: 200 OK
Content-Type: application/json

{
 "tasks": [
 {
 "id": 0,
 "href": "http://localhost:8080/geoserver/rest/imports/2/tasks/0",
 "state": "READY"
 }
]
}

Creating a new task as a file upload

A new task can be created by issuing a POST to imports/<importId>/tasks as a “Content-type: multipart/form-data” multipart encoded data as defined by RFC 2388 [https://www.ietf.org/rfc/rfc2388.txt].
One or more file can be uploaded this way, and a task will be created for importing them. In case the file being uploaded is a zip file, it will be unzipped on the server side and treated as a directory of files.

The response to the upload will be the creation of a new task, for example:

Status: 201 Created
Location: http://localhost:8080/geoserver/rest/imports/1/tasks/1
Content-type: application/json

{
 "task": {
 "id": 1,
 "href": "http://localhost:8080/geoserver/rest/imports/2/tasks/1",
 "state": "READY",
 "updateMode": "CREATE",
 "data": {
 "type": "file",
 "format": "Shapefile",
 "href": "http://localhost:8080/geoserver/rest/imports/2/tasks/1/data",
 "file": "bugsites.shp"
 },
 "target": {
 "href": "http://localhost:8080/geoserver/rest/imports/2/tasks/1/target",
 "dataStore": {
 "name": "shapes",
 "type": "PostGIS"
 }
 },
 "progress": "http://localhost:8080/geoserver/rest/imports/2/tasks/1/progress",
 "layer": {
 "name": "bugsites",
 "href": "http://localhost:8080/geoserver/rest/imports/2/tasks/1/layer"
 },
 "transformChain": {
 "type": "vector",
 "transforms": []
 }
 }
}

Creating a new task from form upload

This creation mode assumes the POST to imports/<importId>/tasks of form url encoded data containing a url parameter:

Content-type: application/x-www-form-urlencoded

url=file:///data/spearfish/

The creation response will be the same as the multipart upload.

Single task resource

/imports/<importId>/task/<taskId>

	Method

	Action

	Status Code/Headers

	Input

	Output

	GET

	Retrieve task with id <taskId> within import with id <importId>

	200

	n/a

	Task

	PUT

	Modify task with id <taskId> within import with id <importId>

	200

	Task

	Task

	DELETE

	Remove task with id <taskId> within import with id <importId>

	200

	n/a

	n/a

The representation of a task resource is the same one reported in the task creation response.

Updating a task

A PUT request over an existing task can be used to update its representation. The representation can be partial, and just contains
the elements that need to be updated.

The updateMode of a task normally starts as “CREATE”, that is, create the target resource if missing. Other possible values are
“REPLACE”, that is, delete the existing features in the target layer and replace them with the task source ones, or “APPEND”,
to just add the features from the task source into an existing layer.

The following PUT request updates a task from “CREATE” to “APPEND” mode:

Content-Type: application/json

{
 "task": {
 "updateMode": "APPEND"
 }
}

Directory files representation

The following operations are specific to data objects of type directory.

/imports/<importId>/task/<taskId>/data/files

	Method

	Action

	Status Code/Headers

	Input

	Output

	GET

	Retrieve the list of files for a task with id <taskId> within import with id <importId>

	200

	n/a

	Task

The response to a GET request will be:

Status: 200 OK
Content-Type: application/json

{
 files: [
 {
 file: "tasmania_cities.shp",
 href: "http://localhost:8080/geoserver/rest/imports/0/tasks/0/data/files/tasmania_cities.shp"
 },
 {
 file: "tasmania_roads.shp",
 href: "http://localhost:8080/geoserver/rest/imports/0/tasks/0/data/files/tasmania_roads.shp"
 },
 {
 file: "tasmania_state_boundaries.shp",
 href: "http://localhost:8080/geoserver/rest/imports/0/tasks/0/data/files/tasmania_state_boundaries.shp"
 },
 {
 file: "tasmania_water_bodies.shp",
 href: "http://localhost:8080/geoserver/rest/imports/0/tasks/0/data/files/tasmania_water_bodies.shp"
 }
]
}

/imports/<importId>/task/<taskId>/data/files/<fileId>

	Method

	Action

	Status Code/Headers

	Input

	Output

	GET

	Retrieve the file with id <fileId> from the data of a task with id <taskId> within import with id <importId>

	200

	n/a

	Task

	DELETE

	Remove a specific file from the task with id <taskId> within import with id <importId>

	200

	n/a

	n/a

Following the links we’ll get to the representation of a single file, notice how in this case a main file can be associate to sidecar files:

Status: 200 OK
Content-Type: application/json

{
 type: "file",
 format: "Shapefile",
 location: "C:\devel\gs_data\release\data\taz_shapes",
 file: "tasmania_cities.shp",
 href: "http://localhost:8080/geoserver/rest/imports/0/tasks/0/data/files/tasmania_cities.shp",
 prj: "tasmania_cities.prj",
 other: [
 "tasmania_cities.dbf",
 "tasmania_cities.shx"
]
}

Mosaic extensions

In case the input data is of mosaic type, we have all the attributes typical of a directory, plus support
for directly specifying the timestamp of a particular granule.

In order to specify the timestamp a PUT request can be issued against the granule:

Content-Type: application/json

{
 "timestamp": "2004-01-01T00:00:00.000+0000"
}

and the response will be:

Status: 200 OK
Content-Type: application/json

{
 "type": "file",
 "format": "GeoTIFF",
 "href": "http://localhost:8080/geoserver/rest/imports/0/tasks/0/data/files/bm_200401.tif",
 "location": "/data/bluemarble/mosaic",
 "file": "bm_200401.tiff",
 "prj": null,
 "other": [],
 "timestamp": "2004-01-01T00:00:00.000+0000"
}

Database data

The following operations are specific to data objects of type database. At the time or writing, the REST API does not allow
the creation of a database data source, but it can provide a read only description of one that has been created using the GUI.

/imports/<importId>/tasks/<taskId>/data

	Method

	Action

	Status Code/Headers

	Input

	Output

	GET

	Retrieve the database connection parameters for a task with id <taskId> within import with id <importId>

	200

	n/a

	List of database connection parameters and available tables

Performing a GET on a database type data will result in the following response:

{
 type: "database",
 format: "PostGIS",
 href: "http://localhost:8080/geoserver/rest/imports/0/data",
 parameters: {
 schema: "public",
 fetch size: 1000,
 validate connections: true,
 Connection timeout: 20,
 Primary key metadata table: null,
 preparedStatements: true,
 database: "gttest",
 port: 5432,
 passwd: "cite",
 min connections: 1,
 dbtype: "postgis",
 host: "localhost",
 Loose bbox: true,
 max connections: 10,
 user: "cite"
 },
 tables: [
 "geoline",
 "geopoint",
 "lakes",
 "line3d",
]
}

Database table

The following operations are specific to data objects of type table. At the time or writing, the REST API does not allow
the creation of a database data source, but it can provide a read only description of one that has been created using the GUI.
A table description is normally linked to task, and refers to a database data linked to the overall import.

/imports/<importId>/tasks/<taskId>/data

	Method

	Action

	Status Code/Headers

	Input

	Output

	GET

	Retrieve the table description for a task with id <taskId> within import with id <importId>

	200

	n/a

	A table representation

Performing a GET on a database type data will result in the following response:

{
 type: "table",
 name: "abc",
 format: "PostGIS",
 href: "http://localhost:8080/geoserver/rest/imports/0/tasks/0/data"
}

Task target layer

/imports/<importId>/tasks/<taskId>/layer

The layer defines how the target layer will be created

	Method

	Action

	Status Code/Headers

	Input

	Output

	GET

	Retrieve the layer of a task with id <taskId> within import with id <importId>

	200

	n/a

	A layer JSON representation

	PUT

	Modify the target layer for a task with id <taskId> within import with id <importId>

	200

	Task

	Task

Requesting the task layer will result in the following:

Status: 200 OK
Content-Type: application/json

{
 layer: {
 name: "tasmania_cities",
 href: "http://localhost:8080/geoserver/rest/imports/0/tasks/0/layer",
 title: "tasmania_cities",
 originalName: "tasmania_cities",
 nativeName: "tasmania_cities",
 srs: "EPSG:4326",
 bbox: {
 minx: 147.2909004483,
 miny: -42.85110181689001,
 maxx: 147.2911004483,
 maxy: -42.85090181689,
 crs: "GEOGCS["WGS 84", DATUM["World Geodetic System 1984", SPHEROID["WGS 84", 6378137.0, 298.257223563, AUTHORITY["EPSG","7030"]], AUTHORITY["EPSG","6326"]], PRIMEM["Greenwich", 0.0, AUTHORITY["EPSG","8901"]], UNIT["degree", 0.017453292519943295], AXIS["Geodetic longitude", EAST], AXIS["Geodetic latitude", NORTH], AUTHORITY["EPSG","4326"]]"
 },
 attributes: [
 {
 name: "the_geom",
 binding: "com.vividsolutions.jts.geom.MultiPoint"
 },
 {
 name: "CITY_NAME",
 binding: "java.lang.String"
 },
 {
 name: "ADMIN_NAME",
 binding: "java.lang.String"
 },
 {
 name: "CNTRY_NAME",
 binding: "java.lang.String"
 },
 {
 name: "STATUS",
 binding: "java.lang.String"
 },
 {
 name: "POP_CLASS",
 binding: "java.lang.String"
 }
],
 style: {
 name: "cite_tasmania_cities",
 href: "http://localhost:8080/geoserver/rest/imports/0/tasks/0/layer/style"
 }
 }
}

All the above attributes can be updated using a PUT request. Even if the above representation is similar to the REST config API, it should not
be confused with it, as it does not support all the same properties, in particular the supported properties are all the ones listed above.

Task transformations

/imports/<importId>/tasks/<taskId>/transforms

	Method

	Action

	Status Code/Headers

	Input

	Output

	GET

	Retrieve the list of transformations of a task with id <taskId> within import with id <importId>

	200

	n/a

	A list of transfromations in JSON format

	POST

	Create a new transormation and append it inside a task with id <taskId> within import with id <importId>

	201

	A JSON transformation representation

	The transform location

Retrieving the transformation list

A GET request for the list of transformations will result in the following response:

Status: 200 OK
Content-Type: application/json

{
 "transforms": [
 {
 "type": "ReprojectTransform",
 "href": "http://localhost:8080/geoserver/rest/imports/0/tasks/1/transforms/0",
 "source": null,
 "target": "EPSG:4326"
 },
 {
 "type": "DateFormatTransform",
 "href": "http://localhost:8080/geoserver/rest/imports/0/tasks/1/transforms/1",
 "field": "date",
 "format": "yyyyMMdd"
 }
]
}

Appending a new transformation

Creating a new transformation requires posting a JSON document with a type property identifying the class of the
transformation, plus any extra attribute required by the transformation itself (this is transformation specific, each one will use a different set of attributes).

The following POST request creates an attribute type remapping:

Content-Type: application/json

{
 "type": "AttributeRemapTransform",
 "field": "cat",
 "target": "java.lang.Integer"
}

The response will be:

Status: 201 OK
Location: http://localhost:8080/geoserver/rest/imports/0/tasks/1/transform/2

/imports/<importId>/tasks/<taskId>/transforms/<transformId>

	Method

	Action

	Status Code/Headers

	Input

	Output

	GET

	Retrieve a transformation identified by <transformId> inside a task with id <taskId> within import with id <importId>

	200

	n/a

	A single transformation in JSON format

	PUT

	Modifies the definition of a transformation identified by <transformId> inside a task with id <taskId> within import with id <importId>

	200

	A JSON transformation representation (eventually just the portion of it that needs to be modified)

	The full transformation representation

	DELETE

	Removes the transformation identified by <transformId> inside a task with id <taskId> within import with id <importId>

	200

	A JSON transformation representation (eventually just the portion of it that needs to be modified)

	The full transformation representation

Retrieve a single transformation

Requesting a single transformation by identifier will result in the following response:

Status: 200 OK
Content-Type: application/json

{
 "type": "ReprojectTransform",
 "href": "http://localhost:8080/geoserver/rest/imports/0/tasks/1/transforms/0",
 "source": null,
 "target": "EPSG:4326"
}

Modify an existing transformation

Assuming we have a reprojection transformation, and that we need to change the target SRS type, the following PUT request will do the job:

Content-Type: application/json
{
 "type": "ReprojectTransform",
 "target": "EPSG:3005"
}

The response will be:

Status: 200 OK
 Content-Type: application/json

 {
 "type": "ReprojectTransform",
 "href": "http://localhost:8080/geoserver/rest/imports/0/tasks/1/transform/0",
 "source": null,
 "target": "EPSG:3005"
 }

Transformation reference

AttributeRemapTransform

Remaps a certain field to a given target data type

	Parameter

	Optional

	Description

	field

	N

	The name of the field to be remapped

	target

	N

	The “target” field type, as a fully qualified Java class name

AttributesToPointGeometryTransform

Transforms two numeric fields latField and lngField into a point geometry representation POINT(lngField,latField), the source fields will be removed.

	Parameter

	Optional

	Description

	latField

	N

	The “latitude” field

	lngField

	N

	The “longitude” field

CreateIndexTransform

For database targets only, creates an index on a given column after importing the data into the database

	Parameter

	Optional

	Description

	field

	N

	The field to be indexed

DateFormatTransform

Parses a string representation of a date into a Date/Timestamp object

	Parameter

	Optional

	Description

	field

	N

	The field to be parsed

	format

	Y

	A date parsing pattern, setup using the Java SimpleDateFormat syntax [http://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html]. In case it’s missing, a number of built-in formats will be tried instead (short and full ISO date formats, dates without any separators).

IntegerFieldToDateTransform

Takes a integer field and transforms it to a date, interpreting the intereger field as a date

	Parameter

	Optional

	Description

	field

	N

	The field containing the year information

ReprojectTransform

Reprojects a vector layer from a source CRS to a target CRS

	Parameter

	Optional

	Description

	source

	Y

	Identifier of the source coordinate reference system (the native one will be used if missing)

	target

	N

	Identifier of the target coordinate reference system

GdalTranslateTransform

Applies gdal_translate to a single file raster input. Requires gdal_translate to be inside the PATH used by the web container running GeoServer.

	Parameter

	Optional

	Description

	options

	N

	Array of options that will be passed to gdal_translate (beside the input and output names, which are internally managed)

GdalWarpTransform

Applies gdalwarp to a single file raster input. Requires gdalwarp to be inside the PATH used by the web container running GeoServer.

	Parameter

	Optional

	Description

	options

	N

	Array of options that will be passed to gdalwarp (beside the input and output names, which are internally managed)

GdalAddoTransform

Applies gdaladdo to a single file raster input. Requires gdaladdo to be inside the PATH used by the web container running GeoServer.

	Parameter

	Optional

	Description

	options

	N

	Array of options that will be passed to gdaladdo (beside the input file name, which is internally managed)

	levels

	N

	Array of integers with the overview levels that will be passed to gdaladdo

Importer REST API examples

Mass configuring a directory of shapefiles

In order to initiate an import of the c:\data\tasmania directory into the existing tasmania workspace the following JSON will be POSTed to GeoServer:

{
 "import": {
 "targetWorkspace": {
 "workspace": {
 "name": "tasmania"
 }
 },
 "data": {
 "type": "directory",
 "location": "C:/data/tasmania"
 }
 }
}

This curl command can be used for the purpose:

curl -u admin:geoserver -XPOST -H "Content-type: application/json" -d @import.json "http://localhost:8080/geoserver/rest/imports"

The importer will locate the files to be imported, and automatically prepare the tasks, returning the following response:

{
 "import": {
 "id": 9,
 "href": "http://localhost:8080/geoserver/rest/imports/9",
 "state": "PENDING",
 "archive": false,
 "targetWorkspace": {
 "workspace": {
 "name": "tasmania"
 }
 },
 "data": {
 "type": "directory",
 "format": "Shapefile",
 "location": "C:\\data\\tasmania",
 "href": "http://localhost:8080/geoserver/rest/imports/9/data"
 },
 "tasks": [
 {
 "id": 0,
 "href": "http://localhost:8080/geoserver/rest/imports/9/tasks/0",
 "state": "READY"
 },
 {
 "id": 1,
 "href": "http://localhost:8080/geoserver/rest/imports/9/tasks/1",
 "state": "READY"
 },
 {
 "id": 2,
 "href": "http://localhost:8080/geoserver/rest/imports/9/tasks/2",
 "state": "READY"
 },
 {
 "id": 3,
 "href": "http://localhost:8080/geoserver/rest/imports/9/tasks/3",
 "state": "READY"
 }
]
 }
}

After checking every task is ready, the import can be initiated by executing a POST on the import resource:

curl -u admin:geoserver -XPOST "http://localhost:8080/geoserver/rest/imports/9"

The resource can then be monitored for progress, and eventually final results:

curl -u admin:geoserver -XGET "http://localhost:8080/geoserver/rest/imports/9"

Which in case of successful import will look like:

{
 "import": {
 "id": 9,
 "href": "http://localhost:8080/geoserver/rest/imports/9",
 "state": "COMPLETE",
 "archive": false,
 "targetWorkspace": {
 "workspace": {
 "name": "tasmania"
 }
 },
 "data": {
 "type": "directory",
 "format": "Shapefile",
 "location": "C:\\data\\tasmania",
 "href": "http://localhost:8080/geoserver/rest/imports/9/data"
 },
 "tasks": [
 {
 "id": 0,
 "href": "http://localhost:8080/geoserver/rest/imports/9/tasks/0",
 "state": "COMPLETE"
 },
 {
 "id": 1,
 "href": "http://localhost:8080/geoserver/rest/imports/9/tasks/1",
 "state": "COMPLETE"
 },
 {
 "id": 2,
 "href": "http://localhost:8080/geoserver/rest/imports/9/tasks/2",
 "state": "COMPLETE"
 },
 {
 "id": 3,
 "href": "http://localhost:8080/geoserver/rest/imports/9/tasks/3",
 "state": "COMPLETE"
 }
]
 }
}

Configuring a shapefile with no projection information

In this case, let’s assume we have a single shapefile, tasmania_cities.shp, that does not have the .prj anciliary file
(the example is equally good for any case where the prj file contents cannot be matched to an official EPSG code).

We are going to post the following import definition:

{
 "import": {
 "targetWorkspace": {
 "workspace": {
 "name": "tasmania"
 }
 },
 "data": {
 "type": "file",
 "file": "C:/data/tasmania/tasmania_cities.shp"
 }
 }
}

With the usual curl command:

curl -u admin:geoserver -XPOST -H "Content-type: application/json" -d @import.json "http://localhost:8080/geoserver/rest/imports"

The response in case the CRS is missing will be:

{
 "import": {
 "id": 13,
 "href": "http://localhost:8080/geoserver/rest/imports/13",
 "state": "PENDING",
 "archive": false,
 "targetWorkspace": {
 "workspace": {
 "name": "tasmania"
 }
 },
 "data": {
 "type": "file",
 "format": "Shapefile",
 "file": "tasmania_cities.shp"
 },
 "tasks": [
 {
 "id": 0,
 "href": "http://localhost:8080/geoserver/rest/imports/13/tasks/0",
 "state": "NO_CRS"
 }
]
 }
}

Drilling into the task layer we can see the srs information is missing:

{
 "layer": {
 "name": "tasmania_cities",
 "href": "http://localhost:8080/geoserver/rest/imports/13/tasks/0/layer",
 "title": "tasmania_cities",
 "originalName": "tasmania_cities",
 "nativeName": "tasmania_cities",
 "bbox": {
 "minx": 146.2910004483,
 "miny": -43.85100181689,
 "maxx": 148.2910004483,
 "maxy": -41.85100181689
 },
 "attributes": [
 {
 "name": "the_geom",
 "binding": "com.vividsolutions.jts.geom.MultiPoint"
 },
 {
 "name": "CITY_NAME",
 "binding": "java.lang.String"
 },
 {
 "name": "ADMIN_NAME",
 "binding": "java.lang.String"
 },
 {
 "name": "CNTRY_NAME",
 "binding": "java.lang.String"
 },
 {
 "name": "STATUS",
 "binding": "java.lang.String"
 },
 {
 "name": "POP_CLASS",
 "binding": "java.lang.String"
 }
],
 "style": {
 "name": "tasmania_tasmania_cities2",
 "href": "http://localhost:8080/geoserver/rest/imports/13/tasks/0/layer/style"
 }
 }
}

The following PUT request will update the SRS:

curl -u admin:geoserver -XPUT -H "Content-type: application/json" -d @layerUpdate.json "http://localhost:8080/geoserver/rest/imports/13/tasks/0/layer/"

Where layerUpdate.json is:

{
 layer : {
 srs: "EPSG:4326"
 }
}

Getting the import definition again, we’ll find it ready to execute:

{
 "import": {
 "id": 13,
 "href": "http://localhost:8080/geoserver/rest/imports/13",
 "state": "PENDING",
 "archive": false,
 "targetWorkspace": {
 "workspace": {
 "name": "tasmania"
 }
 },
 "data": {
 "type": "file",
 "format": "Shapefile",
 "file": "tasmania_cities.shp"
 },
 "tasks": [
 {
 "id": 0,
 "href": "http://localhost:8080/geoserver/rest/imports/13/tasks/0",
 "state": "READY"
 }
]
 }
}

A POST request will make it execute:

curl -u admin:geoserver -XPOST "http://localhost:8080/geoserver/rest/imports/13"

And eventually succeed:

{
 "import": {
 "id": 13,
 "href": "http://localhost:8080/geoserver/rest/imports/13",
 "state": "COMPLETE",
 "archive": false,
 "targetWorkspace": {
 "workspace": {
 "name": "tasmania"
 }
 },
 "data": {
 "type": "file",
 "format": "Shapefile",
 "file": "tasmania_cities.shp"
 },
 "tasks": [
 {
 "id": 0,
 "href": "http://localhost:8080/geoserver/rest/imports/13/tasks/0",
 "state": "COMPLETE"
 }
]
 }
}

Uploading a CSV file to PostGIS while transforming it

A remote sensing tool is generating CSV files with some locations and measurements, that we want to upload
into PostGIS as a new spatial table. The CSV file looks as follows:

AssetID, SampleTime, Lat, Lon, Value
1, 2015-01-01T10:00:00, 10.00, 62.00, 15.2
1, 2015-01-01T11:00:00, 10.10, 62.11, 30.25
1, 2015-01-01T12:00:00, 10.20, 62.22, 41.2
1, 2015-01-01T13:00:00, 10.31, 62.33, 27.6
1, 2015-01-01T14:00:00, 10.41, 62.45, 12

First, we are going to create a empty import with an existing postgis store as the target:

curl -u admin:geoserver -XPOST -H "Content-type: application/json" -d @import.json "http://localhost:8080/geoserver/rest/imports"

Where import.json is:

{
 "import": {
 "targetWorkspace": {
 "workspace": {
 "name": "topp"
 }
 },
 "targetStore": {
 "dataStore": {
 "name": "gttest"
 }
 }
 }
}

Then, we are going to POST the csv file to the tasks list, in order to create an import task for it:

curl -u admin:geoserver -F name=test -F filedata=@values.csv "http://localhost:8080/geoserver/rest/imports/0/tasks"

And we are going to get back a new task definition, with a notification that the CRS is missing:

{
 "task": {
 "id": 0,
 "href": "http://localhost:8080/geoserver/rest/imports/16/tasks/0",
 "state": "NO_CRS",
 "updateMode": "CREATE",
 "data": {
 "type": "file",
 "format": "CSV",
 "file": "values.csv"
 },
 "target": {
 "href": "http://localhost:8080/geoserver/rest/imports/16/tasks/0/target",
 "dataStore": {
 "name": "values",
 "type": "CSV"
 }
 },
 "progress": "http://localhost:8080/geoserver/rest/imports/16/tasks/0/progress",
 "layer": {
 "name": "values",
 "href": "http://localhost:8080/geoserver/rest/imports/16/tasks/0/layer"
 },
 "transformChain": {
 "type": "vector",
 "transforms": [

]
 }
 }
}

As before, we are going to force the CRS by updating the layer:

curl -u admin:geoserver -XPUT -H "Content-type: application/json" -d @layerUpdate.json "http://localhost:8080/geoserver/rest/imports/0/tasks/0/layer/"

Where layerUpdate.json is:

{
 layer : {
 srs: "EPSG:4326"
 }
}

Then, we are going to create a transformation mapping the Lat/Lon columns to a point:

{
 "type": "AttributesToPointGeometryTransform",
 "latField": "Lat",
 "lngField": "Lon"
}

The above will be uploaded to GeoServer as follows:

curl -u admin:geoserver -XPOST -H "Content-type: application/json" -d @toPoint.json "http://localhost:8080/geoserver/rest/imports/0/tasks/0/transforms"

Now the import is ready to run, and we’ll execute it using:

curl -u admin:geoserver -XPOST "http://localhost:8080/geoserver/rest/imports/0"

If all goes well the new layer is created in PostGIS and registered in GeoServer as a new layer.

In case the features in the CSV need to be appended to an existing layer a PUT request against the task might be performed, changing its
updateMode from “CREATE” to “APPEND”. Changing it to “REPLACE” instead will preserve the layer, but remove the old conents and replace
them with the newly uploaded ones.

Uploading and optimizing a GeoTiff with ground control points

A data supplier is periodically providing GeoTiffs that we need to configure in GeoServer.
The GeoTIFF is referenced via Ground Control Points, is organized by stripes, and has no overviews.
The objective is to rectify, optimize and publish it via the importer.

First, we are going to create a empty import with no store as the target:

curl -u admin:geoserver -XPOST -H "Content-type: application/json" -d @import.json "http://localhost:8080/geoserver/rest/imports"

Where import.json is:

{
 "import": {
 "targetWorkspace": {
 "workspace": {
 "name": "sf"
 }
 }
 }
}

Then, we are going to POST the GeoTiff file to the tasks list, in order to create an import task for it:

curl -u admin:geoserver -F name=test -F filedata=@box_gcp_fixed.tif "http://localhost:8080/geoserver/rest/imports/0/tasks"

We are then going to append the transformations to rectify (gdalwarp), retile (gdal_translate) and add overviews (gdaladdo) to it:

curl -u admin:geoserver -XPOST -H "Content-type: application/json" -d @warp.json "http://localhost:8080/geoserver/rest/imports/0/tasks/0/transforms"
curl -u admin:geoserver -XPOST -H "Content-type: application/json" -d @gtx.json "http://localhost:8080/geoserver/rest/imports/0/tasks/0/transforms"
curl -u admin:geoserver -XPOST -H "Content-type: application/json" -d @gad.json "http://localhost:8080/geoserver/rest/imports/0/tasks/0/transforms"

warp.json is:

{
 "type": "GdalWarpTransform",
 "options": ["-t_srs", "EPSG:4326"]
}

gtx.json is:

{
 "type": "GdalTranslateTransform",
 "options": ["-co", "TILED=YES", "-co", "BLOCKXSIZE=512", "-co", "BLOCKYSIZE=512"]
}

gad.json is:

{
 "type": "GdalAddoTransform",
 "options": ["-r", "average"],
 "levels" : [2, 4, 8, 16]
}

Now the import is ready to run, and we’ll execute it using:

curl -u admin:geoserver -XPOST "http://localhost:8080/geoserver/rest/imports/0"

A new layer box_gcp_fixed layer will appear in GeoServer, with an underlying GeoTiff file ready
for web serving.

Adding a new granule into an existing mosaic

A data supplier is periodically providing new time based imagery that we need to add into an existing mosaic
in GeoServer.
The imagery is in GeoTiff format, and lacks a good internal structure, which needs to be aligned with
the one into the other images.

First, we are going to create a import with an indication of where the granule is located, and
the target store:

curl -u admin:geoserver -XPOST -H “Content-type: application/json” -d @import.json “http://localhost:8080/geoserver/rest/imports”

Where import.json is:

{
 "import": {
 "targetWorkspace": {
 "workspace": {
 "name": "topp"
 }
 },
 "data": {
 "type": "file",
 "file": "/home/aaime/devel/gisData/ndimensional/data/world/world.200407.3x5400x2700.tiff"
 },
 "targetStore": {
 "dataStore": {
 "name": "bluemarble"
 }
 }
 }
}

We are then going to append the transformations to harmonize the file with the rest of the mosaic:

curl -u admin:geoserver -XPOST -H "Content-type: application/json" -d @gtx.json "http://localhost:8080/geoserver/rest/imports/0/tasks/0/transforms"
curl -u admin:geoserver -XPOST -H "Content-type: application/json" -d @gad.json "http://localhost:8080/geoserver/rest/imports/0/tasks/0/transforms"

gtx.json is:

{
 "type": "GdalTranslateTransform",
 "options": ["-co", "TILED=YES"]
}

gad.json is:

{
 "type": "GdalAddoTransform",
 "options": ["-r", "average"],
 "levels" : [2, 4, 8, 16, 32, 64, 128]
}

Now the import is ready to run, and we’ll execute it using:

curl -u admin:geoserver -XPOST "http://localhost:8080/geoserver/rest/imports/0"

The new granule will be ingested into the mosaic, and will thus be available for time based requests.

Asynchronously fetching and importing data from a remote server

We assume a remote FTP server contains multiple shapefiles that we need to import in GeoServer
as new layers. The files are large, and the server has much better bandwith than the client,
so it’s best if GeoServer performs the data fetching on its own.

In this case a asynchronous request using remote data will be the best fit:

curl -u admin:geoserver -XPOST -H "Content-type: application/json" -d @import.json "http://localhost:8080/geoserver/rest/imports?async=true"

Where import.json is:

{
 "import": {
 "targetWorkspace": {
 "workspace": {
 "name": "topp"
 }
 },
 "data": {
 "type": "remote",
 "location": "ftp://myserver/data/bc_shapefiles",
 "username": "dan",
 "password": "secret"
 }
 }
}

The request will return immediately with an import context in “INIT” state, and it will remain in such
state until the data is fetched and the tasks created.
Once the state switches to “PENDING” the import will be ready for execution. Since there is
a lot of shapefiles to process, also the import run will be done in asynchronous mode:

curl -u admin:geoserver -XPOST "http://localhost:8080/geoserver/rest/imports/0?async=true"

The response will return immediately in this case as well, and the progress can be followed as the
tasks in the import switch state.

GeoNode’s Ad-Hoc API

	gsconfig
	Installing

	Getting Help

	Sample Layer Creation Code

	Running Tests

	More Examples - Updated for GeoServer 2.4+

	gsimporter
	Installing

	Getting Help

	Running Tests

gsconfig

gsconfig is a python library for manipulating a GeoServer instance via the GeoServer RESTConfig API.

The project is distributed under a MIT License .

Installing

pip install gsconfig

For developers:

git clone git@github.com:boundlessgeo/gsconfig.git
cd gsconfig
python setup.py develop

Getting Help

There is a brief manual at http://boundlessgeo.github.io/gsconfig/ .
If you have questions, please ask them on the GeoServer Users mailing list: http://geoserver.org/comm/ .

Please use the Github project at http://github.com/boundlessgeo/gsconfig for any bug reports (and pull requests are welcome, but please include tests where possible.)

Sample Layer Creation Code

from geoserver.catalog import Catalog
cat = Catalog("http://localhost:8080/geoserver/")
topp = cat.get_workspace("topp")
shapefile_plus_sidecars = shapefile_and_friends("states")
shapefile_and_friends should look on the filesystem to find a shapefile
and related files based on the base path passed in
#
shapefile_plus_sidecars == {
'shp': 'states.shp',
'shx': 'states.shx',
'prj': 'states.prj',
'dbf': 'states.dbf'
}

'data' is required (there may be a 'schema' alternative later, for creating empty featuretypes)
'workspace' is optional (GeoServer's default workspace is used by... default)
'name' is required
ft = cat.create_featurestore(name, workspace=topp, data=shapefile_plus_sidecars)

Running Tests

Since the entire purpose of this module is to interact with GeoServer, the test suite is mostly composed of integration tests [http://en.wikipedia.org/wiki/Integration_testing].
These tests necessarily rely on a running copy of GeoServer, and expect that this GeoServer instance will be using the default data directory that is included with GeoServer.
This data is also included in the GeoServer source repository as /data/release/.
In addition, it is expected that there will be a postgres database available at postgres:password@localhost:5432/db.
You can test connecting to this database with the psql command line client by running $ psql -d db -Upostgres -h localhost -p 5432 (you will be prompted interactively for the password.)

To override the assumed database connection parameters, the following environment variables are supported:

	DATABASE

	DBUSER

	DBPASS

If present, psycopg will be used to verify the database connection prior to running the tests.

If provided, the following environment variables will be used to reset the data directory:

	GEOSERVER_HOME

	Location of git repository to read the clean data from. If only this option is provided
git clean will be used to reset the data.

	GEOSERVER_DATA_DIR

	Optional location of the data dir geoserver will be running with. If provided, rsync
will be used to reset the data.

	GS_VERSION

	Optional environment variable allowing the catalog test cases to automatically download
and start a vanilla GeoServer WAR form the web.
Be sure that there are no running services on HTTP port 8080.

Here are the commands that I use to reset before running the gsconfig tests:

$ cd ~/geoserver/src/web/app/
$ PGUSER=postgres dropdb db
$ PGUSER=postgres createdb db -T template_postgis
$ git clean -dxff -- ../../../data/release/
$ git checkout -f
$ MAVEN_OPTS="-XX:PermSize=128M -Xmx1024M" \
GEOSERVER_DATA_DIR=../../../data/release \
mvn jetty:run

At this point, GeoServer will be running foregrounded, but it will take a few seconds to actually begin listening for http requests.
You can stop it with CTRL-C (but don’t do that until you’ve run the tests!)
You can run the gsconfig tests with the following command:

$ python setup.py test

Instead of restarting GeoServer after each run to reset the data, the following should allow re-running the tests:

$ git clean -dxff -- ../../../data/release/
$ curl -XPOST --user admin:geoserver http://localhost:8080/geoserver/rest/reload

More Examples - Updated for GeoServer 2.4+

Loading the GeoServer catalog using gsconfig is quite easy. The example below allows you to connect to GeoServer by specifying custom credentials.

from geoserver.catalog import Catalog
cat = Catalog("http://localhost:8080/geoserver/rest/", "admin", "geoserver")

The code below allows you to create a FeatureType from a Shapefile

geosolutions = cat.get_workspace("geosolutions")
import geoserver.util
shapefile_plus_sidecars = geoserver.util.shapefile_and_friends("C:/work/gsconfig/test/data/states")
shapefile_and_friends should look on the filesystem to find a shapefile
and related files based on the base path passed in
#
shapefile_plus_sidecars == {
'shp': 'states.shp',
'shx': 'states.shx',
'prj': 'states.prj',
'dbf': 'states.dbf'
}
'data' is required (there may be a 'schema' alternative later, for creating empty featuretypes)
'workspace' is optional (GeoServer's default workspace is used by... default)
'name' is required
ft = cat.create_featurestore("test", shapefile_plus_sidecars, geosolutions)

It is possible to create JDBC Virtual Layers too. The code below allow to create a new SQL View called my_jdbc_vt_test defined by a custom sql.

from geoserver.catalog import Catalog
from geoserver.support import JDBCVirtualTable, JDBCVirtualTableGeometry, JDBCVirtualTableParam

cat = Catalog('http://localhost:8080/geoserver/rest/', 'admin', '****')
store = cat.get_store('postgis-geoserver')
geom = JDBCVirtualTableGeometry('newgeom','LineString','4326')
ft_name = 'my_jdbc_vt_test'
epsg_code = 'EPSG:4326'
sql = 'select ST_MakeLine(wkb_geometry ORDER BY waypoint) As newgeom, assetid, runtime from waypoints group by assetid,runtime'
keyColumn = None
parameters = None

jdbc_vt = JDBCVirtualTable(ft_name, sql, 'false', geom, keyColumn, parameters)
ft = cat.publish_featuretype(ft_name, store, epsg_code, jdbc_virtual_table=jdbc_vt)

This example shows how to easily update a layer property. The same approach may be used with every catalog resource

ne_shaded = cat.get_layer("ne_shaded")
ne_shaded.enabled=True
cat.save(ne_shaded)
cat.reload()

Deleting a store from the catalog requires to purge all the associated layers first. This can be done by doing something like this:

st = cat.get_store("ne_shaded")
cat.delete(ne_shaded)
cat.reload()
cat.delete(st)
cat.reload()

There are some functionalities allowing to manage the ImageMosaic coverages. It is possible to create new ImageMosaics, add granules to them,
and also read the coverages metadata, modify the mosaic Dimensions and finally query the mosaic granules and list their properties.

The gsconfig methods map the REST APIs for ImageMosaic [http://docs.geoserver.org/stable/en/user/rest/examples/curl.html#uploading-and-modifying-a-image-mosaic]

In order to create a new ImageMosaic layer, you can prepare a zip file containing the properties files for the mosaic configuration. Refer to the GeoTools ImageMosaic Plugin guide
in order to get details on the mosaic configuration. The package contains an already configured zip file with two granules.
You need to update or remove the datastore.properties file before creating the mosaic otherwise you will get an exception.

from geoserver.catalog import Catalog
cat = Catalog("http://localhost:8180/geoserver/rest")
cat.create_imagemosaic("NOAAWW3_NCOMultiGrid_WIND_test", "NOAAWW3_NCOMultiGrid_WIND_test.zip")

By defualt the cat.create_imagemosaic tries to configure the layer too. If you want to create the store only, you can specify the following parameter

cat.create_imagemosaic("NOAAWW3_NCOMultiGrid_WIND_test", "NOAAWW3_NCOMultiGrid_WIND_test.zip", "none")

In order to retrieve from the catalog the ImageMosaic coverage store you can do this

store = cat.get_store("NOAAWW3_NCOMultiGrid_WIND_test")

It is possible to add more granules to the mosaic at runtime.
With the following method you can add granules already present on the machine local path.

cat.harvest_externalgranule("file://D:/Work/apache-tomcat-6.0.16/instances/data/data/MetOc/NOAAWW3/20131001/WIND/NOAAWW3_NCOMultiGrid__WIND_000_20131001T000000.tif", store)

The method below allows to send granules remotely via POST to the ImageMosaic.
The granules will be uploaded and stored on the ImageMosaic index folder.

cat.harvest_uploadgranule("NOAAWW3_NCOMultiGrid__WIND_000_20131002T000000.zip", store)

To delete an ImageMosaic store, you can follow the standard approach, by deleting the layers first.
ATTENTION: at this time you need to manually cleanup the data dir from the mosaic granules and, in case you used a DB datastore, you must also drop the mosaic tables.

layer = cat.get_layer("NOAAWW3_NCOMultiGrid_WIND_test")
cat.delete(layer)
cat.reload()
cat.delete(store)
cat.reload()

The method below allows you the load and update the coverage metadata of the ImageMosaic.
You need to do this for every coverage of the ImageMosaic of course.

coverage = cat.get_resource_by_url("http://localhost:8180/geoserver/rest/workspaces/natocmre/coveragestores/NOAAWW3_NCOMultiGrid_WIND_test/coverages/NOAAWW3_NCOMultiGrid_WIND_test.xml")
coverage.supported_formats = ['GEOTIFF']
cat.save(coverage)

By default the ImageMosaic layer has not the coverage dimensions configured. It is possible using the coverage metadata to update and manage the coverage dimensions.
ATTENTION: notice that the presentation parameters accepts only one among the following values {‘LIST’, ‘DISCRETE_INTERVAL’, ‘CONTINUOUS_INTERVAL’}

from geoserver.support import DimensionInfo
timeInfo = DimensionInfo("time", "true", "LIST", None, "ISO8601", None)
coverage.metadata = ({'dirName':'NOAAWW3_NCOMultiGrid_WIND_test_NOAAWW3_NCOMultiGrid_WIND_test', 'time': timeInfo})
cat.save(coverage)

One the ImageMosaic has been configures, it is possible to read the coverages along with their granule schema and granule info.

from geoserver.catalog import Catalog
cat = Catalog("http://localhost:8180/geoserver/rest")
store = cat.get_store("NOAAWW3_NCOMultiGrid_WIND_test")
coverages = cat.mosaic_coverages(store)
schema = cat.mosaic_coverage_schema(coverages['coverages']['coverage'][0]['name'], store)
granules = cat.mosaic_granules(coverages['coverages']['coverage'][0]['name'], store)

The granules details can be easily read by doing something like this:

granules['crs']['properties']['name']
granules['features']
granules['features'][0]['properties']['time']
granules['features'][0]['properties']['location']
granules['features'][0]['properties']['run']

When the mosaic grows up and starts having a huge set of granules, you may need to filter the granules query through a CQL filter on the coverage schema attributes.

granules = cat.mosaic_granules(coverages['coverages']['coverage'][0]['name'], store, "time >= '2013-10-01T03:00:00.000Z'")
granules = cat.mosaic_granules(coverages['coverages']['coverage'][0]['name'], store, "time >= '2013-10-01T03:00:00.000Z' AND run = 0")
granules = cat.mosaic_granules(coverages['coverages']['coverage'][0]['name'], store, "location LIKE '%20131002T000000.tif'")

gsimporter

gsimporter is a python library for using GeoServer’s importer API.

Installing

pip install gsconfig

or

git clone https://github.com/boundlessgeo/gsimporter.git
cd gsimporter
pip install .

Getting Help

Please use the Github project at http://github.com/boundlessgeo/gsimporter for any bug reports (and pull requests are welcome, but please include tests where possible.)

Running Tests

The tests are integration tests. These require having a running GeoServer instance with the community/importer modules installed. Because some of the tests use a postgres database, a data base is required to run. It is strongly advised to run with a data directory you don’t care about.

The test suite will first attempt to verify a connection to GeoServer and a connection to the database. If the default values are not appropriate, provide them via environment variables on the command line or via export. For example:

GEOSERVER_BASE_URL=http://localhost:8080 python setup.py test

A convenient way to deal with connection or other settings (besides setting things up to use the defaults) is to put them all in a bash (or other shell) script.

The tests are designed to create a workspace named importer and importer2 for use in testing. importer will be set to the default workspace. As much as possible, things are cleaned up after test execution.

To run all of the tests, one way is via setup.py. python setup.py test should do the trick.

If developing and finer grained control is desired, specific tests and other flags can be provided using python test/uploadtests.py. Supported arguments are:

	–clean delete layers and stores in the test workspaces. useful for cleanup.

	–skip-teardown don’t delete things after running. may cause errors but useful for a single test.

To run a single case (or drop the method name to run the whole class):

python test/uploadtests.py ErrorTests.test_invalid_file

Testing in GeoNode

The community encourages the Test Driven Development (TDD) and the contribution to write new tests to extend the coverage. Ideally every model, view, and utility should becovered by tests.

GeoNode has Unit, Integration and Javascript tests. The Unit tests are located in the tests file of every django app (Maps, Layers, Documents, Catalogue, Search, Security etc).

The Integration, CSW and smoke tests are located under the tests folder).

Warning

The tests are meant to be ran using the SQLite database, some of them may fail using PostgreSQL or others. Therefore remove or rename your local_settings.py file before running the tests.

	If running them in development mode make sure to have the jetty server

	shut down otherwise the test could get stuck. To make sure it is run:

$ paver stop

Unit Tests

To run the unit tests make sure you have the virtualenv active (if running GeoNode under virtualenv) then run:

$ paver test # or python setup.py test when testing development versions

This will produce a detailed test report.

It’s possible to run just specific apps tests by using the django command:

$ python manage.py test app/tests.py

For example:

$ python manage.py test geonode.maps.tests

To run a single testcase or method (omit the method name to run the whole class), for example:

$ python manage.py test geonode.maps.tests:MapsTest.test_maps_search

These tests are based on the Python/django unit test suite.

Integration Tests

To run the unit tests make sure you have the virtualenv active (if running GeoNode under virtualenv) then run:

$ paver test_integration # or python setup.py test_integration when testing development versions

To run the csw integration test run:

$ paver test_integration -n geonode.tests.csw

Like the unit tests above, it is also possible to test specific modules, for example:

$ paver test_integration -n geonode.tests.integration:GeoNodeMapTest.test_search_result_detail

To test with with coverage:

$ python manage.py test geonode.maps.tests -- --with-coverage --cover-package=geonode.maps

These tests are based on the Python/django unit test suite.

Javascript Tests

Note

Javascript tests has been currently disabled in GeoNode. There is a plan to improve and re-enable them in the future.

Contributing to GeoNode

Warning

This section is freely adapted from the official GitHub guides [https://guides.github.com].

If you are interested in helping us to make GeoNode, there are many ways to do so.

Participate in the Discussion

GeoNode has a mailing list (https://groups.google.com/d/forum/geonode-users) where users can ask and answer questions about the software.
There are also IRC chats on Gitter where users (https://gitter.im/GeoNode/general) and developers (https://gitter.im/GeoNode) can discuss GeoNode in real time.
Sometimes users also post interesting tips for managing sites running GeoNode.
If you want to help out with GeoNode, one easy way is to sign up for the mailing list and help answer questions.

Report Problems on the Issue Tracking System

Informative bug reports are a key part of the bug fixing process, so if you do run into a problem with GeoNode, please don’t hesitate to report it on our bug tracker, available online at http://github.com/GeoNode/geonode/issues.
Useful information for bug reports includes:

	What were you doing when the bug occurred?
Does the problem occur every time you do that, or only occasionally?

	What were you expecting to happen?
What happened instead?

	What version of the software are you using?
Please also note any changes from the default configuration.

	If there is a data file involved in the bug (such as a Shapefile that doesn’t render properly), please consider including it in the bug report.
Be aware that not all data files are freely distributable.

To help GeoNode to better address the issue you can tag the ticket with one or more lables
that you can find on the side column.

Write Documentation

GeoNode’s documentation can always use improvement - there are always more questions to be answered.
For managing contributions to the manual, GeoNode uses a process similar to that used for managing the code itself.
The documentation is generated from source files in the docs/ directory within the GeoNode source repository.
See http://sphinx.pocoo.org/ for more information on the documentation system GeoNode uses.

If you want to learn more about contributing to the documentation, please go ahead to the “How to contribute to GeoNode’s Documentation [http://docs.geonode.org/en/latest/organizational/contribute/contribute_to_documentation.html#contrib-docu]”.
GeoNode also have some guidelines to help with writing once you are set up “How to write Documentation [http://docs.geonode.org/en/latest/organizational/contribute/documentation_guidelines.html#doc-guidelines]”.

Provide Translations

If GeoNode doesn’t provide a user interface in your native language, consider contributing a new translation.
To get started here are the instructions “How to contribute to GeoNode’s Translation [http://docs.geonode.org/en/latest/organizational/contribute/contribute_to_translation.html]”.

Write Code

Of course since GeoNode is an open source project which encourages contributions of source code as well.
If you are interested in making small changes, you can find an open ticket on http://github.com/GeoNode/geonode/issues, hack away, and get started on the “Patch Review Process [http://docs.geonode.org/en/latest/organizational/contribute/review_criteria.html]”.

Further Reading

Contributing to Open Source on GitHub

Work With GitHub Issues and Pull Requests

Roadmap Process

Contributing to Open Source on GitHub

Warning

This section is freely adapted from the official GitHub guides [https://guides.github.com].

A great way to get involved in open source is to contribute to the existing projects you’re using.

A Typical GitHub Project Structure

The Community

Projects often have a community around them, made up of other users in different (formal or informal) roles:

	Owner is the user or organization that created the project has the project on their account.

	Maintainers and Collaborators are the users primarily doing the work on a project and driving the direction. Oftentimes the owner and the maintainer are the same. They have write access to the repository.

	Contributors is everyone who has had a pull request merged into a project.

	Community Members are the users who often use and care deeply about the project and are active in discussions for features and pull requests.

Readme

Nearly all GitHub projects include a README.md file. The readme provides a lay of the land for a project with details on how to use, build and sometimes contribute to a project.

License

A LICENSE file, well, is the license for the project. An open source project’s license informs users what they can and can’t do (e.g., use, modify, redistribute), and contributors, what they are allowing others to do.

Documentation and Wikis

Many larger projects go beyond a readme to give instructions for how people can use their project. In such cases you’ll often find a link to another file or a folder named docs in the repository.

[image: ../../_images/docs-folder.png]

Alternatively, the repository may instead use the GitHub wiki to break down documentation.

[image: ../../_images/d3-wiki.png]

Issues

Issues are a great way to keep track of tasks, enhancements, and bugs for your projects. They’re kind of like email—except they can be shared and discussed with the rest of your team. Most software projects have a bug tracker of some kind. GitHub’s tracker is called Issues, and has its own section in every repository.

[image: ../../_images/navigation-highlight.png]

For more information on how Issues work, see the section “Work With GitHub Issues and Pull Requests”

Pull Requests

If you’re able to patch the bug or add the feature yourself, make a pull request with the code.
Be sure you’ve read any documents on contributing, understand the license and have signed a CLA if required.

Once you’ve submitted a pull request the maintainer(s) can compare your branch to the existing one and decide whether or not to incorporate (pull in) your changes.

For more information on how Pull Requests work, see the section “Work With GitHub Issues and Pull Requests”

Work With GitHub Issues and Pull Requests

Warning

This section is freely adapted from the official GitHub guides [https://guides.github.com].

Issues

An Issue is a note on a repository about something that needs attention. It could be a bug, a feature request, a question or lots of other things. On GitHub you can label, search and assign Issues, making managing an active project easier.

For example, let’s take a look at Bootstrap’s Issues section [https://github.com/twbs/bootstrap/issues]:

[image: ../../_images/listing-screen.png]

GitHub’s issue tracking is special because of our focus on collaboration, references, and excellent text formatting. A typical issue on GitHub looks a bit like this:

[image: ../../_images/example-issue.png]

	A title and description describe what the issue is all about.

	Color-coded labels help you categorize and filter your issues (just like labels in email).

	A milestone acts like a container for issues. This is useful for associating issues with specific features or project phases (e.g. Weekly Sprint 9/5-9/16 or Shipping 1.0).

	One assignee is responsible for working on the issue at any given time.

	Comments allow anyone with access to the repository to provide feedback.

Open an Issue

	Click the Issues tab from the sidebar.

[image: ../../_images/navigation-highlight.png]

	Click New Issue.

	Give your Issue a title and description: Add a new Logo to GeoNode custom.

[image: ../../_images/issue.png]

Click Submit new Issue when you’re done. Now this issue has a permanent home (URL) that you can reference even after it is closed.

Issues Pro Tips

	Check existing issues for your issue. Duplicating an issue is slower for both parties so search through open and closed issues to see if what you’re running into has been addressed already.

	Be clear about what your problem is: what was the expected outcome, what happened instead? Detail how someone else can recreate the problem.

	Link to demos recreating the problem on things like JSFiddle or CodePen.

	Include system details like what the browser, library or operating system you’re using and its version.

	Paste error output or logs in your issue or in a Gist. If pasting them in the issue, wrap it in three backticks: ``` so that it renders nicely.

Branching

Branching is the way to work on different parts of a repository at one time.

When you create a repository, by default it has one branch with the name master. You could keep working on this branch and have only one, that’s fine. But if you have another feature or idea you want to work on, you can create another branch, starting from master, so that you can leave master in its working state.

When you create a branch, you’re making a copy of the original branch as it was at that point in time (like a photo snapshot). If the original branch changes while you’re working on your new branch, no worries, you can always pull in those updates.

[image: ../../_images/branching.png]

At GeoNode developers use branches for keeping bug fixes and feature work separate from master (production) branch. When a feature or fix is ready, the branch is merged into master through a Pull Request.

To create a new branch

	Go to the project folder and create a new branch

$ cd /home/geonode/geonode_custom/
$ sudo git branch add_logo
$ sudo git checkout add_logo

[image: ../../_images/checkout.png]

	Check that you are working on the correct branch: add_logo.

$ cd /home/geonode/geonode_custom/
$ git branch

[image: ../../_images/correct_branch.png]

	Push the new branch to GitHub.

$ cd /home/geonode/geonode_custom/
$ sudo git push origin add_logo

[image: ../../_images/push_branch.png]

Make a commit

On GitHub, saved changes are called commits.

Each commit has an associated commit message, which is a description explaining why a particular change was made. Thanks to these messages, you and others can read through commits and understand what you’ve done and why.

	Add a new logo to your custom GeoNode as described in the section Theming your GeoNode project

	Stash the new files into the working project using git add

$ cd /home/geonode/geonode_custom/
$ sudo git add geonode_custom/static
$ git status

[image: ../../_images/commit_logo.png]

	Commit the changes providing a commit messages and push them into your branch : add_logo.

$ cd /home/geonode/geonode_custom/
$ sudo git commit -m "Adding a new logo to the custom GeoNode"
$ sudo git push origin add_logo

[image: ../../_images/push_logo.png]

Pull Requests

Pull Requests are the heart of collaboration on GitHub. When you make a pull request, you’re proposing your changes and requesting that someone pull in your contribution - aka merge them into their branch. GitHub’s Pull Request feature allows you to compare the content on two branches. The changes, additions and subtractions, are shown in green and red and called diffs (differences).

As soon as you make a change, you can open a Pull Request. People use Pull Requests to start a discussion about commits (code review) even before the code is finished. This way you can get feedback as you go or help when you’re stuck.

By using GitHub’s @mention system in your Pull Request message, you can ask for feedback from specific people or teams.

Create a Pull Request for changes to the Logo

	Click the Pull Request icon on the sidebar, then from the Pull Request page, click the green New pull request button.

[image: ../../_images/gh_pullrequest.gif]

	Select the branch you made, add_logo, to compare with master (the original).

[image: ../../_images/gh_pr_select_branch.png]

	Look over your changes in the diffs on the Compare page, make sure they’re what you want to submit.

[image: ../../_images/gh_pr_compare.png]

	When you’re satisfied that these are the changes you want to submit, click the big green Create Pull Request button.

[image: ../../_images/create-pr.png]

	Give your pull request a title and since it relates directly to an open issue, include “fixes #” and the issue number in the title. Write a brief description of your changes.

[image: ../../_images/pr-form.png]

When you’re done with your message, click Create pull request!

Merge your Pull Request

It’s time to bring your changes together – merge your add_logo branch into the master (the original) branch.

Click the green button to merge the changes into master.
Click Confirm merge.
Go ahead and delete the branch, since its changes have been incorporated, with the Delete branch button in the purple box.

[image: ../../_images/merge-button.png]

If you revisit the issue you opened, it’s now closed! Because you included “fixes #1” in your Pull Request title, GitHub took care of closing that issue when the Pull Request was merged!

Advanced Workshop

Welcome to the GeoNode Training Advanced Workshop documentation vlatest.

This module introduces advanced tecquinques and metodologies for the management of the geospatial data and the maintenance and tuning of the servers on Production Environments.

The last sections of the module will teach also you how to add brand new classes and functionalities to your GeoNode installation.

	Prerequisites

	You should be familiar with GeoNode, GeoServer, Python framework and development concepts other than with system administrator and caching concepts and tecnquiques.

	Advanced Data Management and Processing

	Advanced Data Management and Processing tecquiques.

	GeoNode Advanced Configuration

	Learn how to deal with advanced GeoNode configuration settings and external DJango Apps.

	GeoNode on Production

	Concepts and tecquinques for the deployment af GeoNode and GeoServer on a Production system.

	GeoNode Customization and Source Code Revision Control

	A workshop teaching how to customize GeoNode projects and put the source code under revision control with GitHub.

	Migrate Data Between GeoNode Instances

	A workshop teaching how to migrate Layers between GeoNode instances.

Advanced Data Management and Processing

	Adding Data to GeoServer

	Learn how to add data to GeoServer.

	Pretty maps with GeoServer

	Learn how to create pretty styles for the Maps in GeoServer.

	Advanced Raster Data Management

	Learn advanced tecquinques for the delivery of Raster Data with GeoServer.

	Advanced Vectorial Data Management

	Learn advanced tecquinques for the delivery of Vectorial Data with GeoServer.

	Spatial Processing with GeoNode

	Learn how to do Spatial Processing using external tools.

Adding Data to GeoServer

	GeoServer Data Directory
	What you will learn

	Adding base types
	What you will learn

Managing GeoServer Data Directory

This section explain how to manage the GeoServer Data Directory.

What you will learn

In this section you will:

	Creating and setting a New Data Directory

	Structure of the Data Directory

Creating and setting a new GeoServer Data Directory

	Generally if GeoServer is running in Web Archive mode inside of a servlet container, like in this Workshop, the data directory is located at <web application root>/data (the data directory contains the GeoServer configuration data).

	The first thing to do is to correctly configure the GEOSERVER_DATA_DIR. To increase the portability of their data and to facilitate updates GeoServer, in the default Workshop configuration the GEOSERVER_DATA_DIR is configured under the directory:

${TRAINING_ROOT}/geoserver_data or %TRAINING_ROOT%\geoserver_data on Windows

Generally this is not an issue, but if you run the system from the LiveDVD this folder resides in memory. The first thing to do is to move this folder into a local persistent storage.

	Move the GEOSERVER_DATA_DIR somewhere in the persistent storage using the command:

sudo mv -f ${TRAINING_ROOT}/geoserver_data <TARGET_DIR>

	Make a symbolic link to the GEOSERVER_DATA_DIR by issuing the command:

ln -s <TARGET_DIR> ${TRAINING_ROOT}/geoserver_data

Warning

Check that the user geosolutions has permissions to read/write all the files/folder inside the GEOSERVER_DATA_DIR.

Note

Instead of creating a symbolic link you can configure GeoServer in order to allow it to point to the new GEOSERVER_DATA_DIR. To do that edit the file /opt/tomcat-geoserver/webapps/geoserver/WEB-INF/web.xml and modify the context param GEOSERVER_DATA_DIR.

Structure of the GeoServer Data Directory

The following is the GEOSERVER_DATA_DIR structure:

data_directory/
 coverages/
 data/
 demo/
 gwc/
 gwc-layers/
 layergroups/
 logs/
 palettes/
 security/
 styles/
 temp/
 user_projections/
 validation/
 workspaces/
 www/
 global.xml
 gwc-gs.xml
 logging.xml
 wcs.xml
 wfs.xml
 wms.xml
 wps.xml

	File

	Description

	coverages

	Contains some demo raster layers for this training

	data

	Not to be confused with the GeoServer data directory itself, the data directory is a location where actual data can be stored. This directory is commonly used to store shapefiles and raster files but can be used for any data that is file based. The main benefit of storing data files inside of the data directory is portability.

	demo

	The demo directory contains files which define the sample requests available in the Sample Request Tool.

	gwc

	This directory holds the cache created by the embedded GeoWebCache service.

	gwc-layers

	This directory holds the configuration files created by the embedded GeoWebCache service for each layer.

	layergroups

	Contains information on the layer groups configurations.

	logs

	This directory contains the GeoServer logging files (log file and logging properties files).

	palettes

	The palettes directory is used to store pre-computed Image Palettes. Image palettes are used by the GeoServer WMS as way to reduce the size of produced images while maintaining image quality.

	security

	The security directory contains all the files used to configure the GeoServer security subsystem. This includes a set of property files which define access roles, along with the services and data each role is authorized to access.

	styles

	The styles directory contains a number of Styled Layer Descriptor (SLD) files which contain styling information used by the GeoServer WMS.

	temp

	Temporary directory, used by the WPS service.

	user_projections

	The user_projections directory contains extra spatial reference system definitions. The epsg.properties can be used to add new spatial reference systems, whilst the epsg_override.properties file can be used to override an official definition with a custom one.

	validation

	This directory contains the validation rules

	workspaces

	The various workspaces directories contain metadata about stores and layers which are published by GeoServer. Each layer will have a layer.xml file associated with it, as well as either a coverage.xml or a featuretype.xml file depending on whether it’s a raster or vector.

	www

	The www directory is used to allow GeoServer to act like a regular web server and serve regular files. While not a replacement for a full blown web server the www directory can be useful to easily serve OpenLayers map applications (this avoids the need to setup a proxy in order to respect the same origin policy [http://en.wikipedia.org/wiki/Same_origin_policy]).

	global.xml

	Contains settings that go across services, including contact information, JAI settings, character sets and verbosity.

	gwc-gs.xml

	Contains various settings for the GeoWebCache service.

	logging.xml

	Specifies the logging level, location, and whether it should log to std out.

	wcs.xml

	Contains the service metadata and various settings for the WCS service.

	wfs.xml

	Contains the service metadata and various settings for the WFS service.

	wms.xml

	Contains the service metadata and various settings for the WMS service.

Adding base types

This section explain how to add some of the base data types into GeoServer. As an example we will learn how to insert a ShapeFile and GeoTIFF into GeoServer, as well as how to import a Shapefile into PostGIS and then publish it from there.

What you will learn

In this section you will:

	Adding a Shapefile

	Loading a Shapefile into Postgis

	Adding a Postgis layer

	Adding a GeoTiff

	Adding a WMS Cascade Layer

	Adding a WFS Cascade Layer

	Adding a SQL Parametric Views

	Adding an Image Mosaic

	Adding a GDAL Data Format

Adding a Shapefile

The task of adding a Shapefile is one that is core to any GIS tool. This section covers the task of adding and publishing a Shapefile with GeoServer.

	Navigate to the workshop directory $TRAINING_ROOT/data/user_data/ (on Windows %TRAINING_ROOT%\data\user_data) and find the following shapefiles:

Mainrd.shp
Mainrd.shx
Mainrd.dbf
Mainrd.prj

Copy the files to the following directory:

$GEOSERVER_DATA_DIR/data/boulder

for Windows:

%GEOSERVER_DATA_DIR%\data\boulder

Note

Ensure that all four parts of the shapefile are copied. This includes the shp, shx, dbf, and prj extensions.

	Navigate to the GeoServer Welcome Page [http://localhost:8083/geoserver/web/].

	On the Welcome page locate the Login form located at the top right corner, and enter the username “admin” and password “Geos”.

[image: ../../../_images/vector1.png]
GeoServer Login

	Click the Add stores link.

[image: ../../../_images/vector2.png]
Add stores link

	Select the Shapefile link and click it.

[image: ../../../_images/vector3.png]
Add a new shapefile

Note

The new data source menu contains a list of all the spatial formats supported by GeoServer. When creating a new data store one of these formats must be chosen. Formats like Shapefile and PostGIS are supported by default, and many other formats are available as extensions.

	On the Edit Vector Data Source page enter “Mainrd” in the Data Source Name and Description fields. Finally click on browse link in order to set the Shapefile location in the URL field and click Save.

Note

The Mainrd.shp got just copied in the data directory, inside the “data/boulder” folder, and the file browser opens right in the data directory, so just click on “data” and then “boulder” and you’ll find it

[image: ../../../_images/vector4.png]
Specifying Shapefile parameters

	After saving, you will be taken to a page that lists all the layers in the shapefile and gives you the option to publish any of them. Click Publish.

[image: ../../../_images/vector5.png]
Publishing a layer from the shapefile

	The Coordinate Reference Systems have to be manually populated. The Name and Title fields should be automatically populated.

[image: ../../../_images/vector6.png]
Populate fields.

Scroll down the page and generate the bounds for the layer by clicking the Compute from data button in the Bounding Boxes section.

[image: ../../../_images/vector7.png]
Generating the layer bounding box

	Scroll to the bottom of the page, notice the read only Feature Type Detail table and then click Save.

[image: ../../../_images/vector8.png]
Submitting the layer configuration

	If all went well, you should see something like this:

[image: ../../../_images/vector9.png]
After a successful save

At this point a shapefile has been added and is ready to be served by GeoServer.

[image: ../../../_images/vector10.png]

	Choose the preview link in the main menu and filter the layer list with mainrd:

[image: ../../../_images/preview_shapefile1.png]
Selecting the mainrd shapefile in the layer preview.

	Click on the OpenLayers link to preview the layer in an interactive viewer:

[image: ../../../_images/preview_shapefile2.png]
The mainrd shapefile preview

In the next section we will see how to load a shapeFile into PostGIS.

Loading a Shapefile into PostGIS

This task shows how to load a ShapeFile into PostGIS database:

	Open the terminal window and enter the following command and press enter to creating a new database named ‘shape’:

	Linux:

createdb -U postgres -T postgis20 shape

	Windows:

setenv.bat
createdb -U postgres -T postgis20 shape

	Enter the following command and press enter to load the ShapeFile into ‘shape’ database:

	Linux:

shp2pgsql -I ${TRAINING_ROOT}/data/user_data/Mainrd.shp public.main_roads | psql -d shape

	Windows:

shp2pgsql -I "%TRAINING_ROOT%\data\user_data\Mainrd.shp" public.main_roads | psql -U postgres -d shape

The ShapeFile will be loaded within the ‘main_roads’ table of the ‘shape’ database. The following screenshot shows some of the table contents in pgAdmin III

[image: ../../../_images/shp_postgis1.png]
A PostGIS table by ShapeFile

In the next section we will see how to add a PostGIS layer into GeoServer.

Adding a Postgis layer

This task shows how to add a PostGIS layer into GeoServer:

	Navigate to the GeoServer Welcome Page [http://localhost:8083/geoserver/web/].

	If you are not already logged in, on the Welcome page locate the Login form located at the top right corner, and enter the username “admin” and password “Geos”.

[image: ../../../_images/vector1.png]
GeoServer Login

	Click the Add stores link.

[image: ../../../_images/vector2.png]
Add stores link

	Select the PostGIS link and click it.

[image: ../../../_images/postgis_lay1.png]
Add new PostGIS Store

	On the New Vector Data Source page fill the following parameter:

	Data source name, ‘shape’

	port, ‘5434’

	database, ‘shape’ the name of the database created in previous workshop step.

	user, ‘geosolutions’ the name of the user database owner.

	password, ‘Geos’ the user password.

and click Save.

[image: ../../../_images/postgis_lay2.png]

[image: ../../../_images/postgis_lay2b.png]
Setting database connection parameters

	After saving, you will be taken to a page that lists all the layers in the PostGIS database and gives you the option to publish any of them. Click Publish.

[image: ../../../_images/postgis_lay4.png]
Publishing a layer from the PostGIS table

	The Name and Title fields should be automatically populated. Fill the Declared SRS field to set the Coordinate Reference Systems and generate the bounds for the layer by clicking the Compute from data and Compute from native bounds buttons in the Bounding Boxes section

[image: ../../../_images/postgis_lay5.png]

[image: ../../../_images/postgis_lay6.png]
Populating fields and generating the layer bounding box

	Scroll to the bottom of the page, notice the read only Feature Type Detail table and then click Save.

[image: ../../../_images/postgis_lay7.png]
Submitting the layer configuration

	If all went well, you should see something like this:

[image: ../../../_images/postgis_lay8.png]
After a successful save

	At this point the PostGIS layer has been added and is ready to be served by GeoServer. Use the layer preview to view its contents, filtering on the ‘main_road’ name.

Adding a GeoTiff

The GeoTIFF is a widely used geospatial raster data format: it is composed of a single file containing both the data and the georeferencing information (not to be confused with the .tiff/.tfw/.prj file triplet, which is considered a “world image” file in GeoServer).
This section provides instructions to add and publish a GeoTIFF file.

	Open the web browser and navigate to the GeoServer Welcome Page [http://localhost:8083/geoserver].

	Select Add stores from the interface.

[image: ../../../_images/geotiff_addstores.png]

	Select GeoTIFF - Tagged Image File Format with Geographic information from the set of available Raster Data Sources.

[image: ../../../_images/geotiff_sources.png]

	Specify a proper name (as an instance, 13tde815295_200803_0x6000m_cl) in the Data Source Name field of the interface.

	Click on browse link in order to set the GeoTIFF location in the URL field.

Note

The 13tde815295_200803_0x6000m_cl.tif is located at $TRAINING_ROOT/data/user_data/aerial/13tde815295_200803_0x6000m_cl.tif (on Windows %TRAINIG_ROOT%\data\user_data\aerial\13tde815295_200803_0x6000m_cl.tif)

[image: ../../../_images/addgeotiff1.png]

	Click Save.

	Publish the layer by clicking on the publish link.

[image: ../../../_images/addgeotiff2.png]

	Check the Coordinate Reference Systems and the Bounding Boxes fields are properly set and click on Save.

[image: ../../../_images/addgeotiff3.png]

	At this point the GeoTIFF is being published with GeoServer. You can use the layer preview to inspect the data.

[image: ../../../_images/addgeotiff4.png]

Adding a WMS Cascade Layer

WMS cascading allows to expose layers coming from other WMS servers as if they were local layers. This provides for some interesting advantages:

	Clients connecting to your SDI need to care about less points of origin, which might be important for high security networks

	It is now possible to ask for maps in formats not supported by the original server, or to reproject the maps in projections not supported by the original server (GeoServer supports out of the box almost 5000 different coordinate reference systems)

	It is now possible to mix the layers with local ones to generate print oriented formats such as PDF

	It is now possible to provide more informations about the layer, such as a better description, more keywords, which will benefit all clients, in particular catalogues harvesting informations from your capabilities document

Configuration

The configuration as usage of the cascaded layers follows GeoServer traditional ease of use.

	Open the web browser and navigate to the GeoServer Welcome Page [http://localhost:8083/geoserver].

	Select Add stores from the interface.

[image: ../../../_images/geotiff_addstores.png]

	Select WMS - Cascades a remote Web Map Service from the set of available Other Data Sources.

[image: ../../../_images/wmscascade_sources.png]

	Specify a proper name (as an instance, geoserver-enterprise) in the Data Source Name field of the interface.

	Specify http://demo1.geo-solutions.it/geoserver-enterprise/ows?service=wms&version=1.1.1&request=GetCapabilities as the URL of the sample data in the Capabilities URL field.

[image: ../../../_images/wmscascade_store.png]

	Click Save.

	Publish the layer by clicking on the publish link near the GeoSolutions:ne_shaded layer name. Notice that you can also add more layers later.

[image: ../../../_images/wmscascading_publish.png]

	Check the Coordinate Reference Systems and the Bounding Boxes fields are properly set and click on Save.

[image: ../../../_images/wmscascade_bbox.png]

	At this point the new WMS Layer is being published with GeoServer. You can use the layer preview to inspect the data.

[image: ../../../_images/wmscascading_preview.png]

Adding a WFS Cascade Layer

GeoServer has the ability to load data from a remote Web Feature Server (WFS).
This is useful if the remote WFS lacks certain functionality that GeoServer contains.
For example, if the remote WFS is not also a Web Map Server (WMS), data from the WFS can be cascaded through GeoServer to utilize GeoServer’s WMS.
If the remote WFS has a WMS but that WMS cannot output KML, data can be cascaded through GeoServer’s WMS to output KML.

Configuration

The configuration as usage of the cascaded layers follows GeoServer traditional ease of use.

	Open the web browser and navigate to the GeoServer Welcome Page [http://localhost:8083/geoserver].

	Select Add stores from the interface.

[image: ../../../_images/geotiff_addstores.png]

	Select Web Feature Server from the set of available Vector Data Sources.

	Specify a proper name (as an instance, wfs-cascade) in the Data Source Name field of the interface.

	Specify http://demo1.geo-solutions.it/geoserver-enterprise/ows?service=wfs&version=1.0.0&request=GetCapabilities as the URL of the sample data in the Capabilities URL field.

[image: ../../../_images/wfscascade_store.png]

	Make sure that the HTTP Authentication fields match the remote server authorization you have on it (In this case the server is open so we don’t need them).

	Click Save.

	Publish the layer by clicking on the publish link near the geosolutions_country layer name. Notice that you can also add more layers later.

[image: ../../../_images/wfscascading_publish.png]

	Check the Coordinate Reference Systems and the Bounding Boxes fields are properly set and click on Save.

[image: ../../../_images/wfscascade_bbox.png]

	At this point the new WMS Layer is being published with GeoServer. You can use the layer preview to inspect the data.

[image: ../../../_images/wfscascading_preview.png]

Adding a SQL Parametric View based Layer

The traditional way to use database backed data is to configure either a table or a database view as a new layer in GeoServer.
Starting with GeoServer 2.1.0 the user can also create a new layer by specifying a raw SQL query, without the need to actually creating a view in the database.
The SQL can also be parametrized, and parameter values passed in along with a WMS or WFS request.

Creating a plain SQL view

	In order to create an SQL view the administrator can go into the Add a new resource from the Layers page.

[image: ../../../_images/sqlviews_addlayer.png]

	Upon selection of a database backed store a list of tables and views available for publication will appear, but at the bottom of if a new link, Configure new SQL view, will appear:

[image: ../../../_images/sqlviews_postgrestore.png]

[image: ../../../_images/sqlviews_addsqllayer.png]

	Selecting the link Configure new SQL view will open a new page where the SQL statement can be specified:

[image: ../../../_images/sqlviews_plainsql_params.png]
Plain SQL View configuration

SELECT st.obs_year,
 st.storm_num,
 st.storm_name,
 min(st.obs_datetime)
 AS storm_start, max(st.obs_datetime)
 AS storm_end, max(st.wind)
 AS max_wind, st_makeline(st.geom)
 AS the_route
FROM (SELECT storm_obs.storm_num,
 storm_obs.storm_name,
 storm_obs.wind,
 storm_obs.press,
 storm_obs.obs_datetime,
 date_part('year'::text, storm_obs.obs_datetime)
 AS obs_year, storm_obs.geom
 FROM storm_obs
 ORDER BY date_part('year'::text, storm_obs.obs_datetime),
 storm_obs.storm_num,
 storm_obs.obs_datetime) st
GROUP BY st.obs_year, st.storm_num, st.storm_name
ORDER BY st.obs_year, st.storm_num

Note

The query can be any SQL statement that can be validly executed as part of a subquery in the FROM clauses, that is select * from (<the sql view>) [as] vtable. This is true for most SQL statements, but specific syntax might be needed to call onto a stored procedure depending on the database. Also, all the columns returned by the SQL statement must have a name, in some databases aliasing is required when calling function names

	Once a valid SQL statement has been specified press the refresh link in the Attributes table to get a list of the feature type attributes:

[image: ../../../_images/sqlviews_plainsql_refresh.png]

Note

GeoServer will do its best to figure out automatically the geometry type and the native srid, but they should always be double checked and eventually corrected. In particular having the right SRID (spatial reference id) is key to have spatial queries actually work. In many spatial databases the SRID is equal to the EPSG code for the specific spatial reference system, but that is not always true (e.g., Oracle has a number of non EPSG SRID codes).

	Specify a valid SRID.

[image: ../../../_images/sqlviews_plainsql_refresh_srid.png]
Forcing manually 4326 SRID in this case

Note

If stable feature ids are desired for the view’s features one or more column providing a unique identification for the features should be checked in the Indentifier column. Always make sure those attributes generate a actually unique key, or filtering and WFS clients will mishbehave.

	Once the query and the attribute details are set press Save and the usual new layer configuration page will show up. That page will have a link to a SQL view editor at the bottom of the Data tab:

[image: ../../../_images/sqlviews_plainsql_featuretype.png]

	Make sure the CRS is EPSG:4326 and write manually (-180,-90,180,90) values in the Bounding Boxes sections.

[image: ../../../_images/sqlviews_plainsql_bbox.png]

	Click Save.

At this point the new WMS Layer is being published with GeoServer.

Creating a parametric SQL view

Warning

As a rule of thumb use SQL parameter substitution only if the required functionality cannot be obtained with safer means, such as dynamic filtering (CQL filters) or SLD parameter substitution. Only use SQL parameters as a last resort, improperly validated parameters can open the door to SQL injection attacks [http://en.wikipedia.org/wiki/SQL_injection].

A parametric SQL view is based on a SQL query containing parameters whose values can be dinamically provided along WMS or WFS requests. A parameter is bound by % signs, can have a default value, and should always have a validation regular expression.

	In order to create a parametric SQL view performs the steps 1 and 2 like before and then insert the following parameters:

[image: ../../../_images/sqlviews_parametricsql_params.png]
Parametric SQL View configuration

SELECT date_part('year'::text, t1.obs_datetime) AS obs_year, t1.storm_num, t1.storm_name, t1.wind, t2.wind AS wind_end, t1.press, t2.press AS press_end, t1.obs_datetime, t2.obs_datetime AS obs_datetime_end, st_makeline(t1.geom, t2.geom) AS geom
FROM storm_obs t1
JOIN (SELECT storm_obs.id, storm_obs.storm_num, storm_obs.storm_name, storm_obs.wind, storm_obs.press, storm_obs.obs_datetime, storm_obs.geom
 FROM storm_obs) t2 ON (t1.obs_datetime + '06:00:00'::interval) = t2.obs_datetime AND t1.storm_name::text = t2.storm_name::text
WHERE
 date_part('year'::text, t1.obs_datetime) BETWEEN %MIN_OBS_YEAR% AND %MAX_OBS_YEAR%
ORDER BY date_part('year'::text, t1.obs_datetime), t1.storm_num, t1.obs_datetime

Note

The query defines two parameters %MIN_OBS_YEAR% and %MAX_OBS_YEAR%.

	Click on the Guess parameters from SQL. GeoServer will automatically create fields with the parameters spcified in the view:

[image: ../../../_images/sqlviews_parametricsql_guess_params.png]

Note

Always provide default values for each parameter in order to let the layer work properly and also be sure the regular expression for the values validation are correct.

Examples of Regular Expressions:

	^[\d\.\+-eE]+$ will check that the parameter value is composed with valid elements for a floating point number, eventually in scientific notation, but will not check that the provided value is actually a valid floating point number

	[^;']+ will check the parameter value does not contain quotes or semicolumn, preventing common sql injection attacks, without actually imposing much on the parameter value structure

	Fill in some default values for the parameters, so that GeoServer can run the query and inspect the results in the next steps. Set MAX_OBS_YEAR to 2020 and MIN_OBS_YEAR to 0.

	Refresh the attributes, check the Geometry SRID and publish the layer like before.
Also assign the storm_track_interval style to the layer as Default Style.

[image: ../../../_images/sqlviews_parametricsql_publishing.png]

	Click on the OpenLayers on the Layer Preview list for v_storm_track_interval layer.

	At a first glance you won’t see anything since the layer is using the default parameters for the observation years. Specify two years for the view adding this parameter at the end of the GetMap Request:

&viewparams=MIN_OBS_YEAR:2000;MAX_OBS_YEAR:2000

You should obtain a request like this:

http://localhost:8083/geoserver/geosolutions/wms?service=WMS&version=1.1.0&request=GetMap&layers=geosolutions:v_storm_track_interval&styles=&bbox=-180.0,-90.0,180.0,90.0&width=660&height=330&srs=EPSG:4326&format=application/openlayers&viewparams=MIN_OBS_YEAR:2000;MAX_OBS_YEAR:2000

Now you are able to see the hurricanes from the parametric view and also dynamically choose the observation years interval of interest.

[image: ../../../_images/sqlviews_parametricsql_preview.png]
Parametric SQL View OL preview

Adding an Image Mosaic to GeoServer

This section covers the task of adding and publishing a ImageMosaic file with GeoServer.

	Navigate to the GeoServer Welcome Page [http://localhost:8083/geoserver/web/].

	On the Welcome page locate the Login form located at the top right corner, and enter the username “admin” and password “Geos”.

[image: ../../../_images/vector1bis.png]
GeoServer Login

	Click the Add stores link.

[image: ../../../_images/vector2bis.png]
Add stores link

	Select the ImageMosaic link and click it.

[image: ../../../_images/raster1.png]
Add a new Image Mosaic

	On the Add Raster Data Source page enter $TRAINING_ROOT/data/user_data/aerial (on Windows %TRAINING_ROOT%\data\user_data\aerial\) in the URL field (or browse the filesystem clicking on Browse), “boulder_bg” in the Data Source Name and Description fields, and click Save.

[image: ../../../_images/raster2.png]
Specifying store parameters

	After saving, you will be taken to a page that lists all the layers in the store and gives you the option to publish any of them. Click Publish.

[image: ../../../_images/raster3.png]
Publishing a layer from the store

	The Coordinate Reference Systems should be automatically populated, as well as the Name, Title and Bounding Boxes fields.

Note

Change the Name and Title into boulder_bg as shown in the figure.

The CRS and BBox fields are auto-filled with information taken from the underlying files. The coverage options section is filled with default parameters (which will be discussed later on in the training).

[image: ../../../_images/raster5.png]

[image: ../../../_images/raster5b.png]
The coverage layer gui for the boulder_bg layer.

[image: ../../../_images/raster5bis.png]
The coverage bands details

	Scroll to the bottom of the page and then click Save. If all went well you should see something like this:

[image: ../../../_images/raster6.png]
After a successful save.

	In the Layer Preview section click on the OpenLayers link to preview the layer in an interactive viewer, filtering by boulder_bg name:

[image: ../../../_images/raster7.png]
Mosaic preview.

Adding a GDAL Supported Format

In case the GDAL libraries are available, it is possible to access to several GDAL’s supported data formats.
Actually, the available GDAL plugins allow to support DTED, EHdr, ERDASImg, MrSID, JP2K (via MrSID Driver) and NITF data formats.
Moreover, in case a valid license have been purchased and the proper native library is available, also ECW, JP2K (via ECW) and JP2K (via Kakadu) are supported.
This section provides instructions to add and publish a MrSID, ECW and JP2K datasets.

Warning

This assumes the GeoServer image GDAL plug-in is already installed. The GDAL plugin is normally an extension.

If the store described in this section are not avaiable, install the ‘geoserver-2.2-SNAPSHOT-gdal-plugin’ from %TRAINING_ROOT%\data\plugins\. Just decompress the zip file into %TRAINING_ROOT%\webapps\geoserver\WEB-INF\lib\ and restart GeoServer.

MrSID Data Set

	Open the web browser and navigate to the GeoServer Welcome Page [http://localhost:8083/geoserver].

	Select Add stores from the interface.

[image: ../../../_images/geotiff_addstores.png]

	Select MrSID - MrSID Coverage Format from the set of available Raster Data Sources.

[image: ../../../_images/gdal_sources.png]

	Specify a proper name (as an instance, c3008957_nes_20) in the Data Source Name field of the interface.

	Specify file:%TRAINING_ROOT%/data/user_data/c3008957_nes_20/c3008957_nes_20.sid as URL of the sample data in the Connections Parameter’s - URL field. (replace %TRAINING_ROOT% with your current training root directory)

[image: ../../../_images/gdal_addraster.jpg]

	Click Save.

	Assign a proper layername (e.g c3008957_nes_20) then publish the layer by clicking on the publish link.

[image: ../../../_images/gdal_publish.jpg]

	click on Save when done.

At this point the MrSID data is being published with GeoServer.

	Click the Layer Preview link in the left GeoServer menu.

	Look for a geosolutions:c3008957_nes_20 layer and click the OpenLayers link beside of it.

[image: ../../../_images/gdal_preview.jpg]

[image: ../../../_images/gdal_openlayer.jpg]

ECW Data Set

Warning

Attention, you need a license in order to use ECW data sets. Here we are using a free distributed ECW file only for demonstration.

ECW (Enhanced Compression Wavelet) is a proprietary wavelet compression image format optimized for aerial and satellite imagery.

	Open the web browser and navigate to the GeoServer Welcome Page [http://localhost:8083/geoserver].

	Select Add stores from the interface.

[image: ../../../_images/geotiff_addstores.png]

	Select ECW - ECW Coverage Format from the set of available Raster Data Sources.

[image: ../../../_images/ecw.png]

	Specify a proper name (as an instance, TerraColor_Sydney_AU_15m) in the Data Source Name field of the interface.

	Specify file:%TRAINING_ROOT%/data/user_data/tc_sydney_au_ecw/TerraColor_Sydney_AU_15m.ecw as URL of the sample data in the Connections Parameter’s - URL field (replace %TRAINING_ROOT% with your current training root directory).

[image: ../../../_images/ecw0.png]

	Click Save.

	Assign a proper layername (e.g TerraColor_Sydney_AU_15m) then publish the layer by clicking on the publish link.

[image: ../../../_images/ecw1.png]

At this point the ECW data is being published with GeoServer.

	Click the Layer Preview link in the left GeoServer menu.

	Look for a geosolutions:TerraColor_Sydney_AU_15m layer and click the OpenLayers link beside of it.

[image: ../../../_images/ecw3.png]

[image: ../../../_images/ecw4.png]

JP2K Data Set

JPEG 2000 is a image coding system that uses state-of-the-art compression techniques based on wavelet technology.

	Open the web browser and navigate to the GeoServer Welcome Page [http://localhost:8083/geoserver].

	Select Add stores from the interface.

[image: ../../../_images/geotiff_addstores.png]

	Select JP2ECW - JP2 (ECW) Coverage Format from the set of available Raster Data Sources.

Note

We used JP2ECW - JP2 (ECW) Coverage Format because JP2MrSID - JP2 (MrSID) Coverage Format is not fully stable, and may not work properly especially with several Linux distributions.

[image: ../../../_images/jpeg2k0.png]

	Specify a proper name (as an instance, TerraColor_Sydney_AU_15m_JP2K) in the Data Source Name field of the interface.

	Specify file:%TRAINING_ROOT%/data/user_data/tc_sydney_au_jp2/TerraColor_Sydney_AU_15m.jp2 as URL of the sample data in the Connections Parameter’s - URL field. (replace %TRAINING_ROOT% with your current training root directory)

[image: ../../../_images/jpeg2k1.png]

	Click Save.

	Assign a proper layername (e.g TerraColor_Sydney_AU_15m_JP2K) then publish the layer by clicking on the publish link.

[image: ../../../_images/jpeg2k2.png]

[image: ../../../_images/jpeg2k3.png]

At this point the JP2K data is being published with GeoServer.

	Click the Layer Preview link in the left GeoServer menu.

	Look for a geosolutions:TerraColor_Sydney_AU_15m_JP2K layer and click the OpenLayers link beside of it.

Pretty maps with GeoServer

This module describes how to manage the GeoServer maps visualization. Will be discussed all those aspects which relate styles, decorations, Layer Groups and other interesting GeoServer features affecting the WMS protocol.

In this module you will:

	Styling with SLD
	What you will learn

	Styling with CSS
	Creating line styles

	Creating point styles

	Creating polygon styles

	Styling raster data

	Creating a Base Map

	Filtering Maps

	Producing and Using palettes
	Options to enable paletted output

	An Example with Vector Data

	Generating the custom palette

	An example with raster data

	Decorating a Map

	Accessing Map information

	Cross layer filtering
	The querylayer module

	Finding all polygonal landmarks crossing a trail

	Finding all buildings located inside a park

	Finding all buildings close enough to the Boulder County Courthouse

Styling with SLD

This section introduces the concepts of the Styled Layer Descriptor (SLD) markup language. SLD is the styling engine used by GeoServer, and how all WMS portrayal is specified.

What you will learn

In this section you will:

	Adding a style

	Styling Vector data

	Styling Raster data

Adding a Style

The most important function of a web map server is the ability to style and render data. This section covers the task of adding a new style to GeoServer and configuring the default style for a particular layer.

	From the GeoServer Welcome Page [http://localhost:8083/geoserver] navigate to Style.

[image: ../../../_images/style1.png]
Navigating to Style configuration

	Click New

[image: ../../../_images/style2.png]
Adding a new style

	Enter “mainrd” in the Name field and notice the file upload dialogue SLD file.

[image: ../../../_images/style3.png]
Specifying style name and populating from a file.

	Navigate to the workshop (on Linux) $TRAINING_ROOT/data/user_data/ directory (on Windows %TRAINING_ROOT%\data\user_data\), select the foss4g_mainrd.sld file, and click Upload.

Note

In GeoServer, styles are represented via SLD (Styled Layer Descriptor) documents. SLD is an XML format for specifying the symbolization of a layer. When an SLD document is uploaded the contents are shown in the text editor. The editor can be used to edit the contents of the SLD directly.

	Add the new style by clicking Submit. Once it’s save, you should see something like this:

[image: ../../../_images/style4.png]
Submitting style

	After having created the style, it’s time to apply it to a vector layer. Click on the Layers link.

[image: ../../../_images/style5.png]
Navigating to Layers

	Select the “Mainrd” on the Layers page.

[image: ../../../_images/style6.png]
Selecting a layer

	Select the Publish tab.

[image: ../../../_images/style7.png]
Publish tab

	Assign the new created style “mainrd” as the default style.

[image: ../../../_images/style8.png]
Publish tab

Warning

Many new users mistake the Available Styles for the Default Style, please take into account that they are different, the default one allows that style to be used implicitly when no style is specified in a map request, while the available ones are just optional compatible styles.

Note

Geoserver 2.x assigns a default style depending on the geometry of the objects and the type, for example: line, poly, raster, point.

	Scroll to the bottom of the page and hit Save.

	Use the map preview to show how the style, please note you’ll have to zoom in once to show the data due to the map scale filters (MaxScaleDenominator directive in the SLD).

Styling Vector data

In previous modules the style for a layer was configured by uploading an existing SLD. In this section the task of creating a new SLD document from scratch will be covered.
In particular we are going to create some styles that can be applied to vectorial datasets, in the first case by drawing patterns and dash arrays to polygons and lines and in the second case drawing roads and labels to lines.

What you will learn

In this section you will:

	Adding a simple style

	Patterns and dash arrays

	Roads and labelling roads

	Style point data

	Styling in real world units

	Geometry Transformations

	Charting

Examine an existing style

	From the GeoServer Welcome Page [http://localhost:8083/geoserver] navigate to Style.

[image: ../../../_images/style1.png]
Navigating to Style configuration

	From the style list select the citylimits style

[image: ../../../_images/styling_vector1.png]
The styles list

	Inside the Style Editor we have the following style:

<?xml version="1.0" encoding="UTF-8"?>
<sld:StyledLayerDescriptor xmlns="http://www.opengis.net/sld"
 xmlns:sld="http://www.opengis.net/sld"
 xmlns:ogc="http://www.opengis.net/ogc"
 xmlns:gml="http://www.opengis.net/gml"
 version="1.0.0">
 <sld:UserLayer>
 <sld:LayerFeatureConstraints>
 <sld:FeatureTypeConstraint/>
 </sld:LayerFeatureConstraints>
 <sld:UserStyle>
 <sld:Name>BoulderCityLimits</sld:Name>
 <sld:Title/>
 <sld:IsDefault>1</sld:IsDefault>
 <sld:FeatureTypeStyle>
 <sld:Name>group 0</sld:Name>
 <sld:FeatureTypeName>Feature</sld:FeatureTypeName>
 <sld:SemanticTypeIdentifier>generic:geometry</sld:SemanticTypeIdentifier>
 <sld:SemanticTypeIdentifier>simple</sld:SemanticTypeIdentifier>
 <sld:Rule>
 <sld:Name>Filled</sld:Name>
 <sld:MinScaleDenominator>75000</sld:MinScaleDenominator>
 <sld:PolygonSymbolizer>
 <sld:Fill>
 <sld:CssParameter name="fill">#7F7F7F</sld:CssParameter>
 <sld:CssParameter name="fill-opacity">0.5</sld:CssParameter>
 </sld:Fill>
 <sld:Stroke>
 <sld:CssParameter name="stroke">#7F7F7F</sld:CssParameter>
 <sld:CssParameter name="stroke-opacity">0.5</sld:CssParameter>
 <sld:CssParameter name="stroke-width">2.0</sld:CssParameter>
 </sld:Stroke>
 </sld:PolygonSymbolizer>
 <sld:TextSymbolizer>
 <sld:Label>
 <ogc:Literal>Boulder</ogc:Literal>
 </sld:Label>
 <sld:Font>
 <sld:CssParameter name="font-family">Arial</sld:CssParameter>
 <sld:CssParameter name="font-size">14.0</sld:CssParameter>
 <sld:CssParameter name="font-style">normal</sld:CssParameter>
 <sld:CssParameter name="font-weight">normal</sld:CssParameter>
 </sld:Font>
 <sld:LabelPlacement>
 <sld:PointPlacement>
 <sld:AnchorPoint>
 <sld:AnchorPointX>
 <ogc:Literal>0.0</ogc:Literal>
 </sld:AnchorPointX>
 <sld:AnchorPointY>
 <ogc:Literal>0.5</ogc:Literal>
 </sld:AnchorPointY>
 </sld:AnchorPoint>
 <sld:Rotation>
 <ogc:Literal>0</ogc:Literal>
 </sld:Rotation>
 </sld:PointPlacement>
 </sld:LabelPlacement>
 <sld:Fill>
 <sld:CssParameter name="fill">#000000</sld:CssParameter>
 </sld:Fill>
 <sld:VendorOption name="maxDisplacement">200</sld:VendorOption>
 <sld:VendorOption name="Group">true</sld:VendorOption>
 </sld:TextSymbolizer>
 </sld:Rule>
 </sld:FeatureTypeStyle>
 </sld:UserStyle>
 </sld:UserLayer>
</sld:StyledLayerDescriptor>

Note

The most important section are:

	The <Rule> tag combines a number of symbolizers (we have also the possibility to define the OGC filter) to define the portrayal of a feature.

	The <PolygonSymbolizer> styles polygons and contain styling information about their border (stroke) and their fill.

	The <TextSymbolizer > specifies text labels and their style:

	<Label> Specifies the content of the text label

	 Specifies the font information for the labels.

	<LabelPlacement> Sets the position of the label relative its associate feature.

	<Fill> Determines the fill color of the text label.

	VendorOption maxDisplacement Controls the displacement of the label along a line. Normally GeoServer would label a polygon in its centroid, provided the location is not busy with another label and that the label is not too big compare to the polygon, or not label it at all otherwise. When the maxDisplacement is set, the labeller will search for another location within maxDisplacement pixels from the pre-computed label point.

	VendorOption Group Sometimes you will have a set of related features that you only want a single label for. The grouping option groups all features with the same label text, then finds a representative geometry for the group.

	The <MaxScaleDenominator> and <MinScaleDenominator> are used to apply a particular SLD rule to a specific scale. The above SLD makes sure that the Boulder border disappear once we zoom in enough to see the city details. An alternative approach could be to keep the layer showing, but switch it to a different style, for example a think red line, so that the details of the city are not disturbed by the polygon fill.

	Now from the style list select the rivers style.

	Inside the Style Editor we have the following style:

<?xml version="1.0" encoding="UTF-8"?>
<sld:StyledLayerDescriptor xmlns="http://www.opengis.net/sld"
 xmlns:sld="http://www.opengis.net/sld"
 xmlns:ogc="http://www.opengis.net/ogc"
 xmlns:gml="http://www.opengis.net/gml"
 version="1.0.0">
 <sld:UserLayer>
 <sld:LayerFeatureConstraints>
 <sld:FeatureTypeConstraint/>
 </sld:LayerFeatureConstraints>
 <sld:UserStyle>
 <sld:Name>Hydrology Line</sld:Name>
 <sld:Title/>
 <sld:FeatureTypeStyle>
 <sld:Rule>
 <sld:Name>default rule</sld:Name>
 <sld:MaxScaleDenominator>75000</sld:MaxScaleDenominator>
 <sld:LineSymbolizer>
 <sld:Stroke>
 <sld:CssParameter name="stroke-width">0.5</sld:CssParameter>
 <sld:CssParameter name="stroke">#06607F</sld:CssParameter>
 </sld:Stroke>
 </sld:LineSymbolizer>
 </sld:Rule>
 </sld:FeatureTypeStyle>
 </sld:UserStyle>
 </sld:UserLayer>
</sld:StyledLayerDescriptor>

Note

This is a very simple Line style. Take into account the LineSymbolizer that styles lines. Lines are one-dimensional geometry elements that contain position and length.
Lines can be comprised of multiple line segments.

The outermost tag is the <Stroke> tag. This tag is required, and determines the visualization of the line:

	stroke Specifies the solid color given to the line, in the form #RRGGBB. Default is black (#000000).

	stroke-width Specifies the width of the line in pixels. Default is 1.

In this case MaxScaleDenominator is used to make sure that the rivers start showing up when we are zoomed in enough, and in particular as the city borders disappear

Create a simple style for points

	From the GeoServer Welcome Page [http://localhost:8083/geoserver] navigate to Style.

[image: ../../../_images/style1.png]
Navigating to Style configuration

	Click New

[image: ../../../_images/style2.png]
Adding a new style

	Enter “landmarks” in the Name field.

[image: ../../../_images/styling_vector2.png]
Creating a new style

	In the SLD Editor enter the following XML:

<StyledLayerDescriptor xmlns="http://www.opengis.net/sld" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" version="1.0.0" xsi:schemaLocation="http://www.opengis.net/sld http://schemas.opengis.net/sld/1.0.0/StyledLayerDescriptor.xsd">
 <NamedLayer>
 <Name>landmarks</Name>
 <UserStyle>
 <Name>landmarks</Name>
 <Title>Point Landmarks</Title>
 <FeatureTypeStyle>
 <Rule>
 <Name>default</Name>
 <Title>Landmarks</Title>
 <PointSymbolizer>
 <Graphic>
 <Mark>
 <WellKnownName>triangle</WellKnownName>
 <Fill>
 <CssParameter name="fill">#009900</CssParameter>
 <CssParameter name="fill-opacity">0.2</CssParameter>
 </Fill>
 <Stroke>
 <CssParameter name="stroke">#000000</CssParameter>
 <CssParameter name="stroke-width">2</CssParameter>
 </Stroke>
 </Mark>
 <Size>12</Size>
 </Graphic>
 </PointSymbolizer>
 </Rule>
 </FeatureTypeStyle>
 </UserStyle>
 </NamedLayer>
</StyledLayerDescriptor>

Note

Take into account:

	
	WellKnownName The name of the common shape. Options are circle, square, triangle, star, cross, or x. Default is square.

	
	fill Specifies how the symbolizer should be filled. Options are a <CssParameter name="fill"> specifying a color in the form #RRGGBB, or <GraphicFill> for a fill made with a repeated graphic.

	fill-opacity Determines the opacity (transparency) of symbolizers. Values range from 0 (completely transparent) to 1 (completely opaque). Default is 1.

	Then click Save button.

	Open the geosolutions:bptlandmarks vector layer, but this time associate the style as a “Additional Style”:

[image: ../../../_images/styling_vector_add_style.png]
Open the Layers Preview

	Click on the Save button.

	Preview the geosolutions:bptlandmarks layer, which with the default style should be empty due to scale dependencies.
Then click the option button at the top left of the map and select the landmarks style in the style drop down:

[image: ../../../_images/styling_vector4.png]
Open the Layers Preview

Patterns and Hatches

	Go and edit the configuration of the bplandmarks layer, enter the publish tab and associate the cemetery_mark and cemetery_graphics styles as “Additional styles” for the layer, then press “Save”

[image: ../../../_images/sld_create0.png]

	From the Welcome Page [http://localhost:8083/geoserver] navigate to Styles.

Note

You have to be logged in as Administrator in order to activate this function.

	Select “cemetery_graphics” from the list

[image: ../../../_images/sld_create1.png]
Patterns filling SLD

	In the SLD Editor you will see the following XML:

<?xml version="1.0" encoding="UTF-8"?>
 <sld:StyledLayerDescriptor
 xmlns="http://www.opengis.net/sld"
 xmlns:sld="http://www.opengis.net/sld"
 xmlns:ogc="http://www.opengis.net/ogc"
 xmlns:gml="http://www.opengis.net/gml"
 xmlns:xlink="http://www.w3.org/1999/xlink" version="1.0.0">
 <sld:UserLayer>
 <sld:UserStyle>
 <sld:Name>tl 2010 08013 arealm</sld:Name>
 <sld:Title/>
 <sld:FeatureTypeStyle>
 <sld:Rule>
 <sld:Name>cemeteries</sld:Name>
 <ogc:Filter>
 <ogc:PropertyIsEqualTo>
 <ogc:PropertyName>MTFCC</ogc:PropertyName>
 <ogc:Literal>K2582</ogc:Literal>
 </ogc:PropertyIsEqualTo>
 </ogc:Filter>
 <sld:MaxScaleDenominator>500000.0</sld:MaxScaleDenominator>
 <sld:PolygonSymbolizer>
 <sld:Fill>
 <sld:GraphicFill>
 <sld:Graphic>
 <sld:ExternalGraphic>
 <sld:OnlineResource
 xlink:type="simple"
 xlink:href="./img/landmarks/area/grave_yard.png" />
 <sld:Format>image/png</sld:Format>
 </sld:ExternalGraphic>
 </sld:Graphic>
 </sld:GraphicFill>
 </sld:Fill>
 </sld:PolygonSymbolizer>
 </sld:Rule>
 </sld:FeatureTypeStyle>
 </sld:UserStyle>
 </sld:UserLayer>
 </sld:StyledLayerDescriptor>

[image: ../../../_images/sld_create2.png]
Filling with patterns

Note

The above SLD defines a <PolygonSymbolizer> with a <GraphicFill> pointing to a png ./img/landmarks/area/grave_yard.png in the GeoServer data directory, which will be used by GeoServer as pattern to fill the polygon.

	Like before, select now “cemetery_mark” from the list

[image: ../../../_images/sld_create1b.png]
True Type Font filling SLD

	In the SLD Editor you will see the following XML:

<?xml version="1.0" encoding="UTF-8"?>
<sld:StyledLayerDescriptor
xmlns="http://www.opengis.net/sld"
xmlns:sld="http://www.opengis.net/sld"
xmlns:ogc="http://www.opengis.net/ogc"
xmlns:gml="http://www.opengis.net/gml"
xmlns:xlink="http://www.w3.org/1999/xlink" version="1.0.0">

 <sld:UserLayer>
 <sld:Name>cemeteries</sld:Name>
 <sld:UserStyle>
 <sld:Name>tl 2010 08013 arealm</sld:Name>
 <sld:Title/>
 <sld:FeatureTypeStyle>

 <sld:Rule>
 <sld:Name>cemeteries</sld:Name>
 <ogc:Filter>
 <ogc:PropertyIsEqualTo>
 <ogc:PropertyName>MTFCC</ogc:PropertyName>
 <ogc:Literal>K2582</ogc:Literal>
 </ogc:PropertyIsEqualTo>
 </ogc:Filter>
 <sld:MaxScaleDenominator>500000.0</sld:MaxScaleDenominator>
 <sld:PolygonSymbolizer>
 <sld:Fill>
 <sld:CssParameter name="fill">#D3FFD3</sld:CssParameter>
 <sld:CssParameter name="fill-opacity">0.5</sld:CssParameter>
 </sld:Fill>
 <sld:Stroke>
 <sld:CssParameter name="stroke">#6DB26D</sld:CssParameter>
 </sld:Stroke>
 </sld:PolygonSymbolizer>
 <sld:PolygonSymbolizer>
 <sld:Fill>
 <sld:GraphicFill>
 <sld:Graphic>
 <sld:Mark>
 <sld:WellKnownName>ttf://Wingdings#0x0055</sld:WellKnownName>
 <sld:Stroke>
 <sld:CssParameter name="stroke">#6DB26D</sld:CssParameter>
 </sld:Stroke>
 </sld:Mark>
 <sld:Size>16</sld:Size>
 </sld:Graphic>
 </sld:GraphicFill>
 </sld:Fill>
 <sld:VendorOption name="graphic-margin">8</sld:VendorOption>
 </sld:PolygonSymbolizer>

 </sld:Rule>

 </sld:FeatureTypeStyle>
 </sld:UserStyle>
 </sld:UserLayer>
</sld:StyledLayerDescriptor>

[image: ../../../_images/sld_create2b.png]
Filling with TTF fonts

Note

The above SLD defines a <PolygonSymbolizer> with a <GraphicFill> looking for a specific Windings character which will be used by GeoServer as pattern to fill the polygon. The graphic-margin VendorOption is used to add some space around symbols.

	Lets now take a look at another way to fill polygons using patterns, the Hatches. From the Welcome Page [http://localhost:8083/geoserver] navigate to Styles and select “wetlands” from the list.

Note

You may switch to the second page in order to find the style.

[image: ../../../_images/sld_create5.png]
Wetlands style with some hatches

<?xml version="1.0" encoding="UTF-8"?>
 <sld:StyledLayerDescriptor xmlns="http://www.opengis.net/sld" xmlns:sld="http://www.opengis.net/sld" xmlns:ogc="http://www.opengis.net/ogc" xmlns:gml="http://www.opengis.net/gml" version="1.0.0">
 <sld:UserLayer>
 <sld:LayerFeatureConstraints>
 <sld:FeatureTypeConstraint/>
 </sld:LayerFeatureConstraints>
 <sld:UserStyle>
 <sld:Name>Wetlands regulatory area</sld:Name>
 <sld:Title/>
 <sld:FeatureTypeStyle>
 <sld:Rule>
 <sld:Name>default rule</sld:Name>
 <sld:MaxScaleDenominator>10000.0</sld:MaxScaleDenominator>
 <sld:PolygonSymbolizer>
 <sld:Fill>
 <sld:GraphicFill>
 <sld:Graphic>
 <sld:Mark>
 <sld:WellKnownName>shape://times</sld:WellKnownName>
 <sld:Fill/>
 <sld:Stroke>
 <sld:CssParameter name="stroke">#ADD8E6</sld:CssParameter>
 <sld:CssParameter name="stroke-width">1.0</sld:CssParameter>
 </sld:Stroke>
 </sld:Mark>
 <sld:Size>
 <ogc:Literal>8.0</ogc:Literal>
 </sld:Size>
 </sld:Graphic>
 </sld:GraphicFill>
 <!--
 <sld:CssParameter name="fill">#7CE3F8</sld:CssParameter>
 <sld:CssParameter name="fill-opacity">0.5</sld:CssParameter>
 -->
 </sld:Fill>
 </sld:PolygonSymbolizer>
 </sld:Rule>
 </sld:FeatureTypeStyle>
 </sld:UserStyle>
 </sld:UserLayer>
 </sld:StyledLayerDescriptor>

	Comment out the following line in order to see the polygons at lower zoom levels too:

<!-- sld:MaxScaleDenominator>10000.0</sld:MaxScaleDenominator -->

	Click Submit to add the new SLD.

	To see how the styles work, make sure the default style of the Wetlands_regulatory_area feature type is set to wetlands.

[image: ../../../_images/sld_create6.png]
Changing the default style of the Wetlands_regulatory_area feature type to wetlands

	Use the Map Preview [http://localhost:8083/geoserver/web/?wicket:bookmarkablePage=:org.geoserver.web.demo.MapPreviewPage] to preview the new style.

[image: ../../../_images/sld_create7.png]
Previewing the bplandmarks layer with the hatches applied

	On the previous example we used times as hatches mark. GeoServer makes available different kinds of hatches marks:

[image: ../../../_images/sld_create7a.png]
Different types of hatches marks.

Dashes

	Lets now familiarize a bit with Dashes. We are going to see how it’s possible to draw several kind of dashes to represent different types of trails or roads.

	From the Welcome Page [http://localhost:8083/geoserver] navigate to Styles.

Note

You have to be logged in as Administrator in order to activate this function.

	Select “trails” from the list

[image: ../../../_images/sld_create8.png]
Dashes SLD

	In the SLD Editor you will see the following XML:

<?xml version="1.0" encoding="UTF-8"?>
 <sld:StyledLayerDescriptor xmlns="http://www.opengis.net/sld" xmlns:sld="http://www.opengis.net/sld" xmlns:ogc="http://www.opengis.net/ogc" xmlns:gml="http://www.opengis.net/gml" version="1.0.0">
 <sld:UserLayer>
 <sld:LayerFeatureConstraints>
 <sld:FeatureTypeConstraint/>
 </sld:LayerFeatureConstraints>
 <sld:UserStyle>
 <sld:Name>Trails</sld:Name>
 <sld:Title/>
 <sld:FeatureTypeStyle>
 <sld:Rule>
 <sld:MaxScaleDenominator>75000</sld:MaxScaleDenominator>
 <sld:LineSymbolizer>
 <sld:Stroke>
 <sld:CssParameter name="stroke">#6B4900</sld:CssParameter>
 <sld:CssParameter name="stroke-width">0.1</sld:CssParameter>
 <sld:CssParameter name="stroke-dasharray">2.0 </sld:CssParameter>
 </sld:Stroke>
 </sld:LineSymbolizer>
 </sld:Rule>
 </sld:FeatureTypeStyle>
 </sld:UserStyle>
 </sld:UserLayer>
 </sld:StyledLayerDescriptor>

[image: ../../../_images/sld_create8a.png]
Simple dash-array

Note

The above SLD defines a <LineSymbolizer> with a <Stroke> using the CSS property stroke-dasharray to represent the trails like a simle gray dash.

Note

Encodes a dash pattern as a series of numbers separated by spaces. Odd-indexed numbers (first, third, etc) determine the length in pxiels to draw the line, and even-indexed numbers (second, fourth, etc) determine the length in pixels to blank out the line. Default is an unbroken line. Starting from version 2.1 dash arrays can be combined with graphic strokes to generate complex line styles with alternating symbols or a mix of lines and symbols.

	The Style above is the default one for the layer geosolutions:Trails. Lets have a look at a bit more complex example. From the Welcome Page [http://localhost:8083/geoserver] navigate to Styles and select “trails2” from the list

[image: ../../../_images/sld_create8b.png]
Trails2 Style

	In the SLD Editor you will see the following XML:

<?xml version="1.0" encoding="UTF-8"?>
 <sld:StyledLayerDescriptor xmlns="http://www.opengis.net/sld" xmlns:sld="http://www.opengis.net/sld" xmlns:ogc="http://www.opengis.net/ogc" xmlns:gml="http://www.opengis.net/gml" version="1.0.0">
 <sld:UserLayer>
 <sld:LayerFeatureConstraints>
 <sld:FeatureTypeConstraint/>
 </sld:LayerFeatureConstraints>
 <sld:UserStyle>
 <sld:Name>Trails</sld:Name>
 <sld:Title/>
 <sld:FeatureTypeStyle>
 <sld:Rule>
 <sld:MaxScaleDenominator>75000</sld:MaxScaleDenominator>
 <sld:LineSymbolizer>
 <sld:Stroke>
 <sld:GraphicStroke>
 <sld:Graphic>
 <sld:Mark>
 <sld:WellKnownName>circle</sld:WellKnownName>
 <sld:Fill>
 <sld:CssParameter name="fill">#AA0000</sld:CssParameter>
 </sld:Fill>
 </sld:Mark>
 <sld:Size>
 <ogc:Literal>6</ogc:Literal>
 </sld:Size>
 </sld:Graphic>
 </sld:GraphicStroke>
 <sld:CssParameter name="stroke-dasharray">6 18</sld:CssParameter>
 </sld:Stroke>
 </sld:LineSymbolizer>
 <sld:LineSymbolizer>
 <sld:Stroke>
 <sld:CssParameter name="stroke">#AA0000</sld:CssParameter>
 <sld:CssParameter name="stroke-dasharray">10 14</sld:CssParameter>
 <sld:CssParameter name="stroke-dashoffset">14</sld:CssParameter>
 </sld:Stroke>
 </sld:LineSymbolizer>
 </sld:Rule>
 </sld:FeatureTypeStyle>
 </sld:UserStyle>
 </sld:UserLayer>
 </sld:StyledLayerDescriptor>

Note

We may notice two interesting things in this style, two <LineSymbolizer> the first one defining a circle Mark with a simple dasharray and the second one a simple stroke defining also a dashoffset. The latter specifies the distance in pixels into the dasharray pattern at which to start drawing. Default is 0.

	Open the geosolutions:Trails layers and add trails2 as an additional style, then go to the Layer Preview to see it in action

[image: ../../../_images/sld_create8e.png]

Warning

You have to zoom in from the layer preview in order to see the lines due to the MaxScaleDenominator

Roads and labelling roads

	From the Welcome Page [http://localhost:8083/geoserver] navigate to Styles ‣ mainrd in order to edit the mainrd SLD.

Note

You have to be logged in as Administrator in order to activate this function.

	In the SLD Editor find the sld:TextSymbolizer associated to the ogc:PropertyName LABEL_NAME

[image: ../../../_images/sld_create9.png]
Road style

Note

The style defines a and an <Halo> in order to render the value of the property LABEL_NAME for that layer. The interesting part is at the bottom where several <VendorOption> are specified. Those options are GeoServer specific and allows us to have better and nicer result by tweaking the label renderer behaviour.

	Option

	Description

	Type

	followLine

	The followLine option forces a label to follow the curve of the line.

<VendorOption name="followLine">true</VendorOption>

To use this option place the following in your <TextSymbolizer>. It is required to use <LinePlacement> along with this option to ensure that all labels are correctly following the lines:

<LabelPlacement>
 <LinePlacement/>
</LabelPlacement>

	boolean

	repeat

	The repeat option determines how often GeoServer labels a line. Normally GeoServer would label each line only once, regardless of their length. Specify a positive value to make it draw the label every repeat pixels.

<VendorOption name="repeat">100</VendorOption>

	number

	group

	Sometimes you will have a set of related features that you only want a single label for. The grouping option groups all features with the same label text, then finds a representative geometry for the group.

Roads data is an obvious example - you only want a single label for all of main street, not a label for every piece of main street.

[image: ../../../_images/group_not.gif]

When the grouping option is off (default), grouping is not performed and each geometry is labelled (space permitting).

[image: ../../../_images/group_yes.gif]

With the grouping option on, all the geometries with the same label are grouped together and the label position is determined from ALL the geometries.

	Point Set
first point inside the view rectangle is used.

	Line Set
lines are (a) networked together (b) clipped to the view rectangle (c) middle of the longest network path is used.

	Polygon Set
polygons are (a) clipped to the view rectangle (b) the centroid of the largest polygon is used.

<VendorOption name="group">yes</VendorOption>

Warning

Watch out - you could group together two sets of features by accident. For example, you could create a single group for Paris which contains features for Paris (France) and Paris (Texas).

	enum{yes/no}

	maxDisplacement

	The maxDisplacement option controls the displacement of the label along a line. Normally GeoServer would label a line at its center point only, provided the location is not busy with another label, and not label it at all otherwise. When set, the labeller will search for another location within maxDisplacement pixels from the pre-computed label point.

When used in conjunction with repeat, the value for maxDisplacement should always be lower than the value for repeat.

<VendorOption name="maxDisplacement">10</VendorOption>

	number

Another important thing to notice in this style is the road casing, that is, the fact each road segment is painted by two overlapping strokes of different color and size.

Placing the strokes in the two separate feature type styles is crucial:

	with the symbolizers in two separate FeatureTypeStyle element all roads are painted with the large stroke, and then again with the thin, lighter one.

	if instead the two symbolizers were placed in the same FeatureTypeStyle element the result would be different, and not pleasing to see, since the renderer would take the first road, paint with the large and thin strokes in
sequence, then move to the next one and repeat until the end

[image: ../../../_images/nofts.png]
Road casing with a single FeatureTypeStyle element

Styling point data

Point data in SLD can be depicted with PointSymbolizer and labelled with TextSymbolizer.
This section describe an existing, realistic style, available in the data directory that depicts the point landmarks layer (bptlandmarks) with icons and labels.

The dataset

The bptlandmarks layer (Boulder point landmarks) contains the location of significant point entities such as malls, schools, airports and the like. The attribute structure is reported in the GeoServer page for such layer [http://localhost:8083/geoserver/web/?wicket:bookmarkablePage=:org.geoserver.web.data.resource.ResourceConfigurationPage&name=bptlandmarks&wsName=geosolutions]:

[image: ../../../_images/pt_attribute_table.png]
Point landmarks attribute structure

The style will use the MTFCC code to categorize the various points in the different types (e.g., schools have MTFCC = K2543, and eventually use FULLNAME for the label.
This results in the following map [http://localhost:8083/geoserver/geosolutions/wms?service=WMS&version=1.1.0&request=GetMap&layers=geosolutions:BoulderCityLimits,geosolutions:bptlandmarks&styles=line,&bbox=-105.688,39.914,-105.06,40.261&width=597&height=330&srs=EPSG:4269&format=application/openlayers]:

[image: ../../../_images/pt_landmark_map.png]
Point landmarks in Boulder

The complete style we’ll be referring to is named point_landmark, you can have a look at the full style in the GeoServer style editor [http://localhost:8083/geoserver/web/?wicket:bookmarkablePage=:org.geoserver.wms.web.data.StyleEditPage&name=point_landmark]:

[image: ../../../_images/pt_landmark_style.png]
Point landmarks style

Point symbolizers

A point symbolizer depicts a symbol by means of a Mark or a External Graphic.
The former is a built-in vector symbol that can be stroked and filled at the styler will, but only a handful of such symbols are available, whilst the latter can be a user provided image or SVG graphic.

The point landmark styles use the Open Street Map icons for most of the locations. The images have been added inside the data directory, inside styles/im, since this allows to refer them by relative path:

[image: ../../../_images/icons.png]
Point landmarks style

Given the above symbols a point symbolizer looks as follows:

<sld:PointSymbolizer>
 <sld:Graphic>
 <sld:ExternalGraphic>
 <sld:OnlineResource xlink:type="simple" xlink:href="./img/landmarks/school.png" />
 <sld:Format>image/png</sld:Format>
 </sld:ExternalGraphic>
 </sld:Graphic>
 <VendorOption name="labelObstacle">true</VendorOption>
 </sld:PointSymbolizer>

The icon is depicted on the screen as-is, at its natural resolutions.
The labelObstacle vendor parameter, specific to GeoServer, makes sure the point is icon is treated as a label obstacle [http://docs.geoserver.org/latest/en/user/styling/sld-extensions/label-obstacles.html], that is, makes sure no label will ever be depicted over the point.

Text symbolizers for points

The text symbolizer associates a label with a point using an attribute value as the label source.
The following symbolizer is used to label schools:

<sld:TextSymbolizer>
 <sld:Label>
 <ogc:PropertyName>FULLNAME</ogc:PropertyName>
 </sld:Label>
 <sld:Font>
 <sld:CssParameter name="font-family">Arial</sld:CssParameter>
 <sld:CssParameter name="font-size">12.0</sld:CssParameter>
 <sld:CssParameter name="font-style">normal</sld:CssParameter>
 <sld:CssParameter name="font-weight">normal</sld:CssParameter>
 </sld:Font>
 <sld:LabelPlacement>
 <sld:PointPlacement>
 <sld:AnchorPoint>
 <sld:AnchorPointX>
 <ogc:Literal>0.5</ogc:Literal>
 </sld:AnchorPointX>
 <sld:AnchorPointY>
 <ogc:Literal>1.0</ogc:Literal>
 </sld:AnchorPointY>
 </sld:AnchorPoint>
 <sld:Displacement>
 <sld:DisplacementX>
 <ogc:Literal>0.0</ogc:Literal>
 </sld:DisplacementX>
 <sld:DisplacementY>
 <ogc:Literal>-10.0</ogc:Literal>
 </sld:DisplacementY>
 </sld:Displacement>
 <sld:Rotation>
 <ogc:Literal>0.0</ogc:Literal>
 </sld:Rotation>
 </sld:PointPlacement>
 </sld:LabelPlacement>
 <sld:Halo>
 <sld:Radius>
 <ogc:Literal>1.5</ogc:Literal>
 </sld:Radius>
 <sld:Fill>
 <sld:CssParameter name="fill">#FFFFFF</sld:CssParameter>
 </sld:Fill>
 </sld:Halo>
 <sld:Fill>
 <sld:CssParameter name="fill">#000033</sld:CssParameter>
 </sld:Fill>
 <sld:Priority>200000</sld:Priority>
 <sld:VendorOption name="autoWrap">100</sld:VendorOption>
 </sld:TextSymbolizer>

Highlights about the above style:

	Uses FULLNAME as the label source

	Uses a Arial 12pt font

	Places the label below the point, and offsets it by 10 pixel to the south

	Applies a white halo to make it stand out of the background map

	Sets its priority to 200000 (high, important) to make sure the label is depicted in preference to others

	Uses the autoWrap option to make it wrap on the next line if it’s larger than 100 pixels
(the full list of labelling vendor options is available in the GeoServer user guide [http://docs.geoserver.org/latest/en/user/styling/sld-reference/labeling.html]).

Using Rules to assign a different styling to each point

A Rule is a SLD construct allowing the style editor to control scale dependencies and filter data so that only certain data is depicted using the symbolizers contained in the rule.

The rule for the school points looks as follows:

<sld:Rule>
 <sld:Name>school</sld:Name>
 <ogc:Filter>
 <ogc:PropertyIsEqualTo>
 <ogc:PropertyName>MTFCC</ogc:PropertyName>
 <ogc:Literal>K2543</ogc:Literal>
 </ogc:PropertyIsEqualTo>
 </ogc:Filter>
 <sld:MaxScaleDenominator>100000</sld:MaxScaleDenominator>
 <sld:PointSymbolizer>
 <!-- same as above -->
 </sld:PointSymbolizer>
 <sld:TextSymbolizer>
 <!-- same as above -->
 </sld:TextSymbolizer>
 </sld:Rule>

Highlights about the above rule:

	makes sure the symbolizers are applied only to the features whose MTFCC = K2543

	shows the symbols only when the scale denominator is below 100000 (e.g., shows them at 1:10000, but not at 1:2000000).

Using dynamic symbolizers to reduce the style size

The overall point_landmark style has 8 different rules using different symbols for each type and amounts to almost 550 lines of XML. The same style could be written in a much more compact way if we could store the symbol name in some attribute and expand it in the external graphic URL.

Standard SLD 1.0 does not allow for that, but GeoServer supports extensions to it known as dynamic symbolizers that allow for generic CQL expressions to be embedded in the URL.
The data directory already contains a secondary layer, bptlandmarks_2876, which is using a different projection and has a IMAGE attribute containing the file names.

The style can then be reduced to a single rule using the following point symbolizer:

<sld:PointSymbolizer>
 <sld:Graphic>
 <sld:ExternalGraphic>
 <sld:OnlineResource xlink:type="simple" xlink:href="./img/landmarks/${IMAGE}" />
 <sld:Format>image/png</sld:Format>
 </sld:ExternalGraphic>
 </sld:Graphic>
 <VendorOption name="labelObstacle">true</VendorOption>
</sld:PointSymbolizer>

Here is the overall style:

<?xml version="1.0" encoding="UTF-8"?>
<sld:StyledLayerDescriptor
xmlns="http://www.opengis.net/sld"
xmlns:sld="http://www.opengis.net/sld"
xmlns:ogc="http://www.opengis.net/ogc"
xmlns:gml="http://www.opengis.net/gml"
xmlns:xlink="http://www.w3.org/1999/xlink" version="1.0.0">

 <sld:UserLayer>
 <sld:LayerFeatureConstraints>
 <sld:FeatureTypeConstraint/>
 </sld:LayerFeatureConstraints>
 <sld:UserStyle>
 <sld:Name>tl 2010 08013 pointlm</sld:Name>
 <sld:Title/>
 <sld:FeatureTypeStyle>
 <sld:Rule>
 <sld:Name>landmarks</sld:Name>
 <ogc:Filter>
 <ogc:Not>
 <ogc:PropertyIsNull>
 <ogc:PropertyName>IMAGE</ogc:PropertyName>
 </ogc:PropertyIsNull>
 </ogc:Not>
 </ogc:Filter>
 <sld:MaxScaleDenominator>100000</sld:MaxScaleDenominator>
 <sld:PointSymbolizer>
 <sld:Graphic>
 <sld:ExternalGraphic>
 <sld:OnlineResource xlink:type="simple" xlink:href="./img/landmarks/${IMAGE}" />
 <sld:Format>image/png</sld:Format>
 </sld:ExternalGraphic>
 </sld:Graphic>
 <VendorOption name="labelObstacle">true</VendorOption>
 </sld:PointSymbolizer>
 <sld:TextSymbolizer>
 <sld:Label>
 <ogc:PropertyName>FULLNAME</ogc:PropertyName>
 </sld:Label>
 <sld:Font>
 <sld:CssParameter name="font-family">Arial</sld:CssParameter>
 <sld:CssParameter name="font-size">12.0</sld:CssParameter>
 <sld:CssParameter name="font-style">normal</sld:CssParameter>
 <sld:CssParameter name="font-weight">normal</sld:CssParameter>
 </sld:Font>
 <sld:LabelPlacement>
 <sld:PointPlacement>
 <sld:AnchorPoint>
 <sld:AnchorPointX>
 <ogc:Literal>0.5</ogc:Literal>
 </sld:AnchorPointX>
 <sld:AnchorPointY>
 <ogc:Literal>1.0</ogc:Literal>
 </sld:AnchorPointY>
 </sld:AnchorPoint>
 <sld:Displacement>
 <sld:DisplacementX>
 <ogc:Literal>0.0</ogc:Literal>
 </sld:DisplacementX>
 <sld:DisplacementY>
 <ogc:Literal>-14.0</ogc:Literal>
 </sld:DisplacementY>
 </sld:Displacement>
 <sld:Rotation>
 <ogc:Literal>0.0</ogc:Literal>
 </sld:Rotation>
 </sld:PointPlacement>
 </sld:LabelPlacement>
 <sld:Halo>
 <sld:Radius>
 <ogc:Literal>1.5</ogc:Literal>
 </sld:Radius>
 <sld:Fill>
 <sld:CssParameter name="fill">#FFFFFF</sld:CssParameter>
 </sld:Fill>
 </sld:Halo>
 <sld:Fill>
 <sld:CssParameter name="fill">#000033</sld:CssParameter>
 </sld:Fill>
 <sld:Priority>200000</sld:Priority>
 <sld:VendorOption name="autoWrap">100</sld:VendorOption>
 </sld:TextSymbolizer>
 </sld:Rule>
 </sld:FeatureTypeStyle>
 </sld:UserStyle>
 </sld:UserLayer>
</sld:StyledLayerDescriptor>

And here is a map [http://localhost:8083/geoserver/geosolutions/wms?service=WMS&version=1.1.0&request=GetMap&layers=geosolutions:BoulderCityLimits,geosolutions:bptlandmarks&styles=line,&bbox=-105.688,39.914,-105.06,40.261&width=597&height=330&srs=EPSG:4269&format=application/openlayers] using this alternate style:

[image: ../../../_images/pt_landmark_ds.png]
Point landmarks using dynamic symbolizers

Styling in real world units

By default SLD interprets all sizes expressed in the style sheet (e.g., line widths, symbol sizes) as being pixels on the map.

It is however possible to make the style sheet use real world units, e.g., meters or feet, by specifying the desired unit of measure as an attribute of the symbolizer. The supported unit of measure are:

	meter

	foot

	pixel

The following line style uses a line width of 40 meters:

<LineSymbolizer uom="http://www.opengeospatial.org/se/units/metre">
 <Stroke>
 <CssParameter name="stroke">#000033</CssParameter>
 <CssParameter name="stroke-width">40</CssParameter>
 </Stroke>
</LineSymbolizer>

Setting up a uom based style in GeoServer

	Create a new style named line40m using the following SLD:

<?xml version="1.0" encoding="ISO-8859-1"?>
<StyledLayerDescriptor version="1.0.0"
 xsi:schemaLocation="http://www.opengis.net/sld StyledLayerDescriptor.xsd"
 xmlns="http://www.opengis.net/sld"
 xmlns:ogc="http://www.opengis.net/ogc"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <NamedLayer>
 <Name>line40m</Name>
 <UserStyle>
 <Title>40 meter wide line</Title>
 <FeatureTypeStyle>
 <Rule>
 <LineSymbolizer uom="http://www.opengeospatial.org/se/units/metre">
 <Stroke>
 <CssParameter name="stroke">#000033</CssParameter>
 <CssParameter name="stroke-width">40</CssParameter>
 </Stroke>
 </LineSymbolizer>
 </Rule>
 </FeatureTypeStyle>
 </UserStyle>
 </NamedLayer>
</StyledLayerDescriptor>

	Associate the line40m to MainRd as a secondary style:

[image: ../../../_images/secondary-line-uom.png]
Adding the line40m style as a secondary style for Mainrd

	Preview the MainRd layer and switch to the line40m style:

[image: ../../../_images/uom-zoom1.png]
A uom based line, zoomed out

	Zoom in and out and observe how the width of the line on screen varies by changing the zoom level

[image: ../../../_images/uom-zoom2.png]
Zooming in on the same line

Geometry transformations

This section show how to GeoServer provides a number of filter functions that can actually manipulate geometries by transforming them into something different: this is what we call geometry transformations in SLD.

Extracting vertices

	Using skills learned in the adding styles section, create a new style named mainrd_transform using the following SLD:

<?xml version="1.0" encoding="ISO-8859-1"?>
<StyledLayerDescriptor version="1.0.0"
 xmlns="http://www.opengis.net/sld" xmlns:ogc="http://www.opengis.net/ogc"
 xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.opengis.net/sld http://schemas.opengis.net/sld/1.0.0/StyledLayerDescriptor.xsd">
 <NamedLayer>
 <Name>Roads and vertices</Name>
 <UserStyle>
 <FeatureTypeStyle>
 <Rule>
 <LineSymbolizer>
 <Stroke />
 </LineSymbolizer>
 <PointSymbolizer>
 <Geometry>
 <ogc:Function name="vertices">
 <ogc:PropertyName>the_geom</ogc:PropertyName>
 </ogc:Function>
 </Geometry>
 <Graphic>
 <Mark>
 <WellKnownName>circle</WellKnownName>
 <Fill>
 <CssParameter name="fill">#FF0000</CssParameter>
 </Fill>
 </Mark>
 <Size>6</Size>
 </Graphic>
 </PointSymbolizer>
 </Rule>
 </FeatureTypeStyle>
 </UserStyle>
 </NamedLayer>
</StyledLayerDescriptor>

Note

The vertices function returns a multi-point made with all the vertices of the original geometry

	Using skills learned in the adding styles section, modify the styling of the Mainrd layer and add mainrd_transform as an alternate style (hint, select the mainrd_transform style in the first list below “available styles” and then use the right arrow to move it in the “selected styles”):

[image: ../../../_images/tx_secondary_style.png]
Adding the mainrd_transform style as a secondary style for Mainrd

	Use the Preview link to display the Mainrd layer, then open the options box and choose the alternate style from the drop down:

[image: ../../../_images/sld_transform2.png]
Extracting and showing the vertices out of a geometry

Line buffer

	Using skills learned in the geoserver.addstyle section, create a new style mainrd_buffer using the following SLD

<?xml version="1.0" encoding="ISO-8859-1"?>
<StyledLayerDescriptor version="1.0.0"
xmlns="http://www.opengis.net/sld" xmlns:ogc="http://www.opengis.net/ogc"
xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.opengis.net/sld http://schemas.opengis.net/sld/1.0.0/StyledLayerDescriptor.xsd">
 <NamedLayer>
 <Name>Roads and vertices</Name>
 <UserStyle>
 <FeatureTypeStyle>
 <Rule>
 <PolygonSymbolizer>
 <Geometry>
 <ogc:Function name="buffer">
 <ogc:PropertyName>the_geom</ogc:PropertyName>
 <ogc:Literal>200</ogc:Literal>
 </ogc:Function>
 </Geometry>
 <Fill>
 <CssParameter name="fill">#7F7F7F</CssParameter>
 <CssParameter name="fill-opacity">0.3</CssParameter>
 </Fill>
 </PolygonSymbolizer>
 <LineSymbolizer>
 <Stroke />
 </LineSymbolizer>
 </Rule>
 </FeatureTypeStyle>
 </UserStyle>
 </NamedLayer>
</StyledLayerDescriptor>

Note

The buffer function builds a polygon of all the points that are withing the specified distance from the original geometry.

	As done previously, modify the styling of the Mainrd layer and add mainrd_buffer as an alternate style:

[image: ../../../_images/tx_secondary_style_buffer.png]
Adding the mainrd_buffer style as a secondary style for Mainrd

	Use the Map Preview [http://localhost:8083/geoserver/mapPreview.do] to preview the new style.

[image: ../../../_images/sld_transform1.png]
Extracting start and end point of a line

Charting

GeoServer can produce maps with charts through the chart extension. Bundled with GeoServer is an open source version of the (deprecated) Google Chart API [https://developers.google.com/chart/image/] called Eastwood Charts [http://www.jfree.org/eastwood/].

You can display bar or pie charts (Most Google Charts except for Google-o-meter and spider charts are supported by the Eastwood library but the same does not apply to the corresponding GeoServer extension) for each feature on your map. You can control colors or labels. You can use percentages that are in your data attributes or compute percentages from counts on the fly.

How Charting Works

The Charting Extension makes usage of a URL inside the <ExternalGraphic> element of SLD documents. The URL used follows the Google Chart API syntax, but the chart is generated internally in GeoServer, hence no call to external services made removing any privacy or security concern and providing maximum performance. All the information about the chart that you want, such as chart data, size, colors, and labels, are part of the URL.

Inside the URL we can use variable substitution for using the attributes of the underlying features that are read from the datasource allowing us to create stunning dynamic charts using our own data.

An example of a chart created using an <ExternalGraphic> element is shown here below:

<ExternalGraphic>
 <OnlineResource
 xlink:href="http://chart?cht=p&chd=t:${100 * MALE / PERSONS},${100 * FEMALE / PERSONS}&chf=bg,s,FFFFFF00" />
 <Format>application/chart</Format>
</ExternalGraphic>

All URLs start with https://chart? followed by the parameters that specify chart data and appearance. Parameters are name=value pairs, separated by an ampersand character (&), and parameters can be in any order, after the ?. All charts require at minimum the following parameters: cht (chart type), chd (data), and chsv (chart size). However, there are many more parameters for additional options, and you can specify as many additional parameters as the chart supports.

We are now going to see examples and explanation for the various types of charts supported. First of all we will start with the standard features support by all the charts.

Standard Features

All Chart URLs have the following format:

https://chart?cht=<chart_type>&chd=<chart_data>&chs=<chart_size>&...more_parameters...

The standard parameters as part of the above URL have the following meaning:

	The cht parameter allows us to control the type of charts; as an example cht=p can be used for a 2D (flat) Pie.

	The chs parameter allows us to control the size of charts; as an example chs=500x200 specifies the chart size (width x height), in pixels. As an alternative we can use the <Size> element of external graphics (we’ll show an example in the following.

	The chd parameter allows us to control the chart data; as an example chd=t:60,40 can be used to provide tabular data to the diagram rendering system. We can use variable substitution and other GeoServer mechanisms to pass data sources value as the chart data. A typical example would be something like chd=t:${100 * MALE / PERSONS},${100 * FEMALE / PERSONS}& where MALE, PERSONS and FEMALE are attribute of GeoServer data sources.

	The chl parameter allows us to control the label of charts; as an example chl=Male|Female can be used to label a chart.

Pie Charts

Quoting Wikipedia,

“A pie chart (or a circle graph) is a circular chart divided into sectors, illustrating numerical proportion. In a pie chart, the arc length of each sector (and consequently its central angle and area), is proportional to the quantity it represents.”

Let us know create a sample map using the Pie Charts element leveraging on the the data provided with the training. Afterwards we will review the various options.

To print dynamic charts on a map using a Pie symbol over the United Stats map add a new style called statespies by adding the SLD provided below as indicated in this picture.

[image: ../../../_images/dyn_symb1.png]
Creating a new Dynamic Style

In the SLD Editor enter the following XML:

<?xml version="1.0" encoding="ISO-8859-1"?>
<StyledLayerDescriptor version="1.0.0"
 xsi:schemaLocation="http://www.opengis.net/sld http://schemas.opengis.net/sld/1.0.0/StyledLayerDescriptor.xsd"
 xmlns="http://www.opengis.net/sld" xmlns:ogc="http://www.opengis.net/ogc"
 xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <NamedLayer>
 <Name></Name>
 <UserStyle>
 <Name>Pie charts</Name>
 <FeatureTypeStyle>
 <Rule>
 <PolygonSymbolizer>
 <Fill>
 <CssParameter name="fill">#AAAAAA</CssParameter>
 </Fill>
 <Stroke />
 </PolygonSymbolizer>
 </Rule>
 </FeatureTypeStyle>
 <FeatureTypeStyle>
 <Rule>
 <PointSymbolizer>
 <Geometry>
 <ogc:Function name="centroid">
 <ogc:PropertyName>the_geom</ogc:PropertyName>
 </ogc:Function>
 </Geometry>
 <Graphic>
 <ExternalGraphic>
 <OnlineResource
 xlink:href="http://chart?cht=p&chd=t:${100 * MALE / PERSONS},${100 * FEMALE / PERSONS}&chf=bg,s,FFFFFF00" />
 <Format>application/chart</Format>
 </ExternalGraphic>
 <Size>
 <ogc:Add>
 <ogc:Literal>20</ogc:Literal>
 <ogc:Mul>
 <ogc:Div>
 <ogc:PropertyName>PERSONS</ogc:PropertyName>
 <ogc:Literal>20000000.0</ogc:Literal>
 </ogc:Div>
 <ogc:Literal>60</ogc:Literal>
 </ogc:Mul>
 </ogc:Add>
 </Size>
 </Graphic>
 </PointSymbolizer>
 </Rule>
 </FeatureTypeStyle>
 </UserStyle>
 </NamedLayer>
</StyledLayerDescriptor>

In order to have the states layer use this style with no additional indications, modify the default style of the states layer using the user interface to point to the newly created statespies.

[image: ../../../_images/dyn_symb2.png]
Changing the default style of the states layer

Now go to the Layer Preview to view the new style in action.

[image: ../../../_images/dyn_symb3.png]
Previewing the states layer with the statespies applied

Pie Chart Options

Let us quickly analyse the components of the ExternalGraphic call, which follow the rules of a Google Charts API call:

Pie Chart Types

The cht parameter allows us to control the type of pie. Supported options are as follows:

	cht=p for a 2D (flat) Pie

	cht=p3 for a 3D (flat) Pie

	cht=pc is not supported.

Pie Chart Data

chd=t:${100 * MALE / PERSONS},${100 * FEMALE / PERSONS} the chart data is expressed in “text” format, and in particular, the first value is the result of 100 * MALE / PERSONS, where MALE and PERSONS are two attributes of feature being rendered

Pie Chart Background

chf=bg,s,FFFFFF00: we state that the chart background fill is solid, white and transparent. In articular, the color is expressed as RRGGBBAA, where AA is the alpha component, which controls transparency. In particular 0 is fully transparent, 255 is fully opaque

Pie Chart Size

The size of the chart is controlled using the usual <Size> element of external graphics, an in particular, it’s setup so that it’s proportional to the PERSONS attribute via the expression: 20 + (PERSONS / 20,000,000) * 60.

Pie Chart Colors

We can specify the colors of all values, each value, or some values using the chco parameter. This override the usage of the default Background Fills chf parameter, hence it is optional.

Syntax is as follows:

chco=<color_slice_1>,<color_slice_2>

for specifying individual colors for slices and

chco=<color_1>|<color_2>

for specifying a gradient to be applied to the slices.

where color is in RRGGBB hexadecimal format [https://developers.google.com/chart/image/docs/chart_params#gcharts_rgb].

Pie Chart Labels

We can specify labels for individual pie chart slices using the chl parameter.

The syntax is a follows:

chl=<label_value>| ... |<label_value>

Pie Chart Rotation

Pie Chart Rotation can be achieved via the chp parameter. By default, the first series is drawn starting at 3:00, continuing clockwise around the chart.

The syntax is as follows:

chp=<radians>

Additional information on creating pie charts can be found on the official pie charts documentation [https://developers.google.com/chart/image/docs/gallery/pie_charts]

A more comprehensive example can be found here below:

<?xml version="1.0" encoding="ISO-8859-1"?>
<StyledLayerDescriptor version="1.0.0"
 xsi:schemaLocation="http://www.opengis.net/sld http://schemas.opengis.net/sld/1.0.0/StyledLayerDescriptor.xsd"
 xmlns="http://www.opengis.net/sld" xmlns:ogc="http://www.opengis.net/ogc"
 xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <NamedLayer>
 <Name></Name>
 <UserStyle>
 <Name>Pie charts</Name>
 <FeatureTypeStyle>
 <Rule>
 <PolygonSymbolizer>
 <Fill>
 <CssParameter name="fill">#ffffff</CssParameter>
 </Fill>
 <Stroke />
 </PolygonSymbolizer>
 </Rule>
 </FeatureTypeStyle>
 <FeatureTypeStyle>
 <Rule>
 <PointSymbolizer>
 <Geometry>
 <ogc:Function name="centroid">
 <ogc:PropertyName>the_geom</ogc:PropertyName>
 </ogc:Function>
 </Geometry>
 <Graphic>
 <ExternalGraphic>
 <OnlineResource
 xlink:href="http://chart?cht=p&chf=bg,s,FFFFFF00&chd=t:${100 * MALE / PERSONS},${100 * FEMALE / PERSONS}&chl=MALE|FEMALE&chs=200x100&chco=0000ff,ff0000&chtt=M+F" />
 <Format>application/chart</Format>
 </ExternalGraphic>
 </Graphic>
 </PointSymbolizer>
 </Rule>
 </FeatureTypeStyle>
 </UserStyle>
 </NamedLayer>
</StyledLayerDescriptor>

The resulting image can be found here below:

[image: ../../../_images/dyn_symb4.png]

Bar Charts

Quoting Wikipedia,

“A bar chart or bar graph is a chart with rectangular bars with lengths proportional to the values that they represent. The bars can be plotted vertically or horizontally. A vertical bar chart is sometimes called a column bar chart.”

Let us know create a sample map using the Bar Charts element leveraging on the the data provided with the training. Afterwards we will review the various options.

To print dynamic charts on a map using a Bar symbol over the United Stats map add a new style called statesbars by adding the SLD provided below as indicated in this picture.

[image: ../../../_images/dyn_symb5.png]
Creating a new Dynamic Style with Bar Charts

In the SLD Editor enter the following XML:

<?xml version="1.0" encoding="ISO-8859-1"?>
<StyledLayerDescriptor version="1.0.0"
 xsi:schemaLocation="http://www.opengis.net/sld http://schemas.opengis.net/sld/1.0.0/StyledLayerDescriptor.xsd"
 xmlns="http://www.opengis.net/sld" xmlns:ogc="http://www.opengis.net/ogc"
 xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <NamedLayer>
 <Name></Name>
 <UserStyle>
 <Name>Pie charts</Name>
 <FeatureTypeStyle>
 <Rule>
 <PolygonSymbolizer>
 <Fill>
 <CssParameter name="fill">#ffffff</CssParameter>
 </Fill>
 <Stroke />
 </PolygonSymbolizer>
 </Rule>
 </FeatureTypeStyle>
 <FeatureTypeStyle>
 <Rule>
 <PointSymbolizer>
 <Graphic>
 <Geometry>
 <ogc:Function name="centroid">
 <ogc:PropertyName>the_geom</ogc:PropertyName>
 </ogc:Function>
 </Geometry>
 <ExternalGraphic>
 <OnlineResource
 xlink:href="http://chart?cht=bvg&chf=bg,s,FFFFFF00&chd=t:${100 * MALE / PERSONS},${100 * FEMALE / PERSONS}" />
 <Format>application/chart</Format>
 </ExternalGraphic>
 <Size>
 <ogc:Add>
 <ogc:Literal>20</ogc:Literal>
 <ogc:Mul>
 <ogc:Div>
 <ogc:PropertyName>PERSONS</ogc:PropertyName>
 <ogc:Literal>20000000.0</ogc:Literal>
 </ogc:Div>
 <ogc:Literal>60</ogc:Literal>
 </ogc:Mul>
 </ogc:Add>
 </Size>
 </Graphic>
 </PointSymbolizer>
 </Rule>
 </FeatureTypeStyle>
 </UserStyle>
 </NamedLayer>
</StyledLayerDescriptor>

Bar Chart Options

Let us quickly analyse the components of the ExternalGraphic call, which follow the rules of a Google Charts API call:

Bar Chart Types

The cht parameter allows us to control the type of pie. Supported options are as follows:

	cht=bvg for simple 2D vertical Bars layed out as groups.

	cht=bhg for simple 2D horizontal Bars layed out as groups.

	cht=bvs for simple 2D vertical Bars layed out as stacks.

	cht=bvo is not supported.

Bar Chart Data

chd=t:${100 * MALE / PERSONS},${100 * FEMALE / PERSONS} the chart data is expressed in “text” format, and in particular, the first value is the result of 100 * MALE / PERSONS, where MALE and PERSONS are two attributes of feature being rendered. This type of sequence is good for grouped bar charts. Values for successive groups are separated by |. Values within the same group are separated by comma.

Bar Chart Colors

Note

Note that by default, all series are displayed in the same color; if you don’t specify different colors for different series, it will be hard to distinguish that there are multiple series in your chart.

You can specify the colors of individual bars, individual series, or multiple series using the chco parameter. If you don’t specify a different color for each series, all series will be the same color. Syntax is as follows:

chco=<series_1_color>, ..., <series_n_color>

or

chco=<series_1_bar_1>|<series_1_bar_2>|...|<series_1_bar_n>,<series_2>,...,<series_n>

where color is in RRGGBB hexadecimal format [https://developers.google.com/chart/image/docs/chart_params#gcharts_rgb].

Bar Chart Background

chf=bg,s,FFFFFF00: we state that the chart background fill is solid, white and transparent. In particular, the color is expressed as RRGGBBAA, where AA is the alpha component, which controls transparency. In particular 0 is fully transparent, 255 is fully opaque.

Bar Chart Size

The size of the chart is controlled using the usual <Size> element of external graphics, an in particular, it’s setup so that it’s proportional to the PERSONS attribute via the expression: 20 + (PERSONS / 20,000,000) * 60.

Bar Chart Labels

Bar charts support standard axis labels, but labels along the base of the bars are assigned to individual bars, rather than spread out along the bar chart. (To spread out labels evenly, use the chxp parameter as described below.) If you specify axis labels but don’t specify custom labels along the bar axis, the bar labels will be the index number of each bar or group of bars. You can customize axis labels using the chxl parameter.

The syntax is a follows:

chl=<label_value>| ... |<label_value>

Additional information on creating pie charts can be found on the official bar chart documentation [https://developers.google.com/chart/image/docs/gallery/bar_charts]

A more comprehensive example can be found here below:

<?xml version="1.0" encoding="ISO-8859-1"?>
<StyledLayerDescriptor version="1.0.0"
 xsi:schemaLocation="http://www.opengis.net/sld http://schemas.opengis.net/sld/1.0.0/StyledLayerDescriptor.xsd"
 xmlns="http://www.opengis.net/sld" xmlns:ogc="http://www.opengis.net/ogc"
 xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <NamedLayer>
 <Name></Name>
 <UserStyle>
 <Name>Pie charts</Name>
 <FeatureTypeStyle>
 <Rule>
 <PolygonSymbolizer>
 <Fill>
 <CssParameter name="fill">#dddddd</CssParameter>
 </Fill>
 <Stroke />
 </PolygonSymbolizer>
 </Rule>
 </FeatureTypeStyle>
 <FeatureTypeStyle>
 <Rule>
 <PointSymbolizer>
 <Graphic>
 <ExternalGraphic>
 <OnlineResource
 xlink:href="http://chart?chxt=x,y&chxl=0:|M|F&cht=bvg&chco=0000ff,ff0000&chf=bg,s,FFFFFF00&chd=t:${100 * MALE / PERSONS}|${100 * FEMALE / PERSONS}&chs=200x200&chtt=M+F" />
 <Format>application/chart</Format>
 </ExternalGraphic>
 </Graphic>
 </PointSymbolizer>
 </Rule>
 </FeatureTypeStyle>
 </UserStyle>
 </NamedLayer>
</StyledLayerDescriptor>

The resulting image can be found here below:

[image: ../../../_images/dyn_symb6.png]

Styling Raster data

In the previous section we have created and optimized some vector styles. In this section we will deal with a styled SRTM raster and we will see how to get a better visualization of that layer by adding hillshade.

	From the Welcome Page [http://localhost:8083/geoserver] navigate to Layer Preview and select the OpenLayers link for the geosolutions:srtm layer.

[image: ../../../_images/raster_srtm.png]
SRTM rendering with DEM style

There is a DEM style associated to that SRTM dataset layer, resulting in such a colored rendering.

	Return to the GeoServer Welcome Page, select the Styles and click the dem style to see which color map is applied.

Note

You have to be logged in as Administrator in order to edit/check styles.

[image: ../../../_images/raster_dem_style.png]
Style editing

Note the entries with opacity = 0.0 which allow to make no data values as transparent.

The current DEM style allows to get a pleasant rendering of the SRTM dataset but we can get better results by combining it with an hillshade layer which will be created through another GDAL utility (gdaldem).

Adding hillshade

	Open a shell and run:

* Linux

gdaldem hillshade -z 5 -s 111120 ${TRAINING_ROOT}/geoserver_data/data/boulder/srtm_boulder.tiff ${TRAINING_ROOT}/geoserver_data/data/boulder/srtm_boulder_hs.tiff -co tiled=yes

* Windows

gdaldem hillshade -z 5 -s 111120 %TRAINING_ROOT%\geoserver_data\data\boulder\srtm_boulder.tiff %TRAINING_ROOT%\geoserver_data\data\boulder\srtm_boulder_hs.tiff -co tiled=yes

Note

The z parameter exaggerates the elevation, the s parameter provides the ratio between the elevation units and the ground units (degrees in this case), -co tiled=yes makes gdaldem generate a TIFF with inner tiling. We’ll investigate this last option better in the following pages.

	From the Welcome Page [http://localhost:8083/geoserver] navigate to Styles and select Add a new style as previously seen in the Adding a style section.

	In the SLD Editor enter the following XML:

<?xml version="1.0" encoding="UTF-8"?>
<sld:StyledLayerDescriptor xmlns="http://www.opengis.net/sld" xmlns:sld="http://www.opengis.net/sld" xmlns:ogc="http://www.opengis.net/ogc" xmlns:gml="http://www.opengis.net/gml" version="1.0.0">
 <sld:UserLayer>
 <sld:LayerFeatureConstraints>
 <sld:FeatureTypeConstraint/>
 </sld:LayerFeatureConstraints>
 <sld:UserStyle>
 <sld:Title/>
 <sld:FeatureTypeStyle>
 <sld:Name>name</sld:Name>
 <sld:FeatureTypeName>Feature</sld:FeatureTypeName>
 <sld:Rule>
 <sld:MinScaleDenominator>75000</sld:MinScaleDenominator>
 <sld:RasterSymbolizer>
 <sld:Geometry>
 <ogc:PropertyName>grid</ogc:PropertyName>
 </sld:Geometry>
 <sld:ColorMap>
 <sld:ColorMapEntry color="#000000" opacity="0.0" quantity="0.0"/>
 <sld:ColorMapEntry color="#999999" opacity="0.7" quantity="1.0"/>
 <sld:ColorMapEntry color="#FFFFFF" opacity="0.7" quantity="256.0"/>
 </sld:ColorMap>
 </sld:RasterSymbolizer>
 </sld:Rule>
 </sld:FeatureTypeStyle>
 </sld:UserStyle>
 </sld:UserLayer>
</sld:StyledLayerDescriptor>

Note

Note the opacity values being less than 1, in order to made it partially transparent which will allows to do overlaying on other layers

	Set hillshade as name and then click the Submit button.

	Select Add stores from the GeoServer Welcome Page to add the previously created hillshade raster.

	Select GeoTIFF - Tagged Image File Format with Geographic information from the set of available Raster Data Sources.

	Specify hillshade as name in the Data Source Name field of the interface.

	Click on browse link in order to set the GeoTIFF location in the URL field.

Note

make sure to specify the srtm_boulder_hs.tiff previously created with gdaldem, which should be located at $TRAINING_ROOT/geoserver_data/data/boulder

	Click Save.

	Publish the layer by clicking on the publish link.

[image: ../../../_images/raster_hillshade.png]
Publishing Raster Layer

	Set SRTM Hillshade as Title

	Switch to Publishing tab

[image: ../../../_images/raster_hillshade_publishing.png]

	Make sure to set the default style to hillshade on the Publishing –> Default Style section.

[image: ../../../_images/raster_hillshade_defaultstyle.png]
Editing Raster Publishing info

	Click Save to create the new layer.

	Use the Layer Preview to preview the new layer with the hillshade style.

[image: ../../../_images/raster_hillshade_preview.png]
Previewing the new raster layer with the hillshade style applied

	Edit the Layer Preview URL in your browser by locating the layers parameter

[image: ../../../_images/raster_overlay_url.png]

	Insert the geosolutions:srtm, additional layer (note the final comma) before the geosolutions:hillshade one, and in the styles parameter, add a comma before hillshade to make GeoServer use the default style for the srtm layer

[image: ../../../_images/raster_overlay_2layers.png]

	Press Enter to send the updated request. The Layer Preview should change like this where you can see both the srtm and hillshade layers.

[image: ../../../_images/raster_overlay.png]
Layer preview with srtm and hillshade being overlaid

Styling with CSS

The CSS extension module allows to build map styles using a compact, expressive styling language already well known to most web developers: Cascading Style Sheets.

The standard CSS language has been extended to allow for map filtering and managing all the details of a map production. In this section we’ll experience creating a few simple styles with the CSS language.

Creating line styles

	From the main menu bar select the CSS styles [http://localhost:8083/geoserver/web/?wicket:bookmarkablePage=:org.geoserver.community.css.web.CssDemoPage] entry

	Click on the “Choose a different layer” link and switch to the Mainrd layer

	Click on the “Create a new style” link and input css_mainrd as the style name, then press the “Create” button

[image: ../../../_images/css_mainrd.png]
Creating a new CSS style for the Mainrd layer

	Set the style contents to the following, press submit and switch to the map preview

* {
 stroke: orange;
 stroke-width: 6;
 stroke-linecap: round;
}

[image: ../../../_images/css_mainrd_map1.png]

	Now let’s create a cased line effect by adding a second set of colours and widths, and forcing two different z indexes for them. Press submit, look at the map and at the generated SLD

* {
 stroke: orange, yellow;
 stroke-width: 6, 2;
 stroke-linecap: round;
 z-index: 1, 2;
}

[image: ../../../_images/css_mainrd_map2.png]

	Finally, let’s add a label that follows the road

* {
 stroke: orange, yellow;
 stroke-width: 6, 2;
 stroke-linecap: round;
 z-index: 1, 2;
 label: [LABEL_NAME];
 font-fill: black;
 font-family: Arial;
 font-size: 12;
 font-weight: bold;
 halo-color: white;
 halo-radius: 2;
 -gt-label-follow-line: true;
 -gt-label-group: true;
 -gt-label-repeat: 400;
 -gt-label-max-displacement: 50;
}

[image: ../../../_images/css_mainrd_map3.png]

Creating point styles

	Similarly to the previous section, switch the map to “bptlandmarks” and create a new style called “css_bptlandmarks”

	Insert the following in the CSS to get a basic point style, and press “Submit”:

* {
 mark: symbol('circle');
 mark-size: 5;
}

[image: ../../../_images/css_point_map1.png]

	Let’s change the color of the points by specifying a fill. If we specified a fill in the top level rule it would be interpreted as a polygonal fill, to express that we want to fill inside the marks we have to create a new rule with the :mark pseudo-selector:

* {
 mark: symbol('circle');
 mark-size: 5;
}

:mark {
 fill: cyan;
 stroke: darkblue;
}

[image: ../../../_images/css_point_map2.png]

	Finally, let’s override the default styling for all shopping centers. Shopping centers are not easy to find, they have a MTFCC category of C3081 and contain Shopping in the name

* {
 mark: symbol('circle');
 mark-size: 5;
}

:mark {
 fill: cyan;
 stroke: darkblue;
}

[MTFCC = 'C3081' AND FULLNAME LIKE '%Shopping%'] {
 mark: url("./img/landmarks/shop_supermarket.p.16.png");
 mark-size: ;
}

[image: ../../../_images/css_point_map3.png]

Creating polygon styles

	For this exercise, change the current layer to “WorldCountries” and create a new style called “css_worldcountries”

	We want to create a simple 3 class thematic map based on the country population, stored in the POP_EST attribute

[POP_EST < 10000000] {
 fill: lightgrey;
}

[POP_EST >= 10000000 AND POP_EST < 50000000] {
 fill: olive;
}

[POP_EST > 50000000] {
 fill: salmon
}

[image: ../../../_images/css_poly_map1.png]

	Let’s also add a very thin black border around all polygons, regardless of their population, using the * selector

[POP_EST < 10000000] {
 fill: lightgrey;
}

[POP_EST >= 10000000 AND POP_EST < 50000000] {
 fill: olive;
}

[POP_EST > 50000000] {
 fill: salmon
}

* {
 stroke: black;
 stroke-width: 0.2;
}

[image: ../../../_images/css_poly_map2.png]

Styling raster data

	For this exercise we are going to switch to the “srtm” layer and create a new css_raster style

	In order to activate raster styling the raster-channels property needs to be specified, in this case with a value of auto to let the engine choose automatically the bands to use:

* {
 raster-channels: auto;
}

[image: ../../../_images/css_ras_map1.png]

	The above map shows GeoServer automatically creating a grayscale map out of the elevation data, with automatic adaptation to the current contents of the map (the black areas you see once applied the map are “no data” areas, try to go into an area that does not have any)

	Now let’s apply a color map to get a nicer and consistent looking map instead

* {
 raster-channels: auto;
 raster-color-map:
 color-map-entry(black, 0, 0)
 color-map-entry(green, 1500)

 color-map-entry(yellow, 2000)
 color-map-entry(maroon, 3000)
 color-map-entry(white, 4000);
}

[image: ../../../_images/css_ras_map2.png]

Creating a Base Map with a Layer Group

The best way to easily set-up a map with more than one layer for consumption is to create a Layer Group, that is what we are going to do in this section.

	Locate the Layer Group link and click it.

[image: ../../../_images/group1.png]
Layer Group link

	Click the Add new layer group link.

[image: ../../../_images/group2.png]
Add new layer group link

	Name it test.

[image: ../../../_images/group3-1.png]

	Click the Add layer link:

[image: ../../../_images/group3-2.png]
Add new layer

	Select the “Mainrd” layer in the popup window.

[image: ../../../_images/group4.png]
Select a layer

	Add also “BoulderCityLimits” and “bplandmarks”, the final list should look like this:.

[image: ../../../_images/group5.png]
List of layers for the group

Note

You can use the green arrows to adjust the ordering of the layers until it looks like the above figure.

	Click the generate bounds button to have GeoServer compute the group bounds from the layers inside of it:

	Scroll to the bottom of the page and then click Save.

	If all went well, you should see something like this:

[image: ../../../_images/group7.png]
After a successful save.

Note

The autogenerated bounds may be too large and you may experience a bad feeling when previewing the map. You can optionally reduce the layer group bounds by inserting manually the bbox values. Good values are the following:
minx = 3.057.566,8646; maxx = 3.079.500,65246; miny = 1.241.929,35617; maxy = 1.257.467,5777

The layer group is now ready to be consumed:

	Navigate to the GeoServer Welcome Page [http://localhost:8083/geoserver/web/].

	Go to the Layer Preview link at the bottom of the lefthand menu.

[image: ../../../_images/preview1.png]
Layer Preview

	Find the test layer group and click on the OpenLayers link. You will see a slippy map with all the configured layers of the Boulder district. You can control zoom by using the mouse wheel, pan by dragging, and zoom by window holding SHIFT pressed while dragging.

[image: ../../../_images/preview3.png]
OpenLayers view

Note

Check the browser’s address bar for an interesting sample WMS request for the layer.

	As you might have noticed before, a larger, more realistic group has already been configured for you. It is named boulder. Have a look at its definition and add to this the Mainrd layer. Then using the green arrows move the layer at the following position (see the screenshot).

[image: ../../../_images/preview3b.png]
A new layer inside the existing layer group.

	Then use the Map Preview to display it.

	Try clicking in the middle of the map. A couple of tables with more information about the vector features that have been clicked should appear at the bottom.

[image: ../../../_images/preview4.png]
Feature info

	Try zoomin in more and more. New layers should start to appear. This is scale dependent styling.

Now let’s see how desktop clients handle the layer group, and how we can change the way the see it.

	Go to the command line, enter the workshop directory, if you haven’t done that yet, run setenv.bat and then udig.bat

	Once both GeoServer and uDig are up, organize their Windows so that you can see GeoServer and uDig ones at the same time

	Now go to the GeoServer home page, where all the capabilities links are kept, take the WMS 1.1.1 one, and drag&drop it into uDig “Catalog” tab to import the WMS as a uDig data source:

[image: ../../../_images/group8.png]

	Look at the layer tree. The boulder group is visible as a simple layer, and all the layers it contains are actually shown at the same level as the group.

[image: ../../../_images/group9.png]

	Let’s change it so that the layer group internal structure is shown. Go back to the “boulder” layer group page, and change its “mode” to “Named tree”, then press the “Save” button

[image: ../../../_images/group10.png]

	We need to make uDig aware of the change. Right click the root of the the capabilities tree and choose the “Reset” command

[image: ../../../_images/group11.png]

	Now most of the layers are contained inside the “boulder” group

[image: ../../../_images/group12.png]

Filtering Maps

This section shows the GeoServer WMS filtering capabilities.

	Navigate to the GeoServer Welcome Page [http://localhost:8083/geoserver/web/].

	Go to the Layer Preview link at the bottom of the left-hand menu and show the geosolutions:WorldCountries layer with OpenLayers ‘Common Format’.

[image: ../../../_images/filtering1.png]
Showing the GeoServer layer preview

[image: ../../../_images/filtering2.png]
Show the layer with OpenLayers

	From the Filter combo box select ‘CQL’ and enter the following command in the text field:

POP_EST <= 5000000 AND POP_EST >100000

	Click ‘Apply Filter’ button on the right.

[image: ../../../_images/filtering3.png]
Result of the CQL filter

The corresponding WMS request is:

http://localhost:8083/geoserver/geosolutions/wms?service=WMS&version=1.1.0&request=GetMap&layers=geosolutions:WorldCountries&styles=&bbox=-180.0,-89.99889902136009,180.00000000000003,83.59960032829278&width=684&height=330&srs=EPSG:4326&format=image/png&CQL_FILTER=POP_EST%20%3C=%205000000%20AND%20POP_EST%20%3E100000

	Now enter the following command in the text field:

DISJOINT(the_geom, POLYGON((-90 40, -90 45, -60 45, -60 40, -90 40))) AND strToLowerCase(NAME) LIKE '%on%'

	Click ‘Apply Filter’ button on the right.

[image: ../../../_images/filtering6.png]
Result of the CQL filter

The corresponding WMS request is:

http://localhost:8083/geoserver/geosolutions/wms?service=WMS&version=1.1.0&request=GetMap&layers=geosolutions:WorldCountries&styles=&bbox=-180.0,-89.99889902136009,180.00000000000003,83.59960032829278&width=684&height=330&srs=EPSG:4326&format=image/png&CQL_FILTER=DISJOINT%28the_geom%2C%20POLYGON%28%28-90%2040%2C%20-90%2045%2C%20-60%2045%2C%20-60%2040%2C%20-90%2040%29%29%29%20AND%20strToLowerCase%28NAME%29%20LIKE%20%27%25on%25%27

	From the Filter combo box select ‘OGC’ and enter the following filter in the text field:

<Filter><PropertyIsEqualTo><PropertyName>TYPE</PropertyName><Literal>Sovereign country</Literal></PropertyIsEqualTo></Filter>

	Click ‘Apply Filter’ button on the right.

[image: ../../../_images/filtering4.png]
Result of the OGC filter

The corresponding WMS request is

http://localhost:8083/geoserver/geosolutions/wms?service=WMS&version=1.1.0&request=GetMap&layers=geosolutions:WorldCountries&styles=&bbox=-180.0,-89.99889902136009,180.00000000000003,83.59960032829278&width=684&height=330&srs=EPSG:4326&format=image/png&CQL_FILTER=TYPE%20%3D%20%27Sovereign%20country%27

	From the Filter combo box select ‘FeatureID’ and enter the following features ids in the text field separated by comma:

WorldCountries.227,WorldCountries.184,WorldCountries.33

	Click ‘Apply Filter’ button on the right.

[image: ../../../_images/filtering5.png]
Result of the FeatureID filter

The corresponding WMS request is:

http://localhost:8083/geoserver/geosolutions/wms?service=WMS&version=1.1.0&request=GetMap&layers=geosolutions:WorldCountries&styles=&bbox=-180.0,-89.99889902136009,180.00000000000003,83.59960032829278&width=684&height=330&srs=EPSG:4326&format=image/png&FEATUREID=WorldCountries.227,WorldCountries.184,WorldCountries.33

Producing and Using palettes

GeoServer has the ability to output high quality 256 color images. This tutorial introduces you to the palette concepts, the various image generation options, and offers a quality/resource comparison of them in different situations. In this section the task is to use the palettes.

Note

Some image formats, such as GIF or PNG, can use a palette, which is normally a table of 256 colors use get get better compression (trading it sometimes with a lower image quality). Basically, instead of representing each pixel with its full color triplet, which takes 24bits (plus eventual 8 more for transparency), they use a 8 bit index that represent the position inside the palette, and thus the color. This allows for images that are 3-4 times smaller than the standard images, with the limitation that only 256 different colors can appear on the image itself. Depending of the actual map, this may be a very stringent limitation, visibly degrading the image quality, or it may be that the output cannot be told from a full color image. For many common vector maps one can easily find 256 representative colors that are a good fit. In the latter case, the smaller footprint of paletted images is usually a gain in both performance and costs, because more data can be served with the same internet connection, and the clients will obtain responses faster.

Options to enable paletted output

The easiest way to get a paletted image output is to ask for a 256 color output format, such as:

	image/png8: PNG output, with a 256 color palette

	image/gif: standard GIF output

These output formats, if no other parameters are provided, do compute the optimal palette on the fly. This is an expensive process (CPU bound) but, depending on the speed of the network connecting the server and the client, the extra CPU cost can be offset by a lower data transfer time (especially on slow/busy networks).

Optimal palette computation is anyway a repetitive work that can be done up front: a user can compute the optimal palette once, and tell GeoServer to use it.
There are three ways to do so:

	Use the internet safe palette [http://www.intuitive.com/coolweb/colors.html], a standard palette built in into GeoServer, by appending palette=safe to the GetMap request.
Of course, to get good results, the styling will have to be made using the colors in that palette.

	Provide a palette by example. In this case, the user will generate an 256 color images using an external program (such as Photoshop), and then will save it into the $GEOSERVER_DATA_DIR/palettes directory. The sample file can be either in GIF or PNG format. If the file is named mypalette.gif or mypalette.png, the user will be able to refer it appending palette=mypalette to the GetMap request. GeoServer will load the palette from the file and use it.

	Provide a palette file. The process is just as before, but this time only the palette, in .PAL format, will be stored into the $GEOSERVER_DATA_DIR/palettes directory. The PAL file in in Microsoft Palette Format, and can be generated by programs such as Paint Shop Pro and IrfanView.

An Example with Vector Data

Enough theory, let’s have a look at how to deal with paletted images in practice. We’ll use the prato basemap to gather some numbers and we’ll change various parameters in order to play with formats and palettes. Here goes the sampler:

	The standard PNG full color output:

http://localhost:8083/geoserver/wms?service=WMS&version=1.1.0&request=GetMap&layers=geosolutions:BoulderCityLimits,geosolutions:blakes,geosolutions:bplandmarks,geosolutions:brivers,geosolutions:Mainrd&styles=&bbox=3056181.93510,1237476.92868,3080671.07513,1260141.38768&width=512&height=475&srs=EPSG:2876&format=image/png

[image: ../../../_images/palette1.png]
The standard PNG output

Parameters:FORMAT=image/png | Size: 105.5 KB | Map generation time: 186 ms

	JPEG output:

http://localhost:8083/geoserver/wms?service=WMS&version=1.1.0&request=GetMap&layers=geosolutions:BoulderCityLimits,geosolutions:blakes,geosolutions:bplandmarks,geosolutions:brivers,geosolutions:Mainrd&styles=&bbox=3056181.93510,1237476.92868,3080671.07513,1260141.38768&width=512&height=475&srs=EPSG:2876&format=image/jpeg

[image: ../../../_images/palette2.png]
JPEG output

Parameters:FORMAT=image/jpeg | Size: 43.2 KB | Map generation time: 100 ms

	The PNG8 output:

http://localhost:8083/geoserver/wms?service=WMS&version=1.1.0&request=GetMap&layers=geosolutions:BoulderCityLimits,geosolutions:blakes,geosolutions:bplandmarks,geosolutions:brivers,geosolutions:Mainrd&styles=&bbox=3056181.93510,1237476.92868,3080671.07513,1260141.38768&width=512&height=475&srs=EPSG:2876&format=image/png8

[image: ../../../_images/palette3.png]
The PNG8 output

Parameters:FORMAT=image/png8 | Size: 48.0 KB | Map generation time: 190 ms

	PNG + internet safe palette:

http://localhost:8083/geoserver/wms?service=WMS&version=1.1.0&request=GetMap&layers=geosolutions:BoulderCityLimits,geosolutions:blakes,geosolutions:bplandmarks,geosolutions:brivers,geosolutions:Mainrd&styles=&bbox=3056181.93510,1237476.92868,3080671.07513,1260141.38768&width=512&height=475&srs=EPSG:2876&format=image/png&palette=safe

[image: ../../../_images/palette4.png]
The PNG output + internet safe palette

Parameters:FORMAT=image/png&palette=safe | Size: 38.8 KB | Map generation time: 161 ms

	PNG + palette by example:

http://localhost:8083/geoserver/wms?service=WMS&version=1.1.0&request=GetMap&layers=geosolutions:BoulderCityLimits,geosolutions:blakes,geosolutions:bplandmarks,geosolutions:brivers,geosolutions:Mainrd&styles=&bbox=3056181.93510,1237476.92868,3080671.07513,1260141.38768&width=512&height=475&srs=EPSG:2876&format=image/png&palette=boulder

[image: ../../../_images/palette5.png]
The PNG output palette by example

Parameters:FORMAT=image/png&palette=boulder | Size: 54.4 KB | Map generation time: 163 ms

Generating the custom palette

To generate a custom palette you can use IrfanView for example, on Windows. The steps are simple:

	open the png 24 bit version of the image

	use Image/Decrease Color Depth and set 256 colors

	use Image/Palette/Export to save the palette

An example with raster data

To give you an example when paletted images may not fit the bill, let’s consider the geosolutions:13tde815295_200803_0x6000m_cl coverage from the sample data, and repeat the same operation as before.

	The standard PNG full color output:

http://localhost:8083/geoserver/geosolutions/wms?LAYERS=geosolutions%3A13tde815295_200803_0x6000m_cl&STYLES=&SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&SRS=EPSG%3A26913&BBOX=482574.82910157,4429949.7070313,482949.82910157,4430324.7070313&WIDTH=512&HEIGHT=512&FORMAT=image%2Fpng

[image: ../../../_images/palette6.png]
The standard PNG output

Parameters:FORMAT=image/png | Size: 528.9 KB | Map generation time:90ms

	JPEG output:

http://localhost:8083/geoserver/geosolutions/wms?LAYERS=geosolutions%3A13tde815295_200803_0x6000m_cl&STYLES=&SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&SRS=EPSG%3A26913&BBOX=482574.82910157,4429949.7070313,482949.82910157,4430324.7070313&WIDTH=512&HEIGHT=512&FORMAT=image%2Fjpeg

[image: ../../../_images/palette7.png]
JPEG output

Parameters:FORMAT=image/jpeg | Size: 39.5 KB | Map generation time: 35ms

	PNG8 output (the output using a “palette by example would be the same”):

http://localhost:8083/geoserver/geosolutions/wms?LAYERS=geosolutions%3A13tde815295_200803_0x6000m_cl&STYLES=&SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&SRS=EPSG%3A26913&BBOX=482574.82910157,4429949.7070313,482949.82910157,4430324.7070313&WIDTH=512&HEIGHT=512&FORMAT=image%2Fpng8

[image: ../../../_images/palette8.png]
PNG8 output

Parameters:FORMAT=image/png8 | Size: 141.8 KB | Map generation time: 201ms

	PNG output + safe palette:

http://localhost:8083/geoserver/geosolutions/wms?LAYERS=geosolutions%3A13tde815295_200803_0x6000m_cl&STYLES=&SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&SRS=EPSG%3A26913&BBOX=482574.82910157,4429949.7070313,482949.82910157,4430324.7070313&WIDTH=512&HEIGHT=512&FORMAT=image%2Fpng&palette=safe

[image: ../../../_images/palette9.png]
PNG + sape palette output

Parameters:FORMAT=image/png&palette=safe | Size: 96.8 KB | Map generation time: 235ms

Note

As the sampler shows, the JPEG output has the same quality as the full color image, is generated faster and uses only a fraction of its size. At the opposite, the version using the internet safe palette is fast and smaller than the full PNG, but the output is totally ruined. Everything considered, JPEG is the clear winner, sporting good quality, fast image generation and smaller size that. PNGs are the suggested imagery raster format only in case the output needs to be used as an overlay and thus requires transparent areas, or when the raster has large areas with uniform colors, which may happen for example in land use rasters.

Decorating a Map

WMS Decorations provide a framework for visually annotating images from WMS with absolute, rather than spatial, positioning. This example of decoration include scaleline, legends, and image.

	Go to $GEOSERVER_DATA_DIR and create a new directory named layouts and create a new file named boulder_ly.xml inside it.

	Inside the boulder_ly.xml file enter the following XML (replace ${GEOSERVER_DATA_DIR} with your actual path, e.g., file://C:/training/geoserver_data):

<layout>
 <decoration type="image" affinity="top,left" offset="45,8"
 size="174,60">
 <option name="url"
 value="${GEOSERVER_DATA_DIR}/geosolutions-logo-tx.png" />
 </decoration>

 <decoration type="text" affinity="bottom,right" offset="3,3">
 <option name="message" value="Boulder City" />
 <option name="font-size" value="14" />
 <option name="font-color" value="#FFFFFF" />
 <option name="halo-radius" value="1" />
 <option name="halo-color" value="#000000" />
 </decoration>

 <decoration type="scaleline" affinity="bottom,left" offset="3,3" />

 <decoration type="legend" affinity="top,right"
 offset="6,6" size="auto" />
</layout>

	Save and close the file.

	Go to the Layer Preview to preview the new map decoration on geosolutions:Mainrd layer. Once the layout boulder_ly.xml is defined, request it by adding format_options=layout:boulder_ly to the request parameters.

[image: ../../../_images/decoration2.png]
Map decoration

The request:

http://localhost:8083/geoserver/geosolutions/wms?service=WMS&version=1.1.0&request=GetMap&layers=geosolutions:Mainrd&styles=&bbox=3048474.661,1226045.092,3095249.0,1279080.5&width=451&height=512&srs=EPSG:2876&format=application/openlayers&format_options=layout:boulder_ly

Note

Zoom-in until the layer and legend appears since for this layer we have scale_denominator based rules. Also you can apply this format_layout to any layer, but be careful with the overalys since you will have all the legends printed out on the right-top side of the map.

Accessing Map information

This workshop section describes how to use the GeoServer template system to create custom HTML GetFeatureInfo responses. GetFeatureInfo is a WMS standard call that allows one to retrieve information about features and coverages displayed in a map.

The map can be composed of various layers, and GetFeatureInfo can be instructed to return multiple feature descriptions, which may be of different types. GetFeatureInfo can generate output in various formats: GML2, plain text and HTML.

Templating is concerned with the HTML one.

	Go to the Layer preview to show geosolutions:bplandmarks layer.

	Click for example on the Rocky Mountain Natl Park region in the OpenLayers map to show the FeatureInfo.

[image: ../../../_images/info1.png]
Default GetFeatureInfo request

	In order to configure a custom template of the GetFeatureInfo results create three files .FTL in $GEOSERVER_DATA_DIR/workspaces/geosolutions directory named:

- header.ftl
- content.ftl
- footer.ftl

Note

The Template is managed using Freemarker [http://freemarker.sourceforge.net/]. This is a simple yet powerful template engine that GeoServer uses whenever developers allowed user customization of textual outputs. In particular, at the time of writing it’s used to allow customization of GetFeatureInfo, GeoRSS and KML outputs.

Note

Splitting the template in three files allows the administrator to keep a consistent styling for the GetFeatureInfo result, but use different templates for different workspaces or different layers: this is done by providing a master header.ftl and footer.ftl file, but specify a different content.ftl for each layer.

	In header.ftl file enter the following HTML:

<#--
Header section of the GetFeatureInfo HTML output. Should have the <head> section, and
a starter of the <body>. It is advised that eventual CSS uses a special class for featureInfo,
since the generated HTML may blend with another page changing its aspect when using generic classes
like td, tr, and so on.
-->
<html>
 <head>
 <title>Geoserver GetFeatureInfo output</title>
 </head>
 <style type="text/css">
 table.featureInfo, table.featureInfo td, table.featureInfo th {
 border:1px solid #ddd;
 border-collapse:collapse;
 margin:0;
 padding:0;
 font-size: 90%;
 padding:.2em .1em;
 }

 table.featureInfo th{
 padding:.2em .2em;
 text-transform:uppercase;
 font-weight:bold;
 background:#eee;
 }

 table.featureInfo td{
 background:#fff;
 }

 table.featureInfo tr.odd td{
 background:#eee;
 }

 table.featureInfo caption{
 text-align:left;
 font-size:100%;
 font-weight:bold;
 text-transform:uppercase;
 padding:.2em .2em;
 }
 </style>
 <body>

	In content.ftl file enter the following HMTL:

<#list features as feature>
 Type: ${type.name} (id: ${feature.fid}):

 <#list feature.attributes as attribute>
 <#if !attribute.isGeometry>
 ${attribute.name}: ${attribute.value}
 </#if>
 </#list>

</#list>

	In footer.ftl file enter the following HMTL:

<#--
Footer section of the GetFeatureInfo HTML output. Should close the body and the html tag.
-->
 </body>
</html>

	Go to the Map Preview to show geosolutions:bplandmarks layer.

	Click on the Rocky Mountain Natl Park region in the OpenLayers map to show the new FeatureInfo representation.

[image: ../../../_images/info2.png]
Custom GetFeatureInfo template

Cross layer filtering with GeoServer

Normal GeoServer operation allows a filter to be applied on each layer in isolation, based on
its attribute and external information (geometry, values) provided by the user.
Cross layer filtering is instead the ability to select features from one layer that bear some
relationship with features coming from another layer.
Common questions that cross layer filters can help answering are:

	find all the ice cream stores located in a public park (point vs polygon)

	find all bus stops within 100m from the National Bank subsidiaries (point vs point, with distance reference)

	find all coastal roads (line VS polygon, assuming we have a set of polygons representing the water areas)

In order to solve these questions with a vanilla GeoServer a client would have to first
use WFS to gather all the geometries satisfying the base conditions (e.g., find the National Bank Subsidiaries),
load and unite them, and then issue a second request to the server in order to get the data from the
other layer (e.g., the bus stops within 100m from the previously loaded points).

[image: ../../../_images/before_crosslayer.png]
Round trips without cross layer filtering

The querylayer module

The querylayer extension, already installed in the workshop GeoServer instance, provides three new filter
functions that can be used to avoid the client/server extra round trips, and have the server handle the
secondary geometries collection instead.

	Name

	Arguments

	Description

	querySingle

	layer: String, attribute:String, filter:String

	Queries the specified layer``applying the specified (E)CQL ``filter and returns the value of attribute from the first feature in the result set. The layer name should be qualified (e.g. topp:states), the filter can be INCLUDE if no filtering is desired

	queryCollection

	layer: String, attribute:String, filter:String

	Queries the specified layer``applying the specified (E)CQL ``filter and returns the list of the values from attribute out of every single feature in the result set. The layer name should be qualified (e.g. topp:states), the filter can be INCLUDE if no filtering is desired. Will throw an exception if too many results are being collected (see the memory limits section for details)

	collectGeometries

	geometries: a list of Geometry objects

	Turns the list of geometries into a single Geometry object, suitable for being used as the reference geometry in spatial filters. Will throw an exception if too many coordinates are being collected (the results of queryCollection cannot be used as is)

These filter functions can be used directly in CQL filters, OGC filters and SLD, meaning they are available
both from WMS and WFS.

Finding all polygonal landmarks crossing a trail

The following map [http://localhost:8083/geoserver/geosolutions/wms/reflect?layers=geosolutions:bplandmarks,Trails&format=application/openlayers&width=512&height=512&BBOX=-105.31,39.97,-105.26,40.2] , obtained using the WMS reflector to keep the URL short, shows all polygonal landmarks and trails in Boulder (trails are visible when zooming-in due to scale dependencies):

http://localhost:8083/geoserver/geosolutions/wms/reflect?layers=geosolutions:bplandmarks,Trails&format=application/openlayers&width=512&height=512&BBOX=-105.31,39.97,-105.26,40.2

[image: ../../../_images/landmark_trails.png]
Polygonal landmarks and trails in Boulder

Now, let’s assume we want to find all polygonal landmarks crossing any trail using the above filter functions.
The first step would be to locate all the trails and extract their geometry attribute (the_geom):

queryCollection('Trails', 'the_geom', 'INCLUDE')

The above builds a list of geometries that we want to turn into a single MULTILINESTRING, in order to use it as a reference for a INTERSECTS filter. So we’ll call collectGeometries:

collectGeometries(queryCollection('Trails', 'the_geom', 'INCLUDE'))

Now that we have all the trails in a single geometry object we can use it to build a intersection filter with the polygonal landmarks:

INTERSECTS(the_geom, collectGeometries(queryCollection('Trails', 'the_geom', 'INCLUDE')))

Since the map contains two layers and we only want to filter on the first, the final CQL filter used in the GetMap request will be:

INTERSECTS(the_geom, collectGeometries(queryCollection('Trails', 'the_geom', 'INCLUDE')));INCLUDE

The result is that only two polygonal landmarks, the Boulder Mountain Park, and the smaller Buckingham Park, cross any trail:

[image: ../../../_images/landmark_crossing_trails.png]
Polygonal landmarks intersecting trails in Boulder

Finding all buildings located inside a park

In this case we’ll start with this map [http://localhost:8083/geoserver/geosolutions/wms/reflect?layers=geosolutions:bplandmarks,bbuildings&format=application/openlayers&width=512&height=512&&BBOX=-105.29,40.01,-105.28,40.02]:

http://localhost:8083/geoserver/geosolutions/wms/reflect?layers=geosolutions:bplandmarks,bbuildings&format=application/openlayers&width=512&height=512&&BBOX=-105.29,40.01,-105.28,40.02

[image: ../../../_images/buildings_parks.png]
Buildings and parks in Boulder

The filter construction is similar to the previous case, but this time we need to collect geometries only from parks, which have a MTFCC attribute equals to K2180:

INCLUDE;INTERSECTS(the_geom, collectGeometries(queryCollection('bplandmarks', 'the_geom', 'MTFCC = ''K2180''')))

[image: ../../../_images/buildings_inside_park.png]
Buildings inside parks in Boulder

Finding all buildings close enough to the Boulder County Courthouse

In this case we want to find all the buildings close to the Boulder County Courthouse.
The reference map [http://localhost:8083/geoserver/geosolutions/wms/reflect?layers=geosolutions:bptlandmarks,bbuildings&format=application/openlayers&width=512&height=512&&BBOX=-105.28061758059,40.016146865234,-105.27475307863,40.021151240234] this time is:

http://localhost:8083/geoserver/geosolutions/wms/reflect?layers=geosolutions:bptlandmarks,bbuildings&format=application/openlayers&width=512&height=512&&BBOX=-105.28061758059,40.016146865234,-105.27475307863,40.021151240234

[image: ../../../_images/court_buildings.png]
Boulder County Courthouse surrounded by buildings

This will extract a single geometry that we’ll use as a reference, so this time we are going to use the querySingle function instead, and use the DWITHIN function to locate all buildings within 400 feet from the courthouse:

INCLUDE;DWITHIN(the_geom, querySingle('bptlandmarks', 'the_geom', 'FULLNAME = ''Boulder County Courthouse'''), 400, feet)

and the resulting map is going to be:

[image: ../../../_images/court_close_buildings.png]
Buildings close to the Boulder County Courthouse

Advanced Raster Data Management

	Introduction To Processing With GDAL Utilities
	gdalinfo

	gdal_translate

	gdaladdo

	Process in bulk

	gdalwarp

	Advanced Mosaics and Pyramids Configuration
	Configuring an Image Mosaic

	Configuring an Image Pyramid

	Using ImageMosaic with Footprint
	Introduction

	Configuration

	Examples

	Advanced Processing With GDAL Utilities
	Example n° 1: Serving a large number of GrayScale GeoTiff with Palette

	Example n° 2: Serving a large number of DTM ASCII Grid Files

	Example n° 3: Serving a large number of Cartographic Black/White GeoTiff with Palette

Introduction To Processing With GDAL Utilities

In the Adding a GeoTiff section, a GeoTIFF file has been added to GeoServer as is. However, it’s common practice to do a preliminary analysis on the available data and, if needed, optimize it since configuring big datasets without proper pre-processing, may result in low performance when accessing them.
In this section, instructions about how to do data optimization will be provided by introducing some FWTools Utilities.

Note

On a Windows machine you can set-up a shell with all GDAL Utilities opening a terminal and running the file setenv.bat under the %TRAINING_ROOT% folder. This operation must repeated whenever a new terminal window is open. Alternatively run directly the file gdal.bat under the %TRAINING_ROOT% folder.

gdalinfo

This utility allows to get several info from the GDAL library, for instance, specific Driver capabilities and input Datasets/Files properties.

gdalinfo - Getting Drivers Capabilities

Being GeoTIFF a widely adopted geospatial format, it’s useful to get information about the GDAL GeoTIFF’s Driver capabilities using the command:

gdalinfo --format GTIFF

This is only a trimmed down version of a typical output:

Format Details:
 Short Name: GTiff
 Long Name: GeoTIFF
 Extension: tif
 Mime Type: image/tiff
 Help Topic: frmt_gtiff.html
 Supports: Create() - Create writeable dataset.
 Supports: CreateCopy() - Create dataset by copying another.
 Supports: Virtual IO - eg. /vsimem/
 Creation Datatypes: Byte UInt16 Int16 UInt32 Int32 Float32 Float64 CInt16 CInt32 CFloat32 CFloat64
 <CreationOptionList>
 <Option name="COMPRESS" type="string-select">
 <Value>NONE</Value>
 <Value>LZW</Value>
 <Value>PACKBITS</Value>
 <Value>JPEG</Value>
 <Value>CCITTRLE</Value>
 <Value>CCITTFAX3</Value>
 <Value>CCITTFAX4</Value>
 <Value>DEFLATE</Value>
 </Option>
 <Option name="PREDICTOR" type="int" description="Predictor Type" />
 <Option name="JPEG_QUALITY" type="int" description="JPEG quality 1-100" default="75"/>
 <Option name="ZLEVEL" type="int" description="DEFLATE compression level 1-9" default="6" />
 <Option name="LZMA_PRESET" type="int" description="LZMA compression level 0(fast)-9(slow)" default="6" />
 <Option name="NBITS" type="int" description="BITS for sub-byte files (1-7), sub-uint16 (9-15), sub-uint32 (17-31)" />
 <Option name="INTERLEAVE" type="string-select" default="PIXEL">
 <Value>BAND</Value>
 <Value>PIXEL</Value>
 </Option>
 <Option name="TILED" type="boolean" description="Switch to tiled format"/>
 <Option name="TFW" type="boolean" description="Write out world file"/>
 <Option name="RPB" type="boolean" description="Write out .RPB (RPC) file" />
 <Option name="BLOCKXSIZE" type="int" description="Tile Width"/>
 <Option name="BLOCKYSIZE" type="int" description="Tile/Strip Height"/>
 <Option name="PHOTOMETRIC" type="string-select">
 <Value>MINISBLACK</Value>
 <Value>MINISWHITE</Value>
 <Value>PALETTE</Value>
 <Value>RGB</Value>
 <Value>CMYK</Value>
 <Value>YCBCR</Value>
 <Value>CIELAB</Value>
 <Value>ICCLAB</Value>
 <Value>ITULAB</Value>
 </Option>
 <Option name="SPARSE_OK" type="boolean" description="Can newly created files have missing blocks?" default="FALSE" />
 <Option name="ALPHA" type="boolean" description="Mark first extrasample as being alpha" />
 <Option name="PROFILE" type="string-select" default="GDALGeoTIFF">
 <Value>GDALGeoTIFF</Value>
 <Value>GeoTIFF</Value>
 <Value>BASELINE</Value>
 </Option>
 <Option name="PIXELTYPE" type="string-select">
 <Value>DEFAULT</Value>
 <Value>SIGNEDBYTE</Value>
 </Option>
 <Option name="BIGTIFF" type="string-select" description="Force creation of BigTIFF file">
 <Value>YES</Value>
 <Value>NO</Value>
 <Value>IF_NEEDED</Value>
 <Value>IF_SAFER</Value>
 </Option>
 <Option name="ENDIANNESS" type="string-select" default="NATIVE" description="Force endianness of created file. For DEBUG purpose mostly">
 <Value>NATIVE</Value>
 <Value>INVERTED</Value>
 <Value>LITTLE</Value>
 <Value>BIG</Value>
 </Option>
 <Option name="COPY_SRC_OVERVIEWS" type="boolean" default="NO" description="Force copy of overviews of source dataset (CreateCopy())" />
 </CreationOptionList>

	From the above list of create options it’s possible to determine the main GeoTIFF Driver’s writing capabilities:

	
	COMPRESS: customize the compression to be used when writing output data

	JPEG_QUALITY: specify a quality factor to be used by the JPEG compression

	TILED: When set to YES it allows to tile output data

	BLOCKXSIZE, BLOCKYZISE: Specify the Tile dimension width and Tile dimension height

	PHOTOMETRIC: Specify the photometric interpretation of the data

	PROFILE: Specify the GeoTIFF profile to be used (some profiles only support a minimal set of TIFF Tags while some others provide a wider range of Tags)

	BIGTIFF: Specify when to write data as BigTIFF (A TIFF format which allows to break the 4GB Offset boundary)

gdalinfo - Getting Dataset/File Properties

The following instructions allow you to get information about the sample dataset previously configured in GeoServer.

	Run:

* Linux::

 cd ${TRAINING_ROOT}/data/user_data/aerial

 gdalinfo 13tde815295_200803_0x6000m_cl.tif

* Windows::

 setenv.bat

 cd %TRAINING_ROOT%\data\user_data\aerial\

 gdalinfo 13tde815295_200803_0x6000m_cl.tif

[image: ../../../_images/fw_basegdalinfo.png]
Part of the gdalinfo output on a sample dataset

	Check the Block info as well as the Overviews info if present.

	Block: It represents the internal tiling. Notice that the sample dataset has tiles made of 16 rows having width equals to the full image width.

	Overviews: It provides information about the underlying overviews. Notice that the sample dataset doesn’t have overviews since the Overviews property is totally missing from the gdalinfo output.

gdal_translate

This utility allows to convert a dataset to a different format by allowing a wide set of parameters to customize the conversion.

Running the command:

gdal_translate

allows to get the list of supported parameters as well as the supported output formats:

Usage: gdal_translate [--help-general]
 [-ot {Byte/Int16/UInt16/UInt32/Int32/Float32/Float64/
 CInt16/CInt32/CFloat32/CFloat64}] [-strict]
 [-of format] [-b band] [-mask band] [-expand {gray|rgb|rgba}]
 [-outsize xsize[%] ysize[%]]
 [- unscale] [-scale [src_min src_max [dst_min dst_max]]]
 [-srcwin xoff yoff xsize ysize] [-projwin ulx uly lrx lry]
 [-a_srs srs_def] [-a_ullr ulx uly lrx lry] [-a_nodata value]
 [-gcp pixel line easting northing [elevation]]*
 [-mo "META-TAG=VALUE"]* [-q] [-sds]
 [-co "NAME=VALUE"]* [-stats]
 src_dataset dst_dataset

	Where the meaning of the main parameters is summarized below:

	
	-ot: allows to specify the output datatype (Make sure that the specified datatype is contained in the Creation Datatypes list of the Writing driver)

	-of: specify the desired output format (GTIFF is the default value)

	-b: allows to specify an input band to be written in the output file. (Use multiple -b option to specify more bands)

	-mask: allows to specify an input band to be write an output dataset mask band.

	-expand: allows to expose a dataset with 1 band with a color table as a dataset with 3 (rgb) or 4 (rgba) bands. The (gray) value allows to expand a dataset with a color table containing only gray levels to a gray indexed dataset.

	-outsize: allows to set the size of the output file in terms of pixels and lines unless the % sign is attached in which case it’s as a fraction of the input image size.

	-unscale: allows to apply the scale/offset metadata for the bands to convert from scaled values to unscaled ones.

	-scale: allows to rescale the input pixels values from the range src_min to src_max to the range dst_min to dst_max. (If omitted the output range is 0 to 255. If omitted the input range is automatically computed from the source data).

	-srcwin: allows to select a subwindow from the source image in terms of xoffset, yoffset, width and height

	-projwin: allows to select a subwindow from the source image by specifying the corners given in georeferenced coordinates.

	-a_srs: allows to override the projection for the output file. The srs_def may be any of the usual GDAL/OGR forms, complete WKT, PROJ.4, EPSG:n or a file containing the WKT.

	-a_ullr: allows to assign/override the georeferenced bounds of the output file.

	-a_nodata: allows to assign a specified nodata value to output bands.

	-co: allows to set a creation option in the form “NAME=VALUE” to the output format driver. (Multiple -co options may be listed.)

	-stats: allows to get statistics (min, max, mean, stdDev) for each band

	src_dataset: is the source dataset name. It can be either file name, URL of data source or subdataset name for multi*-dataset files.

	dst_dataset: is the destination file name.

gdal_translate - Tiling the sample dataset

The following steps provide instructions to tile the sample dataset previously configured in GeoServer, by using the GeoTiff driver.

	Create a directory to store the converted data:

	Linux:

cd ${TRAINING_ROOT}/data/user_data

mkdir retiled

	Windows:

cd %TRAINING_ROOT%\data\user_data

mkdir retiled

	Convert the input sample data to an output file having tiling set to 512x512. Run:

	Linux:

gdal_translate -co "TILED=YES" -co "BLOCKXSIZE=512" -co "BLOCKYSIZE=512" aerial/13tde815295_200803_0x6000m_cl.tif retiled/13tde815295_200803_0x6000m_cl.tif

	Windows:

gdal_translate -co "TILED=YES" -co "BLOCKXSIZE=512" -co "BLOCKYSIZE=512" aerial\13tde815295_200803_0x6000m_cl.tif retiled\13tde815295_200803_0x6000m_cl.tif

	Optionally, check that the output dataset have been successfully tiled, by running the command:

	Linux:

gdalinfo retiled/13tde815295_200803_0x6000m_cl.tif

	Windows:

gdalinfo retiled\13tde815295_200803_0x6000m_cl.tif

[image: ../../../_images/fw_tiledgdalinfo.png]
Part of the gdalinfo output on the tiled dataset. Notice the Block value now is 512x512

gdaladdo

This utility allows to add overviews to a dataset. The following steps provide instructions to add overviews to the tiled sample dataset.

Running the command:

gdaladdo

allows to get the list of supported parameters:

Usage: gdaladdo [-r {nearest,average,gauss,average_mp,average_magphase,mode}]
 [-ro] [--help-general] filename levels

	Where the meaning of the main parameters is summarized below:

	
	-r: allows to specify the resampling algorithm (Nearest is the default value)

	-ro: allows to open the dataset in read-only mode, in order to generate external overview (for GeoTIFF especially)

	filename: represents the file to build overviews for.

	levels: allows to specify a list of overview levels to build.

gdaladdo - Adding overviews to the sample dataset

	Run:

	Linux:

cd ${TRAINING_ROOT}/data/user_data/retiled

gdaladdo -r average 13tde815295_200803_0x6000m_cl.tif 2 4 8 16 32

	Windows:

cd %TRAINING_ROOT%\data\user_data\retiled

gdaladdo -r average 13tde815295_200803_0x6000m_cl.tif 2 4 8 16 32

to add 5 levels of overviews having 2,4,8,16,32 subsampling factors applied to the original image resolution respectively.

	Optionally, check that the overviews have been added to the dataset, by running the command:

gdalinfo 13tde815295_200803_0x6000m_cl.tif

[image: ../../../_images/fw_tiledovgdalinfo.png]
Part of the gdalinfo output on the tiled dataset with overviews. Notice the Overviews properties

Process in bulk

Instead of manually repeating these 2 steps (retile + add overviews) for each file, we can invoke a few commands to get it automated.

	Run:

	Linux:

cd ${TRAINING_ROOT}/data/user_data

mkdir optimized

cd aerial

for i in `find *.tif`; do gdal_translate -CO "TILED=YES" -CO "BLOCKXSIZE=512" -CO "BLOCKYSIZE=512" $i ../optimized/$i; gdaladdo -r average ../optimized/$i 2 4 8 16 32; done

	Windows:

cd %TRAINING_ROOT%\data\user_data\

mkdir optimized

cd aerial

 notepad optimize.bat

will be open a text editor. Copy the following content:

for %%F in (*.tif) do (
 echo Processing file %%F

 REM translate
 echo Performing gdal_translate on file %%F to file %%~nF.tiff
 gdal_translate -co "TILED=YES" -co "BLOCKXSIZE=512" -co "BLOCKYSIZE=512" -co "COMPRESS=DEFLATE" %%F ..\optimized\%%~nF.tiff

 REM add overviews
 echo Adding overviews on file %%~nF.tiff
 gdaladdo -r average --config COMPRESS_OVERVIEW DEFLATE ..\optimized\%%~nF.tiff 2 4 8 16 32

)

Then save the file and run the created .bat file:

optimize.bat

	You should see a list of run like this:

...
Input file size is 2500, 2500
0...10...20...30...40...50...60...70...80...90...100 - done.
0...10...20...30...40...50...60...70...80...90...100 - done.
Input file size is 2500, 2500
0...10...20...30...40...50...60...70...80...90...100 - done.
0...10...20...30...40...50...60...70...80...90...100 - done.
Input file size is 2500, 2500
0...10...20...30...40...50...60...70...80...90...100 - done.
0...10...20...30...40...50...60...70...80...90...100 - done.
...

Warning

This process can take some seconds.

At this point optimized datasets have been prepared and they are ready to be served by GeoServer as an ImageMosaic.

gdalwarp

This utility allows to warp and reproject a dataset. The following steps provide instructions to reproject the aerial dataset (which has “EPSG:26913” coordinate reference system) to WGS84 (“EPSG:4326”).

Running the command:

gdalwarp

allows to get the list of supported parameters:

Usage: gdalwarp [--help-general] [--formats]
 [-s_srs srs_def] [-t_srs srs_def] [-to "NAME=VALUE"]
 [-order n | -tps | -rpc | -geoloc] [-et err_threshold]
 [-refine_gcps tolerance [minimum_gcps]]
 [-te xmin ymin xmax ymax] [-tr xres yres] [-tap] [-ts width height]
 [-wo "NAME=VALUE"] [-ot Byte/Int16/...] [-wt Byte/Int16]
 [-srcnodata "value [value...]"] [-dstnodata "value [value...]"] -dstalpha
 [-r resampling_method] [-wm memory_in_mb] [-multi] [-q]
 [-cutline datasource] [-cl layer] [-cwhere expression]
 [-csql statement] [-cblend dist_in_pixels] [-crop_to_cutline]
 [-of format] [-co "NAME=VALUE"]* [-overwrite]
 srcfile* dstfile

	Where the meaning of the main parameters is summarized below:

	
	-s_srs: allows to specify the source coordinate reference system

	-t_srs: allows to specify the target coordinate reference system

	-te: allows to set georeferenced extents (expressed in target CRS) of the output

	-tr: allows to specify the output resolution (expressed in target georeferenced units)

	-ts: allows to specify the output size in pixel and lines.

	-r: allows to specify the resampling method (one of near, bilinear, cubic, cubicspline and lanczos)

	-srcnodata: allows to specify band values to be excluded from interpolation.

	-dstnodata: allows to specify nodata values on output file.

	-wm: allows to specify the amount of memory (expressed in megabytes) used by the warping API for caching.

gdalwarp - Reprojecting sample dataset to WGS84

	Run:

	Linux:

cd ${TRAINING_ROOT}/data/user_data/retiled

gdalwarp -t_srs "EPSG:4326" -co "TILED=YES" 13tde815295_200803_0x6000m_cl.tif 13tde815295_200803_0x6000m_cl_warped.tif

	Windows:

cd %TRAINING_ROOT%/data/user_data/retiled

gdalwarp -t_srs "EPSG:4326" -co "TILED=YES" 13tde815295_200803_0x6000m_cl.tif 13tde815295_200803_0x6000m_cl_warped.tif

to reproject the specified aerial dataset to WGS84 coordinate reference system.

	Optionally, check that reprojection has been successfull, by running the command:

gdalinfo 13tde815295_200803_0x6000m_cl_warped.tif

[image: ../../../_images/fw_warpedgdalinfo.png]
Part of the gdalinfo output on the warped dataset. Notice the updated Coordinate System property

In the next section, instructions to configure an ImageMosaic will be provided.

Advanced Mosaics and Pyramids Configuration

In this section will learn how to manage Image Mosaics and Image Pyramids in GeoServer.

Configuring an Image Mosaic

As introduced in a previous section an Image Mosaic is composed of a set of datasets which are exposed as a single coverage. The ImageMosaic format allows to automatically build and setup a mosaic from a set of georeferenced datasets.
This section provides better instructions to configure an Image Mosaic

Note

Before you start, ensure that the Maps - Raster section has been completed.

We will configure an ImageMosaic using the optimized dataset. As explained in the Maps - Raster section, follow the steps 1 to 4, then at the step 5 fill the fields as explained below.

	Specify a proper name (as an instance, boulder_bg_optimized) in the Data Source Name field of the interface.

	Specify file:<TRAINING_ROOT>/data/user_data/optimized as URL of the sample data in the Connections Parameter’s - URL field.

[image: ../../../_images/mosaic_addraster.jpg]

	Click Save.

	Publish the layer by clicking on the publish link.

[image: ../../../_images/mosaic_publish.jpg]

	Set boulder_bg_optimized as name and title of the layer.

[image: ../../../_images/mosaic_setname.jpg]

	Check the Coordinate Reference Systems and the Bounding Boxes fields are properly set.

	Customize the ImageMosaic properties if needed. For the sample mosaic, set the OutputTransparentColor to the value 000000 (Which is the Black color). click on Save when done.

[image: 006_adv_workshop/001_adv_data_mgmt/003_adv_raster/../adding_data/img/raster5.png]

	AllowMultithreading: If true, enable tiles multithreading loading. This allows to perform parallelized loading of the granules that compose the mosaic.

	BackgroundValues: Set the value of the mosaic background. Depending on the nature of the mosaic it is wise to set a value for the no data area (usually -9999). This value is repeated on all the mosaic bands.

	Filter: Filter granules based on attributes from the input coverage.

	InputTransparentColor: Set the transparent color for the granules prior to mosaicking them in order to control the superimposition process between them. When GeoServer composes the granules to satisfy the user request, some of them can overlap some others, therefore, setting this parameter with the opportune color avoids the overlap of no data areas between granules.

	MaxAllowedTiles: Set the maximum number of the tiles that can be load simultaneously for a request. In case of a large mosaic this parameter should be opportunely set to not saturating the server with too many granules loaded at the same time.

	MergeBehavior: Merging behaviour for the various granules of the mosaic that GeoServer will produce. This parameter controls whether we want to merge in a single mosaic or stack all the bands into the final mosaic.

	OutputTransparentColor: Set the transparent color for the created mosaic.

	SORTING: Allow to specify the time order of the obtained granules set. Valid values are DESC (descending) or ASC (ascending). Note that it works just using DBMS as indexes.

	SUGGESTED_TILE_SIZE: Controls the tile size of the input granules as well as the tile size of the output mosaic. It consists of two positive integers separated by a comma, like 512,512.

	USE_JAI_IMAGEREAD: If true, GeoServer will make use of JAI ImageRead operation and its deferred loading mechanism to load granules; if false, GeoServer will perform direct ImageIO read calls which will result in immediate loading.

At this point the ImageMosaic is being published with GeoServer. Next step is checking how the performances in accessing the datasets have been improved.

	Click the Layer Preview link in the left GeoServer menu.

	Look for a geosolutions:boulder_bg layer (the dataset without optimization) and click the OpenLayers link beside of it.

[image: ../../../_images/mosaic_pratopreview.jpg]

	Play with the map preview by zooming and panning. When zooming, the response time isn’t immediate due to the access to the underlying big datasets which haven’t been optimized.

	Return to the Layer Preview page.

	Look for a geosolutions:boulder_bg_optimized layer (the optimized dataset with tiling and overviews set) and click the OpenLayers link beside of it.

[image: ../../../_images/mosaic_retiledpreview.jpg]

	Play with the map preview by zooming and panning:

	Check how the performances have been improved leveraging on both overviews and tiling.

	Note the better image quality of the lowest resolution views, having used an average interpolation algorithm when creating the overviews.

Configuring an Image Pyramid

GeoServer can efficiently deal with large TIFF with overviews, as long as the TIFF is below the 2GB size limit. Once the image size goes beyond such limit it’s time to start considering an image pyramid instead. An image pyramid builds multiple mosaics of images, each one at a different zoom level, making it so that each tile is stored in a separate file. This comes with a composition overhead to bring back the tiles into a single image, but can speed up image handling as each overview is tiled, and thus a sub-set of it can be accessed efficiently (as opposed to a single GeoTIFF, where the base level can be tiled, but the overviews never are).

Note

In order to build the pyramid we’ll use the gdal_retile.py [http://www.gdal.org/gdal_retile.html] utility, part of the GDAL command line utilities and available for various operating systems.

	Navigate to the workshop directory and create the bmpyramid directory into the <TRAINING_ROOT>\data\user_data directory

	From the command line run

	Linux:

cd $TRAINING_ROOT/data/user_data
mkdir bmpyramid
gdal_retile.py -v -r bilinear -levels 4 -ps 2048 2048 -co "TILED=YES" -co "COMPRESS=JPEG" -targetDir bmpyramid bmreduced.tiff

	Windows:

cd %TRAINING_ROOT%
cd %TRAINING_ROOT%\data\user_data\
mkdir bmpyramid
gdal_retile -v -r bilinear -levels 4 -ps 2048 2048 -co "TILED=YES" -co "COMPRESS=JPEG" -targetDir bmpyramid bmreduced.tiff

The gdal_retile.py [http://www.gdal.org/gdal_retile.html] user guide provides a detailed explanation for all the possible parameters, here is a description of the ones used in the command line above:

	-v: verbose output, allows the user to see each file creation scroll by, thus knowing progress is being made (a big pyramid construction can take hours)

	-r bilinear: use bilinear interpolation when building the lower resolution levels. This is key to get good image quality without asking GeoServer to perform expensive interpolations in memory

	-levels 4: the number of levels in the pyramid

	-ps 2048 2048: each tile in the pyramid will be a 2048x2048 GeoTIFF

	-co “TILED=YES”: each GeoTIFF tile in the pyramid will be inner tiled

	-co “COMPRESS=JPEG”: each GeoTIFF tile in the pyramid will be JPEG compressed (trades small size for higher performance, try out it without this parameter too)

	-targetDir bmpyramid: build the pyramid in the bmpyramid directory. The target directory must exist and be empty

	bmreduced.tiff: the source file

This will produce a number of TIFF files in bmpyramid along with the sub-directories 1, 2, 3, and 4.

	Go to the Stores section an add a new Raster Data Source clicking on ImagePyramid:

[image: ../../../_images/pyramid1.png]
Adding a ImagePyramid Data Source

Warning

This assumes the GeoServer image pyramid plug-in is already installed. The pyramid is normally an extension.

If the ImagePyramid store is not avaiable, before doing the exercise install the geoserver pyramid plugin from %TRAINING_ROOT%/data/plugins/ . Just decompress the zip file into %TRAINING_ROOT%/webapps/geoserver/WEB-INF/lib/ and restart GeoServer.

	Specify a proper name (bm_pyramid) in the Data Source Name field of the interface and specify a proper URL with the pyramid data directory

	Windows:

file:%TRAINING_ROOT%/data/user_data/bmpyramid

	Linux:

file:/home/geosolutions/Desktop/geoserver_training/data/user_data/bmpyramid

[image: ../../../_images/pyramid2.png]
Configuring a image pyramid store

	Click the Save button.

Note

When clicking save the store will look into the directory, recognize a gdal_retile generated structure and perform some background operations:

- move all tiff files in the root to a newly create directory 0
- create an image mosaic in all sub-directories (shapefile index plus property file)
- create the root property file describing the whole pyramid structure

	Publish the new pyramid created:

[image: ../../../_images/pyramid3.png]
Choosing the coverage for publishing

	Setup the layer parameter USE_JAI_IMAGEREAD to false to get better scalability: as told before the image loading using imageread is done using the JAI deferred mode so the data will be really loaded when are needed. This may cause many idle open ImageReaders, in case of having to deal with big pyramids (lots of granules over many levels) and it could cause performances issues.

[image: ../../../_images/pyramid4.png]
Tuning the pyramid parameters

	Click Submit button and go to the GeoServer Map Preview to see the pyramid:

[image: ../../../_images/pyramid5.png]
Previewing the pyramid

Using the ImageMosaic plugin with footprint management

Introduction

This section describes how to associate a vector footprint to a raster dataset in GeoServer using the ImageMosaic plugin.

A vector footprint is a shape used as a mask for the mosaic. Masking can be useful for hiding pixels which are meaningless, or for enhancing only few regions of the image in respect to others.

This chapter contains two sub-sections:

	The first sub-section, Configuration, describes the possible configurations needed to set up an ImageMosaic with footprint.

	The second sub-section, Examples, provides examples of configuration of an ImageMosaic with footprint.

Configuration

A vector footprint can be linked to an Imagemosaic in three different ways:

	By using for each mosaic granule a Sidecar File, a Shapefile with the same filename of the granule which contains the footprint for it;

	By using a single Shapefile called footprints.shp which contains all the footprints for each granule; each feature contained in the shapefile represent a footprint for an Imagemosaic granule. Each footprint is associated to a granule with the location attribute;

	By using a file called footprints.properties, this option add more flexibility to the option number 2.

The last option allows to write the following configuration inside the footprints.properties file:

footprint_source=*location of the Shapefile*
footprint_filter=*filter on the Shapefile searching for the attribute associated to each granule*

So the user is free to decide the Shapefile name to use (not only footprints.shp) and the attribute to use for the footprint granule association adding also a custom filter for the content of that attribute.

The footprint.properties can be used also to hold other kind of configurations, see the Inset Support paragraph below.

For example if a Shapefile called fakeShapeFile stores the various footprints in a table like this, where each Name attribute is referred to a granule file:

[image: ../../../_images/shp_table.png]

And the associated granules are:

	ortho_1-1_1n_s_la087_2010_1.tif

	ortho_2-2_1n_s_la075_2010_1.tif

	ortho_1-1_1n_s_la103_2010_1.tif

	and so on …

The associated footprints.properties file must be like this:

footprint_source=fakeShapeFile.shp
footprint_filter=Name=strSubstring(granule.location, 0, strLength(granule.location) - 4)

The substring operation is done for comparing the footprint attribute names and the granule names without the .tif extension.
Standard GeoServer Filter Functions can be use in this expression. A complete reference for them can be found here [http://docs.geoserver.org/2.6.x/en/user/filter/function_reference.html#string-functions].

Footprint Behaviours

There are three possible behaviours for Footprint:

	None: simply doesn’t use the Footprint and behaves like a standard ImageMosaic layer;

	Transparent: adds an alpha band of 0s on the image portions outside of the Footprint making them transparent, typically used for RGB data;

	Cut: set the background value on the image portions outside of the Footprint, typically used for GrayScale data.

The behaviour must be set directly on the Layer configuration page.

Inset Support

Another feature of the Footprint is the possibility to calculate an Inset on the vector footprint prior to applying it to the image. With the Inset a shrinking of the footprint is applied, typically for removing compression artefacts or any nasty effect at the borders. The inset can be activated by adding the following code inside footprints.properties:

 footprint_inset=*value in the shapefile u.o.m.*
 footprint_inset_type=*full/border*

* **Full** inset type calculates the inset for each footprint side
* **Border** does the same operation but those straight lines that overlap the image bounds are avoided; this last parameter is useful for images already cut in a regular grid.

Each modification of the footprints.properties file requires to Reload GeoServer. This operation can be achieved by going to Server Status and clicking on the
Reload button on the bottom-right side of the page.

Examples

The two datasets used in the following can be found into

	Linux: $TRAINING_ROOT/data/user_data/footprint_data

	Windows %TRAINING_ROOT%\data\user_data\footprint_data

The content of the footprint_data is:

	The first dataset, mosaic_single_tiff, contains a Shapefile called srtm_boulder.shp which represents a mask to use on the Boulder (Colorado) layer inside the $TRAINING_ROOT/data/user_data/boulder folder and can be used for testing footprint configuration with a Sidecar File.

	The second dataset, mosaic_sample, is a mosaic which represents Italy and is used for testing the other two configurations.

Here are presented a few steps for configuring a new ImageMosaic layer with footprint.

1. Vector Footprint configured with a sidecar file

Here the steps to load am Imagemosaic with a sidecar file as a vector footprint.

Step 1: Create a new ImageMosaic Layer

As seen in a previous chapter an ImageMosaic data store can be created by going to Stores ‣ Add New Store ‣ ImageMosaic.

Load the mosaic_single_tiff folder, from the TRAINING_ROOT folder navigate to \data\user_data\footprint_data\mosaic_single_tiff

[image: ../../../_images/mosaic_single_tiff.png]

Publish a Layer from that store going to Layers ‣ Add New Resource, choosing the name of the data store created above and then clicking on the publish button.

Step 2: Configuring a new Layer for the Mosaic

Warning

fill the field Declared CRS with the value EPSG:4326 if the CRS is not automatically set.

The layer will be rendered depending on the value of the FootprintBehavior field:

[image: ../../../_images/footprint_behav.png]

The user can set one of the three values for the Footprint behaviour as described above (None, Transparent, Cut).

After that, the user must confirm the modification by clicking on the Save button on the bottom side of the page.

Step 3: Example Results

Here are presented the results for each dataset.

This is an example of mosaic (mosaic_single_tiff) without applying Footprint:

[image: ../../../_images/footprint_normal.png]

And this is the result of setting FootprintBehavior to Cut:

[image: ../../../_images/footprint_cut.png]

Then navigate the filesystem in the mosaic directory, open (or create it if not exist) the file footprints.properties and write:

footprint_inset=0.01
footprint_inset_type=full

to add an inset.

Note

Remember that each modification on footprints.properties requires a GeoServer catalog and a GeoServer resource cache reloading in order to apply the changes.

If an Inset is added, the final mosaic is:

[image: ../../../_images/footprint_cut_inset.png]

2. Vector Footprint configured with footprints.shp

Repeat the steps described above but loading the mosaic_sample folder from %TRAINING_ROOT%\data\user_data\footprint_data\mosaic_sample

This is another example of mosaic (mosaic_sample) without Footprint:

[image: ../../../_images/footprint_mosaic_none.png]

And now after setting FootprintBehavior to Transparent (no Inset is used) on the Layer:

[image: ../../../_images/footprint_mosaic.png]

3. Vector Footprint configured with footprints.properties

For testing this functionality the user must

	Clone the directory %TRAINING_ROOT%\data\user_data\footprint_data\mosaic_sample and call it mosaic_sample2

	Rename all the footprints.xxx files that compose the shapefile to mask.xxx (don’t rename footprints.properties too!) and load another ImageMosaic datastore.

	open (create if not exist) the footprints.properties file and write:

footprint_source=mask.shp
footprint_inset=0.00001
footprint_inset_type=border

In order to specify an inset and use a footprint shapefile with a custom name.

	Then publish the imagemosaic located in the cloned directory called mosaic_sample2

The result of setting FootprintBehavior to Transparent, Inset type to border and Inset value to 0.00001 is:

[image: ../../../_images/footprint_mosaic_prop.png]

Advanced Processing With GDAL Utilities

In this section we are including some advanced examples of processing of Raster Data for GeoServer serving using GDAL Utilities.
Here below you can find a list of examples.

	Example n° 1: Serving a large number of GrayScale GeoTiff with Palette

	Example n° 2: Serving a large number of DTM ASCII Grid Files

	Example n° 3: Serving a large number of Cartographic Black/White GeoTiff with Palette

Example n° 1: Serving a large number of GrayScale GeoTiff with Palette

In this example there is a group of Gray GeoTiff images. The purpose of this section is to describe how to merge these images using GDAL. These data
are taken from the Regione Marche Cartographic Portal [http://www.ambiente.marche.it/Territorio/Cartografiaeinformazioniterritoriali/Archiviocartograficoeinformazioniterritoriali/Cartografie/ORTOFOTOCARTEREGIONALI110000.aspx#].

Note

Data have the same pixel resolution and same Coordinate Reference System EPSG:26592.

	Navigate to the workshop directory $TRAINING_ROOT/data/user_data/gdal_processing_data (on Windows %TRAINING_ROOT%\data\user_data\gdal_processing_data) and find the grayscale_data directory.

	Navigate inside the grayscale_data directory with the SDKshell.

Note

The following operations must be executed from the shell inside the selected directory. In Windows, run setenv.bat if not already launched.

	Calling the gdalinfo command on an image for retrieving the associated information:

gdalinfo 32501_.tif

And the result is:

Driver: GTiff/GeoTIFF
Files: 32501_.tif
 32501_.tfw
Size is 5494, 4526
Coordinate System is `'
Origin = (2356751.582169299000000,4762684.428062002200000)
Pixel Size = (1.269090000000000,-1.269090000000000)
Metadata:
 TIFFTAG_RESOLUTIONUNIT=2 (pixels/inch)
 TIFFTAG_XRESOLUTION=1200
 TIFFTAG_YRESOLUTION=1200
Image Structure Metadata:
 COMPRESSION=LZW
 INTERLEAVE=BAND
Corner Coordinates:
Upper Left (2356751.582, 4762684.428)
Lower Left (2356751.582, 4756940.527)
Upper Right (2363723.963, 4762684.428)
Lower Right (2363723.963, 4756940.527)
Center (2360237.772, 4759812.477)
Band 1 Block=5494x1 Type=Byte, ColorInterp=Palette
 Color Table (RGB with 256 entries)
 0: 0,0,0,255
 1: 1,1,1,255
 2: 2,2,2,255

 ~

 254: 254,254,254,255
 255: 255,255,255,255

From gdalinfo it is possible to note:

	No CRS definition. An image without CRS cannot be displayed on GeoServer.

	Tiles Striped (5494x1).

	LZW Compression.

	ColorInterpretation as a Palette.

	Using gdal_translate it is possible to change the ColorInterpretation from Palette to Gray.:

gdal_translate -expand gray -a_srs EPSG:26592 -of vrt $f ${f:0:6}.vrt

The final image format is not GeoTiff but VRT. This format simply creates an XML file containing information about the operation to
perform on the image; the output image is created only when the image must be shown to the screen. The CRS is set with the -a_srs parameter.
The color interpretation can be set to gray because each palette value is equal to a grayscale value (this last step is optional).

Note

The expand gray option does not create a multi banded image but only one band is present.

Note

In future a possible operation could be the processing of the input image with the color interpretation set to gray and the calculation of the optimal palette on the final image.

For executing the same operation on all the input images a script called script.sh (Linux) or script.bat (Windows) must be created and executed:

Note

In order to edit the scripts use the basic notepad editor on Windows or gedit on Linux. Remember that on Linux, after the script creation, it must be marked as executable with the command chmod +x <nome_script>.sh

Linux:

#!/bin/bash
FILES="*.tif"
echo start
for f in $FILES
do
 echo $f
 gdal_translate -expand gray -a_srs EPSG:26592 -of vrt $f ${f:0:6}.vrt
done
echo stop

Windows:

for /R %%f in (*.tif) do (
 gdal_translate -expand gray -a_srs EPSG:26592 -of vrt %%~f %%~f.vrt
)

	Creating a list of the VRT files:

ls *.vrt > list.txt (Linux)

or

dir /b *.vrt > list.txt (Windows)

	Merging of all the input files with the gdalbuildvrt command:

gdalbuildvrt -srcnodata 255 -vrtnodata 255 -resolution highest -input_file_list list.txt merged_vrt.vrt

Parameters used:

	-srcnodata 255 -vrtnodata 255 : setting of the input and output image No Data.

	-resolution highest : selection of the highest image resolution.

	-input_file_list list.txt : definition of the input file list.

The result of calling gdalinfo on the output image is:

Driver: VRT/Virtual Raster
Files: merged_vrt.vrt
 32501_.vrt

 ~

 32507_.vrt
Size is 16342, 9157
Coordinate System is:
PROJCS["Monte Mario (Rome) / Italy zone 2 (deprecated)",
 GEOGCS["Monte Mario (Rome)",
 DATUM["Monte_Mario_Rome",
 SPHEROID["International 1924",6378388,297,
 AUTHORITY["EPSG","7022"]],
 TOWGS84[-104.1,-49.1,-9.9,0.971,-2.917,0.714,-11.68],
 AUTHORITY["EPSG","6806"]],
 PRIMEM["Rome",12.45233333333333,
 AUTHORITY["EPSG","8906"]],
 UNIT["degree",0.0174532925199433,
 AUTHORITY["EPSG","9122"]],
 AUTHORITY["EPSG","4806"]],
 PROJECTION["Transverse_Mercator"],
 PARAMETER["latitude_of_origin",0],
 PARAMETER["central_meridian",2.54766666666666],
 PARAMETER["scale_factor",0.9996],
 PARAMETER["false_easting",2520000],
 PARAMETER["false_northing",0],
 UNIT["metre",1,
 AUTHORITY["EPSG","9001"]],
 AXIS["X",EAST],
 AXIS["Y",NORTH],
 AUTHORITY["EPSG","26592"]]
Origin = (2356629.695870598300000,4762684.428062002200000)
Pixel Size = (1.267290000000000,-1.267290000000000)
Corner Coordinates:
Upper Left (2356629.696, 4762684.428) (0d32'36.59"E, 42d59'54.65"N)
Lower Left (2356629.696, 4751079.854) (0d32'48.78"E, 42d53'38.68"N)
Upper Right (2377339.749, 4762684.428) (0d47'50.77"E, 43d 0' 9.65"N)
Lower Right (2377339.749, 4751079.854) (0d48' 1.42"E, 42d53'53.63"N)
Center (2366984.722, 4756882.141) (0d40'19.38"E, 42d56'54.40"N)
Band 1 Block=128x128 Type=Byte, ColorInterp=Gray
 NoData Value=255

	Transforming from VRT to GeoTiff with gdal_translate:

gdal_translate -co "BLOCKXSIZE=512" -co "BLOCKYSIZE=512" -co "TILED=YES" -co "BIGTIFF=YES" -co "COMPRESS=DEFLATE" merged_vrt.vrt merged_tif.tif

Warning

This operation might take many minutes.

Parameters used:

	-co “BLOCKXSIZE=512” -co “BLOCKYSIZE=512” -co “TILED=YES” : setting tile dimensions.

	-co “BIGTIFF=YES” -co “COMPRESS=DEFLATE” : (Optional) loss-less compression of the image for reducing the disk space occupation, similar to LZW.

Note

-co “BIGTIFF=YES” is used because GDAL is not automatically able to convert the GeoTiff image into a BigTiff if compression is set.

From gdalinfo:

Driver: GTiff/GeoTIFF
Files: merged_tif.tif
Size is 16342, 9157
Coordinate System is:
PROJCS["Monte Mario (Rome) / Italy zone 2",
 GEOGCS["Monte Mario (Rome)",
 DATUM["Monte_Mario_Rome",
 SPHEROID["International 1924",6378388,297.0000000000014,
 AUTHORITY["EPSG","7022"]],
 TOWGS84[-104.1,-49.1,-9.9,0.971,-2.917,0.714,-11.68],
 AUTHORITY["EPSG","6806"]],
 PRIMEM["Rome",12.45233333333333],
 UNIT["degree",0.0174532925199433],
 AUTHORITY["EPSG","4806"]],
 PROJECTION["Transverse_Mercator"],
 PARAMETER["latitude_of_origin",0],
 PARAMETER["central_meridian",15],
 PARAMETER["scale_factor",0.9996],
 PARAMETER["false_easting",2520000],
 PARAMETER["false_northing",0],
 UNIT["metre",1,
 AUTHORITY["EPSG","9001"]],
 AUTHORITY["EPSG","26592"]]
Origin = (2356629.695870598300000,4762684.428062002200000)
Pixel Size = (1.267290000000000,-1.267290000000000)
Metadata:
 AREA_OR_POINT=Area
Image Structure Metadata:
 COMPRESSION=DEFLATE
 INTERLEAVE=BAND
Corner Coordinates:
Upper Left (2356629.696, 4762684.428) (12d59'44.99"E, 42d59'54.65"N)
Lower Left (2356629.696, 4751079.854) (12d59'57.18"E, 42d53'38.68"N)
Upper Right (2377339.749, 4762684.428) (13d14'59.17"E, 43d 0' 9.65"N)
Lower Right (2377339.749, 4751079.854) (13d15' 9.82"E, 42d53'53.63"N)
Center (2366984.722, 4756882.141) (13d 7'27.78"E, 42d56'54.40"N)
Band 1 Block=512x512 Type=Byte, ColorInterp=Gray
 NoData Value=255

This image can be displayed on GeoServer but a further optimization step could bring to better performances. There could be two ways for optimizing
the GeoServer performances:

	building image overviews.

	building a pyramid of the image.

	(Optional) Optimization.

	Building overview with gdaladdo:

gdaladdo -r cubicspline --config COMPRESS_OVERVIEW DEFLATE --config GDAL_TIFF_OVR_BLOCKSIZE 512 merged_tif.tif 2 4 8 16 32

Overviews are reduced views of the input image used by GeoServer for displaying the image at a lower resolutions.

Parameters used:

	-r cubicspline : setting the interpolation mode to cubicspline (by default is nearest-neighbour).

	–config COMPRESS_OVERVIEW DEFLATE : setting DEFLATE compression on the overviews, for reducing disk space occupation.

	–config GDAL_TIFF_OVR_BLOCKSIZE 512 : setting tile dimensions on overviews.

	2 ~ 32 : setting overview level.

And with gdalinfo:

Band 1 Block=512x512 Type=Byte, ColorInterp=Gray
 NoData Value=255
 Overviews: 8171x4579, 4086x2290, 2043x1145, 1022x573, 511x287

Then the result can be displayed in GeoServer by configuring the image as a GeoTiff (see Adding a GeoTiff section).

	Building a pyramid through several gdalwarp invokations, each time by reducing the image resolution:

gdalwarp -r cubicspline -dstnodata 255 -srcnodata 255 -multi -tr 2,53458 -2,53458 -co BLOCKXSIZE=512 -co BLOCKYSIZE=512 -co TILED=YES -co COMPRESS=DEFLATE merged_tif.tif merged_tif_2.tif

Parameters used:

	-r cubicspline : definition interpolation method.

	-dstnodata 255 -srcnodata 255 : definition of the image input and output NO DATA.

	-multi : forcing to use multithreading.

	-tr 2,53458 -2,53458 : definition of the image resolutions.

Output image from gdalinfo:

Driver: GTiff/GeoTIFF
Files: merged_tif_2.tif
Size is 8171, 4578
Coordinate System is:

~

Band 1 Block=512x512 Type=Byte, ColorInterp=Gray
 NoData Value=255

After another gdalwarp on the output image:

gdalwarp -r cubicspline -dstnodata 255 -srcnodata 255 -multi -tr 5,06916 -5,06916 -co BLOCKXSIZE=512 -co BLOCKYSIZE=512 -co TILED=YES -co COMPRESS=DEFLATE merged_tif_2.tif merged_tif_4.tif

And gdalinfo:

Driver: GTiff/GeoTIFF
Files: merged_tif_4.tif
Size is 4085, 2289
Coordinate System is:

~

Band 1 Block=512x512 Type=Byte, ColorInterp=Gray
 NoData Value=255

The operations must be executed on the first image, then the same operation must be repeated on the output image and so on. This cycle
allows to create a pyramid of images, each one with a lower resolution.

Then the result can be displayed in GeoServer by configuring the images as a pyramid (see Advanced Mosaic and Pyramid configuration section).

	Displaying the result on GeoServer:

[image: ../../../_images/screen_overview.png]
Result with gdaladdo

[image: ../../../_images/screen_pyramid.png]
Result with ImagePyramid

Example n° 2: Serving a large number of DTM ASCII Grid Files

In this example there is a group of DTM images in ASCII Grid format. The purpose of this section is to describe how the GDAL commands may be used for merging the input
files provided. These data are taken from Regione Calabria Open Data Portal [http://pr5sit.regione.calabria.it/web/pr5sit/sezione-opendata1;jsessionid=D37F21C541E793075AF90E3B0A3AAFBD]
at the ASCII - GRID section.

Note

Data have the same pixel resolution and same Coordinate Reference System EPSG:3003.

Warning

This example requires GDAL with Python bindings.

	Navigate to the workshop directory $TRAINING_ROOT/data/user_data/gdal_processing_data (on Windows %TRAINING_ROOT%\data\user_data\gdal_processing_data) and find the DTM_data directory.

	Navigate inside the DTM_data directory with the SDKshell.

Note

The following operations must be executed from the shell inside the selected directory. In Windows, run setenv.bat if not already launched.

	Calling the gdalinfo command on an image for retrieving the associated information:

gdalinfo 521150.asc

And the result is:

Driver: AAIGrid/Arc/Info ASCII Grid
Files: 521150.asc
Size is 193, 154
Coordinate System is `'
Origin = (2590740.000000000000000,4433860.000000000000000)
Pixel Size = (40.000000000000000,-40.000000000000000)
Metadata:
 AREA_OR_POINT=Point
Corner Coordinates:
Upper Left (2590740.000, 4433860.000)
Lower Left (2590740.000, 4427700.000)
Upper Right (2598460.000, 4433860.000)
Lower Right (2598460.000, 4427700.000)
Center (2594600.000, 4430780.000)
Band 1 Block=193x1 Type=Float32, ColorInterp=Undefined
 NoData Value=-9999

From gdalinfo it is possible to note:

	No CRS definition. An image without CRS cannot be displayed on GeoServer.

	Tiles Striped (193x1).

	No Compression.

	Listing of all the images into a single text list with the following command:

ls *.asc > list.txt (Linux)

or

dir /b *.asc > list.txt (Windows)

	Merging of all the input files with the gdal_merge.py command:

gdal_merge.py -o merged.tif -co "TILED=YES" -co "BLOCKXSIZE=512" -co "BLOCKYSIZE=512" -co "COMPRESS=DEFLATE" -co "ZLEVEL=9" -co "BIGTIFF=YES" -init -9999 -a_nodata -9999 -n -9999 -ot Float32 --optfile list.txt

Note

This command must be executed with python for avoiding import errors.

Parameters used:

	-o merged.tif : definition of the output file name.

	-co “TILED=YES” -co “BLOCKXSIZE=512” -co “BLOCKYSIZE=512” : definition of tile dimensions.

	-co “COMPRESS=DEFLATE” -co “ZLEVEL=9” -co “BIGTIFF=YES” : definition of the compression mode.

Note

-co “BIGTIFF=YES” is used because GDAL is not automatically able to convert the GeoTiff image into a BigTiff if compression is set.

	-init -9999 : initialization of the image pixels to NO DATA.

	-a_nodata -9999 : definition of the output value for NO DATA.

	-n -9999 : definition of the input pixel value to ignore during merging.

	-ot Float32 : definition of the image output type.

	–optfile list.txt : definition of the input file list.

The gdalinfo output on the merged image is:

Driver: GTiff/GeoTIFF
Files: merged.tif
Size is 3613, 6284
Coordinate System is `'
Origin = (2570700.000000000000000,4445900.000000000000000)
Pixel Size = (40.000000000000000,-40.000000000000000)
Image Structure Metadata:
 COMPRESSION=DEFLATE
 INTERLEAVE=BAND
Corner Coordinates:
Upper Left (2570700.000, 4445900.000)
Lower Left (2570700.000, 4194540.000)
Upper Right (2715220.000, 4445900.000)
Lower Right (2715220.000, 4194540.000)
Center (2642960.000, 4320220.000)
Band 1 Block=512x512 Type=Float32, ColorInterp=Gray
 NoData Value=-9999

The merged image has a good tiling(512x512) and compression, but the CRS is still undefined.

	Setting of the image CRS with gdal_translate:

gdal_translate -a_srs "EPSG:3003" -co "TILED=YES" -co "BLOCKXSIZE=512" -co "BLOCKYSIZE=512" -co "COMPRESS=DEFLATE" -co "ZLEVEL=9" -co "BIGTIFF=YES" merged.tif merged_CRS.tif

The various input parameters are maintained because by default GDAL do not compress the input image and set a bad tiling.

From gdalinfo:

Driver: GTiff/GeoTIFF
Files: merged_CRS.tif
Size is 3613, 6284
Coordinate System is:
PROJCS["Monte Mario / Italy zone 1",
 GEOGCS["Monte Mario",
 DATUM["Monte_Mario",
 SPHEROID["International 1924",6378388,297.0000000000014,
 AUTHORITY["EPSG","7022"]],
 TOWGS84[-104.1,-49.1,-9.9,0.971,-2.917,0.714,-11.68],
 AUTHORITY["EPSG","6265"]],
 PRIMEM["Greenwich",0],
 UNIT["degree",0.0174532925199433],
 AUTHORITY["EPSG","4265"]],
 PROJECTION["Transverse_Mercator"],
 PARAMETER["latitude_of_origin",0],
 PARAMETER["central_meridian",9],
 PARAMETER["scale_factor",0.9996],
 PARAMETER["false_easting",1500000],
 PARAMETER["false_northing",0],
 UNIT["metre",1,
 AUTHORITY["EPSG","9001"]],
 AUTHORITY["EPSG","3003"]]
Origin = (2570700.000000000000000,4445900.000000000000000)
Pixel Size = (40.000000000000000,-40.000000000000000)
Metadata:
 AREA_OR_POINT=Area
Image Structure Metadata:
 COMPRESSION=DEFLATE
 INTERLEAVE=BAND
Corner Coordinates:
Upper Left (2570700.000, 4445900.000) (21d25'57.43"E, 39d29'28.80"N)
Lower Left (2570700.000, 4194540.000) (21d 3'12.94"E, 37d16'39.68"N)
Upper Right (2715220.000, 4445900.000) (23d 3'58.08"E, 39d18' 6.80"N)
Lower Right (2715220.000, 4194540.000) (22d38'27.42"E, 37d 6' 9.29"N)
Center (2642960.000, 4320220.000) (22d 2'40.73"E, 38d17'47.75"N)
Band 1 Block=512x512 Type=Float32, ColorInterp=Gray
 NoData Value=-9999

This image can be displayed on GeoServer but a further optimization step could bring to better performances.

	(Optional) Creation of the overviews associated to the merged image for having better throughput:

gdaladdo -r nearest --config COMPRESS_OVERVIEW DEFLATE --config GDAL_TIFF_OVR_BLOCKSIZE 512 merged_CRS.tif 2 4 8 16

Overviews are reduced views of the input image used by GeoServer for displaying the image at a lower resolutions.

Parameters used:

	-r nearest : definition of the interpolation method.

	–config COMPRESS_OVERVIEW DEFLATE : definition of the compression on overviews.

	–config GDAL_TIFF_OVR_BLOCKSIZE 512 : definition of the tile dimensions on overviews.

And with gdalinfo:

Driver: GTiff/GeoTIFF
Files: merged_CRS.tif
Size is 3613, 6284
Coordinate System is:
PROJCS["Monte Mario / Italy zone 1",
 GEOGCS["Monte Mario",
 DATUM["Monte_Mario",
 SPHEROID["International 1924",6378388,297.0000000000014,
 AUTHORITY["EPSG","7022"]],
 TOWGS84[-104.1,-49.1,-9.9,0.971,-2.917,0.714,-11.68],
 AUTHORITY["EPSG","6265"]],
 PRIMEM["Greenwich",0],
 UNIT["degree",0.0174532925199433],
 AUTHORITY["EPSG","4265"]],
 PROJECTION["Transverse_Mercator"],
 PARAMETER["latitude_of_origin",0],
 PARAMETER["central_meridian",9],
 PARAMETER["scale_factor",0.9996],
 PARAMETER["false_easting",1500000],
 PARAMETER["false_northing",0],
 UNIT["metre",1,
 AUTHORITY["EPSG","9001"]],
 AUTHORITY["EPSG","3003"]]
Origin = (2570700.000000000000000,4445900.000000000000000)
Pixel Size = (40.000000000000000,-40.000000000000000)
Metadata:
 AREA_OR_POINT=Area
Image Structure Metadata:
 COMPRESSION=DEFLATE
 INTERLEAVE=BAND
Corner Coordinates:
Upper Left (2570700.000, 4445900.000) (21d25'57.43"E, 39d29'28.80"N)
Lower Left (2570700.000, 4194540.000) (21d 3'12.94"E, 37d16'39.68"N)
Upper Right (2715220.000, 4445900.000) (23d 3'58.08"E, 39d18' 6.80"N)
Lower Right (2715220.000, 4194540.000) (22d38'27.42"E, 37d 6' 9.29"N)
Center (2642960.000, 4320220.000) (22d 2'40.73"E, 38d17'47.75"N)
Band 1 Block=512x512 Type=Float32, ColorInterp=Gray
 NoData Value=-9999
 Overviews: 1807x3142, 904x1571, 452x786, 226x393

Then the result can be displayed in GeoServer by configuring the image as a GeoTiff (see Adding a GeoTiff section).

	Displaying the result on GeoServer:

[image: ../../../_images/ascii_merged.png]

Example n° 3: Serving a large number of Cartographic Black/White GeoTiff with Palette

In this example there is a group of Cartographic Black/White images from “CARTA TECNICA DELLA REGIONE TOSCANA”. The purpose of this example is to describe how the GDAL commands may be used for merging the input
files provided.

Note

Data have the same pixel resolution and same Coordinate Reference System EPSG:25832. Also each pixel is stored into single bit.

	Navigate to the workshop directory $TRAINING_ROOT/data/user_data/gdal_processing_data (on Windows %TRAINING_ROOT%\data\user_data\gdal_processing_data) and find the CTR_data directory.

	Navigate inside the CTR_data directory with the SDKshell.

Note

The following operations must be executed from the shell inside the selected directory. In Windows, run setenv.bat if not already launched.

	Calling the gdalinfo command on an image for retrieving the associated information:

gdalinfo 20E27_1994.TIF

And the result is:

Driver: GTiff/GeoTIFF
Files: 20E27_1994.TIF
 20E27_1994.TFW
Size is 16050, 14050
Coordinate System is `'
GeoTransform =
 600769.026848671, 0.1, 7.3789937e-007
 4863785.940434861, -8.172141e-008, -0.1
Metadata:
 TIFFTAG_RESOLUTIONUNIT=2 (pixels/inch)
 TIFFTAG_SOFTWARE=IrfanView
 TIFFTAG_XRESOLUTION=72
 TIFFTAG_YRESOLUTION=72
Image Structure Metadata:
 COMPRESSION=PACKBITS
 INTERLEAVE=BAND
 MINISWHITE=YES
Corner Coordinates:
Upper Left (600769.027, 4863785.940)
Lower Left (600769.037, 4862380.940)
Upper Right (602374.027, 4863785.939)
Lower Right (602374.037, 4862380.939)
Center (601571.532, 4863083.440)
Band 1 Block=16050x4 Type=Byte, ColorInterp=Palette
 Image Structure Metadata:
 NBITS=1
 Color Table (RGB with 2 entries)
 0: 255,255,255,255
 1: 0,0,0,255

From gdalinfo it is possible to note:

	No CRS definition. An image without CRS cannot be displayed on GeoServer.

	Color Interpretation as palette.

	A GeoTransformation matrix is associated.

	Tiles Striped (16050x4).

	Packbits Compression.

	Executing the following commands on the tiff images:

gdalwarp -t_srs EPSG:25832 -of vrt $f ${f:0:10}_temp.vrt

gdal_translate -expand gray -of vrt ${f:0:10}_temp.vrt ${f:0:10}.vrt

The first operation sets the CRS to each image and creates a VRT file, for reducing space occupation. Also the use of gdalwarp internally performs
the GeoTransformation associated to the image.

The second operation is used for changing the color interpretation from palette to gray. This operation is done because in the final steps other grey levels
will be added with the interpolation. The expansion to the gray color interpretation leads to an expansion of the pixel dimension from 1 to 8 bits.

Note

The expand gray option does not create a multi banded image but only a single banded one.

Note

If the user wants to keep the palette, then can go directly to the Optional elaboration without expanding the Palette paragraph.

These operations must be executed inside a script:

Linux:

#!/bin/bash
FILES="*.TIF"
echo start
for f in $FILES
do
 echo $f
 gdalwarp -t_srs EPSG:25832 -of vrt $f ${f:0:10}_temp.vrt
 gdal_translate -expand gray -of vrt ${f:0:10}_temp.vrt ${f:0:10}.vrt
done
echo stop

Windows:

for /R %%f in (*.tif) do (
 gdalwarp -t_srs EPSG:25832 -of vrt %%~f %%~f_temp.vrt
 gdal_translate -expand gray -of vrt %%~f_temp.vrt %%~f.vrt
)

	Listing of all the VRT files into a single text list with the following command:

ls *.vrt > list.txt (Linux)

or

dir /b *.vrt > list.txt (Windows)

Warning

Delete the _temp.vrt files from the list because they overlap with the final vrt files created.

	Merging of all the input files with the gdalbuildvrt command:

gdalbuildvrt -srcnodata 255 -vrtnodata 255 -input_file_list list.txt merged_vrt.vrt

Parameters used:

	-srcnodata 255 -vrtnodata 255 : definition of the No Data associated with the file.

	-input_file_list list.txt : definition of input files to elaborate.

The gdalinfo output on the merged image is:

Driver: VRT/Virtual Raster
Files: merged_vrt_nodata.vrt
 20E27_1994.vrt

 ~

 20E60_1995.vrt
Size is 50052, 62047
Coordinate System is:
PROJCS["ETRS89 / UTM zone 32N",
 GEOGCS["ETRS89",
 DATUM["European_Terrestrial_Reference_System_1989",
 SPHEROID["GRS 1980",6378137,298.257222101,
 AUTHORITY["EPSG","7019"]],
 TOWGS84[0,0,0,0,0,0,0],
 AUTHORITY["EPSG","6258"]],
 PRIMEM["Greenwich",0,
 AUTHORITY["EPSG","8901"]],
 UNIT["degree",0.0174532925199433,
 AUTHORITY["EPSG","9122"]],
 AUTHORITY["EPSG","4258"]],
 PROJECTION["Transverse_Mercator"],
 PARAMETER["latitude_of_origin",0],
 PARAMETER["central_meridian",9],
 PARAMETER["scale_factor",0.9996],
 PARAMETER["false_easting",500000],
 PARAMETER["false_northing",0],
 UNIT["metre",1,
 AUTHORITY["EPSG","9001"]],
 AXIS["Easting",EAST],
 AXIS["Northing",NORTH],
 AUTHORITY["EPSG","25832"]]
Origin = (600768.734234663190000,4863785.940434861000000)
Pixel Size = (0.100000372821407,-0.100000372821407)
Corner Coordinates:
Upper Left (600768.734, 4863785.940) (10d15'18.69"E, 43d55'13.06"N)
Lower Left (600768.734, 4857581.217) (10d15'14.46"E, 43d51'51.99"N)
Upper Right (605773.953, 4863785.940) (10d19' 3.07"E, 43d55'10.54"N)
Lower Right (605773.953, 4857581.217) (10d18'58.64"E, 43d51'49.47"N)
Center (603271.344, 4860683.579) (10d17' 8.72"E, 43d53'31.28"N)
Band 1 Block=128x128 Type=Byte, ColorInterp=Gray
 NoData Value=255

	Transforming from VRT to GeoTiff with gdal_translate:

gdal_translate -a_nodata none -co "BLOCKXSIZE=512" -co "BLOCKYSIZE=512" -co "TILED=YES" -co "BIGTIFF=YES" -co "COMPRESS=DEFLATE" merged_vrt.vrt merged_tif.tif

The various input parameters are:

	-a_nodata none : avoid setting 255 as No Data for a better image optimization.

	-co “BLOCKXSIZE=512” -co “BLOCKYSIZE=512” -co “TILED=YES” : definition of the tile dimensions.

	-co “BIGTIFF=YES” -co “COMPRESS=DEFLATE” : definition of the compression method.

Note

BIGTIFF=YES must be set for big images because when compression is used, by default gdal_translate is not able to check if the final
image is a BigTiff or not.

From gdalinfo:

Driver: GTiff/GeoTIFF
Files: merged_tif.tif
Size is 50052, 62047
Coordinate System is:
PROJCS["ETRS89 / UTM zone 32N",
 GEOGCS["ETRS89",
 DATUM["European_Terrestrial_Reference_System_1989",
 SPHEROID["GRS 1980",6378137,298.2572221010002,
 AUTHORITY["EPSG","7019"]],
 TOWGS84[0,0,0,0,0,0,0],
 AUTHORITY["EPSG","6258"]],
 PRIMEM["Greenwich",0],
 UNIT["degree",0.0174532925199433],
 AUTHORITY["EPSG","4258"]],
 PROJECTION["Transverse_Mercator"],
 PARAMETER["latitude_of_origin",0],
 PARAMETER["central_meridian",9],
 PARAMETER["scale_factor",0.9996],
 PARAMETER["false_easting",500000],
 PARAMETER["false_northing",0],
 UNIT["metre",1,
 AUTHORITY["EPSG","9001"]],
 AUTHORITY["EPSG","25832"]]
Origin = (600768.734234663190000,4863785.940434861000000)
Pixel Size = (0.100000372821407,-0.100000372821407)
Metadata:
 AREA_OR_POINT=Area
Image Structure Metadata:
 COMPRESSION=DEFLATE
 INTERLEAVE=BAND
Corner Coordinates:
Upper Left (600768.734, 4863785.940) (10d15'18.69"E, 43d55'13.06"N)
Lower Left (600768.734, 4857581.217) (10d15'14.46"E, 43d51'51.99"N)
Upper Right (605773.953, 4863785.940) (10d19' 3.07"E, 43d55'10.54"N)
Lower Right (605773.953, 4857581.217) (10d18'58.64"E, 43d51'49.47"N)
Center (603271.344, 4860683.579) (10d17' 8.72"E, 43d53'31.28"N)
Band 1 Block=512x512 Type=Byte, ColorInterp=Gray

This image can be displayed on GeoServer but a further optimization step could bring to better performances. There could be two ways for optimizing
the GeoServer performances:

	building image overviews.

	building a pyramid of the image.

	(Optional) Optimization methods. Here are described two possible optimizations each of them using a different interpolation type:

	Creation of the overviews associated to the merged image for having better throughput:

gdaladdo -r average --config COMPRESS_OVERVIEW DEFLATE --config GDAL_TIFF_OVR_BLOCKSIZE 512 merged_tif.tif 2 4 8 16 32 64 128

Overviews are reduced views of the input image used by GeoServer for displaying the image at a lower resolutions.

Parameters used:

	-r average : definition of the interpolation method.

	–config COMPRESS_OVERVIEW DEFLATE : definition of the compression on overviews.

	–config GDAL_TIFF_OVR_BLOCKSIZE 512 : definition of the tile dimensions on overviews.

	2 ~ 128 : definition of the overviews level

And with gdalinfo:

Driver: GTiff/GeoTIFF
Files: merged_tif.tif
Size is 50052, 62047

~

Band 1 Block=512x512 Type=Byte, ColorInterp=Gray
 Overviews: 25026x31024, 12513x15512, 6257x7756, 3129x3878, 1565x1939, 783x970, 392x485

Then the result can be displayed in GeoServer by configuring the image as a GeoTiff (see Adding a GeoTiff section).

	(Optional) Creation of a pyramid associated to the merged image and displaying the image on GeoServer with the ImagePyramid plugin (see Advanced Mosaic and Pyramid configuration section).

For building a pyramid the gdalwarp command must be called several times. The operation to execute on the first image is:

gdalwarp -r cubic -multi -tr 0,200000745642814 -0,200000745642814 -co BLOCKXSIZE=512 -co BLOCKYSIZE=512 -co TILED=YES -co COMPRESS=DEFLATE merged_tif.tif merged_tif_2.tif

The parameters are:

	-r cubic : definition of the interpolation method (average interpolation can be used only with GDAL 1.10).

	-multi : forcing to use multithreading.

	-tr 0,200000745642814 -0,200000745642814 : definition of the image resolution.

From gdalinfo on the result image:

Driver: GTiff/GeoTIFF
Files: merged_tif_2.tif
Size is 25026, 31024

~

Band 1 Block=512x512 Type=Byte, ColorInterp=Gray

Then the same operation, with another value for the resolution must be executed on the result image:

gdalwarp -r cubic -multi -tr 0,400001491285628 -0,400001491285628 -co BLOCKXSIZE=512 -co BLOCKYSIZE=512 -co TILED=YES -co COMPRESS=DEFLATE merged_tif_2.tif merged_tif_4.tif

These operation must be repeated until the final image has a resolution 128 times lower than that of the initial image.

Note

Each call of gdalwarp reduces by half the image resolution.

After creating the various rasters, they must be saved inside a new directory. This directory must be internally divided into sub-directories numbered from 1 to 7, each of them
containing a raster of smaller dimension(going from 1 to 7) and leaving the original raster in the super-directory.

Then the user can configure the following structure with the ImagePyramid plugin.

	Displaying the result on GeoServer:

[image: ../../../_images/ctr_screen_pyr.png]
Result as a pyramid (Zoom on the image for seeing the result).

[image: ../../../_images/ctr_screen_ovr.png]
Result with overviews (Zoom on the image for seeing the result).

Optional elaboration without expanding the Palette

If the user wants to keep the palette the steps to achieve are quite similar.

	Executing the following commands on the tiff images:

gdalwarp -t_srs EPSG:25832 -of vrt $f ${f:0:10}_temp.vrt

gdal_translate -of vrt ${f:0:10}_temp.vrt ${f:0:10}.vrt

These operations must be executed inside a script:

Linux:

#!/bin/bash
FILES="*.TIF"
echo start
for f in $FILES
do
 echo $f
 gdalwarp -t_srs EPSG:25832 -of vrt $f ${f:0:10}_temp.vrt
 gdal_translate -of vrt ${f:0:10}_temp.vrt ${f:0:10}.vrt
done
echo stop

Windows:

for /R %%f in (*.tif) do (
 gdalwarp -t_srs EPSG:25832 -of vrt %%~f %%~f_temp.vrt
 gdal_translate -of vrt %%~f_temp.vrt %%~f.vrt
)

	Listing of all the VRT files into a single text list with the following command:

ls *.vrt > list.txt (Linux)

or

dir /b *.vrt > list.txt (Windows)

Warning

Delete the _temp.vrt files from the list because they overlap with the final vrt files created.

	Merging of all the input files with the gdalbuildvrt command:

gdalbuildvrt -srcnodata 0 -vrtnodata 0 -input_file_list list.txt merged_vrt.vrt

Parameters used:

	-srcnodata 0 -vrtnodata 0 : definition of the No Data associated with the file.

	-input_file_list list.txt : definition of input files to elaborate.

The gdalinfo output on the merged image is:

Driver: VRT/Virtual Raster
Files: merged_vrt_0.vrt
20E27_1994.TIF.vrt

~

20E60_1995.TIF.vrt
Size is 50052, 62047
Coordinate System is:
PROJCS["ETRS89 / UTM zone 32N",
 GEOGCS["ETRS89",
 DATUM["European_Terrestrial_Reference_System_1989",
 SPHEROID["GRS 1980",6378137,298.257222101,
 AUTHORITY["EPSG","7019"]],
 TOWGS84[0,0,0,0,0,0,0],
 AUTHORITY["EPSG","6258"]],
 PRIMEM["Greenwich",0,
 AUTHORITY["EPSG","8901"]],
 UNIT["degree",0.0174532925199433,
 AUTHORITY["EPSG","9122"]],
 AUTHORITY["EPSG","4258"]],
 PROJECTION["Transverse_Mercator"],
 PARAMETER["latitude_of_origin",0],
 PARAMETER["central_meridian",9],
 PARAMETER["scale_factor",0.9996],
 PARAMETER["false_easting",500000],
 PARAMETER["false_northing",0],
 UNIT["metre",1,
 AUTHORITY["EPSG","9001"]],
 AXIS["Easting",EAST],
 AXIS["Northing",NORTH],
 AUTHORITY["EPSG","25832"]]
Origin = (600768.734234663190000,4863785.940434861000000)
Pixel Size = (0.100000372821407,-0.100000372821407)
Corner Coordinates:
Upper Left (600768.734, 4863785.940) (10d15'18.69"E, 43d55'13.06"N)
Lower Left (600768.734, 4857581.217) (10d15'14.46"E, 43d51'51.99"N)
Upper Right (605773.953, 4863785.940) (10d19' 3.07"E, 43d55'10.54"N)
Lower Right (605773.953, 4857581.217) (10d18'58.64"E, 43d51'49.47"N)
Center (603271.344, 4860683.579) (10d17' 8.72"E, 43d53'31.28"N)
Band 1 Block=128x128 Type=Byte, ColorInterp=Palette
 NoData Value=0
 Color Table (RGB with 2 entries)
 0: 255,255,255,255
 1: 0,0,0,255

	Transforming from VRT to GeoTiff with gdal_translate:

gdal_translate -co "NBITS=1" -co "BLOCKXSIZE=512" -co "BLOCKYSIZE=512" -co "TILED=YES" -co "BIGTIFF=YES" -co "COMPRESS=DEFLATE" merged_vrt.vrt merged_tif.tif

The various input parameters are:

	-co “NBITS=1” : sets the bits per pixel to 1, because the Palette contains only 0 or 1.

	-co “BLOCKXSIZE=512” -co “BLOCKYSIZE=512” -co “TILED=YES” : definition of the tile dimensions.

	-co “BIGTIFF=YES” -co “COMPRESS=DEFLATE” : definition of the compression method.

Note

BIGTIFF=YES must be set for big images because when compression is used, by default gdal_translate is not able to check if the final
image is a BigTiff or not.

From gdalinfo:

Size is 50052, 62047
Coordinate System is:
PROJCS["ETRS89 / UTM zone 32N",
 GEOGCS["ETRS89",
 DATUM["European_Terrestrial_Reference_System_1989",
 SPHEROID["GRS 1980",6378137,298.2572221010002,
 AUTHORITY["EPSG","7019"]],
 TOWGS84[0,0,0,0,0,0,0],
 AUTHORITY["EPSG","6258"]],
 PRIMEM["Greenwich",0],
 UNIT["degree",0.0174532925199433],
 AUTHORITY["EPSG","4258"]],
 PROJECTION["Transverse_Mercator"],
 PARAMETER["latitude_of_origin",0],
 PARAMETER["central_meridian",9],
 PARAMETER["scale_factor",0.9996],
 PARAMETER["false_easting",500000],
 PARAMETER["false_northing",0],
 UNIT["metre",1,
 AUTHORITY["EPSG","9001"]],
 AUTHORITY["EPSG","25832"]]
Origin = (600768.734234663190000,4863785.940434861000000)
Pixel Size = (0.100000372821407,-0.100000372821407)
Metadata:
 AREA_OR_POINT=Area
Image Structure Metadata:
 COMPRESSION=DEFLATE
 INTERLEAVE=BAND
Corner Coordinates:
Upper Left (600768.734, 4863785.940) (10d15'18.69"E, 43d55'13.06"N)
Lower Left (600768.734, 4857581.217) (10d15'14.46"E, 43d51'51.99"N)
Upper Right (605773.953, 4863785.940) (10d19' 3.07"E, 43d55'10.54"N)
Lower Right (605773.953, 4857581.217) (10d18'58.64"E, 43d51'49.47"N)
Center (603271.344, 4860683.579) (10d17' 8.72"E, 43d53'31.28"N)
Band 1 Block=512x512 Type=Byte, ColorInterp=Palette
 NoData Value=0
 Image Structure Metadata:
 NBITS=1
 Color Table (RGB with 2 entries)
 0: 255,255,255,255
 1: 0,0,0,255

	(Optional) Optimization methods described here are similar to that described above:

	The overview creation method is equal to that described above.

	For creating the pyramid the commands to use are the same as described above with the addition of the -co “NBITS=1” command.

	Displaying the result on GeoServer:

[image: ../../../_images/ctr_palette_pyr.png]
Result as a pyramid (Zoom on the image for seeing the result).

[image: ../../../_images/ctr_palette_ovr.png]
Result with overviews (Zoom on the image for seeing the result).

Advanced Vectorial Data Management

This module presents working with vector data, how to obtain vector data information, filter, extract and update.

In this module you will learn how to:

	Retrieving data and metadata

	Filtering and extracting

	Modifying Feature Types
	Modifying Feature Types using GeoNode

	Modifying Feature Types using a Desktop GIS client

Retrieving vector data and metadata

In this section we will learn how to deal with vector data using WFS. First we will learn how to deal with metadata and then how to retrieve the features. We will be using the layer named Counties in the workshop namespace.

Note

The Open Geospatial Consortium Web Feature Service Interface Standard (WFS) provides an interface allowing requests for geographical features across the web using platform-independent calls. One can think of geographical features as the “source code” behind a map, whereas the WMS interface or online mapping portals like Google Maps return only an image, which end-users cannot edit or spatially analyze.

	Navigate to the GeoServer Welcome Page [http://localhost:8083/geoserver/web/].

	On the Welcome page locate the Layer Preview link (no need to login).

[image: ../../../_images/get1.png]
Layer Preview

	Navigate to the WFS GML output of the Counties layer.

[image: ../../../_images/get2.png]
WFS GML output

Depending on the browser, the output may be unformatted or recognized as XML. Here is what Firefox 3 shows:
http://localhost:8083/geoserver/ows?service=WFS&version=1.0.0&request=GetFeature&typeName=geosolutions:Counties&maxFeatures=50&outputFormat=GML2

[image: ../../../_images/get3.png]
Default WFS layer preview.

Note

We recommend the Mozilla Firefox web browser for navigating WFS response documents.

	Now that we know the quick and easy way to get WFS data, let’s go back and do it the way a standard WFS client works. First, the only thing expected to be known is the WFS server url: http://localhost:8083/geoserver/ows?service=WFS&version=1.0.0

Using that url, we can issue a GetCapabilities request in order to know which layer it contains and what operations are supported:
http://localhost:8083/geoserver/ows?service=WFS&version=1.0.0&request=GetCapabilities

[image: ../../../_images/get4.png]
GetCapabilities response

If we scroll below, we will find the Counties feature type described:

[image: ../../../_images/get5.png]
GetCapabilities response (Counties feature type)

	
	Now let’s request more information for the Counties layer using a DescribeFeatureType request:

	http://localhost:8083/geoserver/ows?service=WFS&version=1.0.0&request=DescribeFeatureType&typename=geosolutions:Counties

Which gives us information about the fields names and types as well as the geometry type, in this case MultiPolygon.

[image: ../../../_images/get6.png]
DescribeFeatureType response for Counties feature type

	After that, we can issue a basic GetFeature request, that looks like this:

http://localhost:8083/geoserver/ows?service=WFS&version=1.0.0&request=GetFeature&typeName=geosolutions:Counties&featureId=Counties.1

Note

Notice it’s almost the same as the one that Geoserver generated, but it’s requestin a single feature specifying its identifier via featureId=Counties.1

In the next section we will see how to filter the WFS output based on various attributes.

Filtering and Extracting vector data

WFS also defines mechanisms to only retrieve a subset of the data that matches some specified constraints.

	Create a new request.xml file in the training root and past the following request into it:

<wfs:GetFeature xmlns:wfs='http://www.opengis.net/wfs'
 xmlns:ogc='http://www.opengis.net/ogc' service='WFS' version='1.0.0'>
 <Query typeName='geosolutions:WorldCountries'>
 <ogc:Filter>
 <ogc:FeatureId fid='WorldCountries.137' />
 </ogc:Filter>
 </Query>
</wfs:GetFeature>

	Go on the command line, move to the training folder root, and execute the request using CURL:

curl -XPOST -d @request.xml -H "Content-type: application/xml" "http://localhost:8083/geoserver/ows"

	Now, let’s write an equivalent request - using the name of the state instead of the id- issuing a GET and encoding the filter in a language called CQL [http://en.wikipedia.org/wiki/CQL]. Copy the following URL in your browser’s navigation bar:

http://localhost:8083/geoserver/wfs?request=GetFeature&service=WFS&version=1.0.0&typeName=geosolutions:WorldCountries&outputFormat=GML2&CQL_FILTER=NAME=%27Monaco%27

[image: ../../../_images/cql-filter-url.png]
The CQL filter in the Firefox URL bar

[image: ../../../_images/cql_filter_result.png]
The results of the CQL filter

That’s how a feature set is filtered with either the OGC encoding or the CQL notation.

In the next section we will see how to edit the features via a protocol called WFS Transactional (WFS-T).

Modifying Feature Types

GeoServer provides a fully Transactional Web Feature Service (WFS-T) which enables users to insert/delete/modify the avilable FeatureTypes.
This section shows a few of the GeoServer WFS-T capabilities and interactions with GIS clients.

Modifying Feature Types using GeoNode

	Open your instance of GeoNode [http://geonode.org] and log in as a superuser or a user having write rigths on at least some Layers

[image: ../../../_images/wfs-t_geonode1.png]
GeoNode Layers

	Select a Layer on which whon you have right to edit data

Warning

You can edit only Layers which have been stored on a JDBC DataStore, like a DataBase. On GeoNode this is only possible if the DB datastore has been enabled from the settings.

[image: ../../../_images/wfs-t_geonode2.png]
GeoNode Layer Select

	Click on Edit Layer and then, from the pop-up window, click on Edit data

Warning

The Edit data button will be available only for writable Layers (see above).

[image: ../../../_images/wfs-t_geonode3.png]
GeoNode Edit Layer

	When the Map shows up along with your Layer, zoom in to a region you want to update or create.

[image: ../../../_images/wfs-t_geonode4.png]
GeoNode Navigate Layer

	Identify the Edit button on the map top toolbar, click on the small arrow on the left in order to show up the context menu.

[image: ../../../_images/wfs-t_geonode5.png]
GeoNode Edit Button

	Lets first Modify a FeatureType. Click on Modify.

[image: ../../../_images/wfs-t_geonode6.png]
GeoNode Modify FeatureType

	Select a geometry and click over it. From the small info dialog window, select Edit

[image: ../../../_images/wfs-t_geonode7.png]
GeoNode Editing a FeatureType

	Modify the geometry and/or the values of the field as you wish, and then click on Save.

Hint

If you want you can also completely delete the FeatureType by clicking on the Delete button from the same info dialog window.

[image: ../../../_images/wfs-t_geonode8.png]
GeoNode Updating a FeatureType

	Verify that the changes have been stored on GeoServer.

Replace the URL

http://your_host/maps/new?layer=geonode:streams_1

with

http://your_host/geoserver/wms/reflect?layers=geonode:streams_1

Warning

Pay attention to the parameter: layer becomes layers, plural. If you want you can also add an output format parameter, like format=openlayers. In that case the complete URL becomes:

http://your_host/geoserver/wms/reflect?layers=geonode:streams_1&format=openlayers

[image: ../../../_images/wfs-t_geonode9.png]
GeoServer Displaying the Updated Layer

Click over the FeautreType in order to display the updates values too.

	Repeat the FeatureType editing but this time click on Create (or simply click over the Edit button and not on its right small arrow).

[image: ../../../_images/wfs-t_geonode10.png]
GeoNode Creating a FeatureType

[image: ../../../_images/wfs-t_geonode11.png]
GeoServer Displaying the New Feature

Modifying Feature Types using a Desktop GIS client

	Open uDig [http://udig.refractions.net] GIS desktop client by going on the command line, changing directory in the training root if necessary, and running the udig commmand.

	Add GeoServer WFS to the catalog.

[image: ../../../_images/wfs-t1.png]

Use the import button in the catalog tab, and select “data” in the first page of the wizard

[image: ../../../_images/wfs-t2.png]
Selection of Web Feature Service data

Insert into the URL text box the following address:

http://localhost:8083/geoserver/wfs?request=GetCapabilities&service=WFS

[image: ../../../_images/wfs-t3.png]
The WFS URL

Select the Mainrd from the list

[image: ../../../_images/wfs-t4.png]
WFS Datasets shown into the uDig catalog

	Load the Mainrd Feature Type using drag-n-drop.

[image: ../../../_images/wfs-t5.png]
Importing Mainrd into the map

	Perform a zoom operation on the upper-right part of the layer.

[image: ../../../_images/wfs-t6.png]
Zooming in …

[image: ../../../_images/wfs-t7.png]
Zooming in …

	By using the Select and Edit Geometry tool try to move/add/remove some vertex to the small line at the center of the screen.

[image: ../../../_images/wfs-t8.png]
Playing with the Geometry

	Once finished use the Commit tool to persist the changes on GeoServer.

[image: ../../../_images/wfs-t9.png]
Committing changes throught the WFS-T protocol

	Use GeoServer Layer Preview to view the changes on the Mainrd layer.

Warning

In order to view the streets lines you have to specify the line style on the GetMap request.

[image: ../../../_images/wfs-t10.png]
Showing the changes to the Mainrd Feature Type

	On uDig look the Feature attribute values using the Info tool.

[image: ../../../_images/wfs-t11.png]
Retrieving Feature Type info from uDig interface

	Now open/create the request.xml file in the training root dir and set in the following requst, which will be used to issue an Update Feature type request to the WFS-T updating all roads labelled as Monarch Rd to Monarch Road

<wfs:Transaction xmlns:topp="http://www.openplans.org/topp" xmlns:ogc="http://www.opengis.net/ogc" xmlns:wfs="http://www.opengis.net/wfs" service="WFS" version="1.0.0">
 <wfs:Update typeName="geosolutions:Mainrd">
 <wfs:Property>
 <wfs:Name>LABEL_NAME</wfs:Name>
 <wfs:Value>Monarch Road</wfs:Value>
 </wfs:Property>
 <ogc:Filter>
 <ogc:PropertyIsEqualTo>
 <ogc:PropertyName>LABEL_NAME</ogc:PropertyName>
 <ogc:Literal>Monarch Rd</ogc:Literal>
 </ogc:PropertyIsEqualTo>
 </ogc:Filter>
 </wfs:Update>
</wfs:Transaction>

	Issue the WFS-T request towards GeoServer using curl on the command line:

curl -XPOST -d @request.xml -H "Content-type: application/xml" "http://localhost:8083/geoserver/ows"

	The response should be a TransactionResponse XML document containing a wfs:SUCCESS element

	Ask the info again using the uDig Info tool …

Note

In order to issue a GetFeatureInfo request from the OpenLayers MapPreview tool, just left-click over the line.

[image: ../../../_images/wfs-t13.png]
Obtaining the updated Feature Type info from uDig interface

	Finally, obtain the Feature type info using the GetFeatureInfo operation issued directly by the Map Preview [http://localhost:8083/geoserver/mapPreview.do] .

[image: ../../../_images/wfs-t14.png]
Obtaining the updated Feature Type info from OpenLayers MapPreview GetFeatureInfo

Spatial Processing with GeoNode

	Spatial Processing with Sextante

Spatial Processing with Sextante

Once you have connected to a GeoNode service and its data is available from QGIS, analysis can be performed on it, just as if you were using local data.

SEXTANTE is the analysis and data processing framework of QGIS, and it can be used to run a large number of different analysis algorithms for both raster and vector data. Both WCS and WFS connections can be used to get data that can be processes through SEXTANTE.

The SEXTANTE toolbox is the main component to call processing algorithms, and it contains a list all of available ones, organized by providers.

[image: ../../../_images/toolbox.png]
The QGIS algorithms group contains native python algorithms. Most of the remaining ones represent algorithms that depend on a third-party application. From the point of view of the user, however, there is no difference in the way these algorithms are executed, since they share a common UI and SEXTANTE takes care of the communication between the application and QGIS.

To run an algorithm, just click on its name in the toolbox, and a dialog will appear to define the inputs and outputs of the selected algorithm.

[image: ../../../_images/centroids.png]
All dialogs used to entering the parameters needed for an algorithm are created on-the-fly, and they all share the same look and feel, no matter which application the algorithm relies on.

If the selected algorithm requires vector layers, all loaded vector layers will be available, including those from WFS connections. If it requires raster layers, all loaded raster layers will be available, including those from WCS connections.

Click on Ok and the algorithm will be run and its outputs loaded in the QGIS canvas.

Algorithm depending on third-party application can be called in the same way. WFS and WMS layers will be available as well, even if the application does not support web services. SEXTANTE will take care of creating an intermediate file or selecting a compatible way of feeding the data into the application, performing all necessary import operations under the hood.

For instance, you can run algorithm that uses the R statistical computing software to perform a statistical analysis on the data loaded from a WFS connection.

[image: ../../../_images/r_alg.png]
The interface to define the input parameters is very similar to the one we saw in the previous example (and to those of all the other algorithms), and using an external application makes no difference from the point of view of the user.

[image: ../../../_images/r_dialog.png]
SEXTANTE algorithms are aware of the state of layers used for input. That means that they can take into account whether there is a selection in a vector layer, even in the case of calling an external application. In the SEXTANTE configuration menu, in the General group, check the “Use selected features” option to enable this behavior.

image:: use_selected.png

Now you can make a selection and call the R algorithm used before. It will just use those features that you selected.

Notice that SEXTANTE provides the context for seamlessly integrating all the pieces and allowing to easily work with all of them together. In this case, GeoServer is providing the data, QGIS is providing the interface where we perform the selection, and R is providing the processing. SEXTANTE is just the mediator between these elements.

Using SEXTANTE we can interact with a GeoServer instance not just to consume its data, but to import into it, having a bidirectional connection.

In the GeoServer/PostGIS tools group, you will find some tools that you can use to create a new workspace, import a layer or import a style, among others.

[image: ../../../_images/geoserver.png]
Styles are imported using an SLD file. Since QGIS supports exporting the style of a layer to SLD, you can create you styling using QGIS, then export it, and then use the corresponding SEXTANTE algorithm to add it to your GeoServer. To create and export a style, just right-click on a layer name in the TOC, select Properties, and then move to the Style tab. Clink on Save Style…” and the select *SLD style.

[image: ../../../_images/style.png]
Calling algorithms from the toolbox is the most common way of processing data with SEXTANTE, but in some cases that might not be the best alternative, specially if we have a workflow that involves a large number of different processes. SEXTANTE includes a graphical modeler that allow to create complex workflows that can be later executed as a single process, thus simplifying the process.

The modeler interface is started from the SEXTANTE menu, using the “SEXTANTE modeler” menu.

[image: ../../../_images/modeler.png]
Creating a model involves adding a set of inputs and then the algorithms to use on then, defining the links between them.

As an example, the model in the figure below takes a points layer, interpolates a raster layer from it and then extracts contour lines for that resulting raster layer, given an interval. The final layer is imported into a GeoServer instance. Used with a WFS service, this can be used to easily create an additional lines layer for a given points layer in a GeoServer instance, such as one containing temperature data for a set of sensors.

[image: ../../../_images/model.png]
The model can be added to the toolbox and run as any of the built-in algorithms.

[image: ../../../_images/model_toolbox.png]
Its parameters dialog is also created automatically from the inputs it takes and the outputs it produces.

[image: ../../../_images/model_dialog.png]
SEXTANTE exposes its API through the QGIS python console, including not just all its available algorithms, but also several tools for easy handling both vector and raster data and creating new geoalgorithms. Users familiar with python will be able to create much more complex models with ease, and to automate tasks that involve processing.

algorithms are executed ussing the runalg method, passing the name of the algorithm and the parameters it requires. Importing a layer into geoserver can be done from the QGIS console using code like the one shown below:

import sextante
filename = "/home/gisdata/example.shp"
sextante.runalg("gspg:importvectorintogeoserver","http://localhost:8080/geoserver/rest","admin","geoserver",filename,"workspace_name")

Algorithms in the gspg namespace include utilities for interacting with both GeoServer and PostGIS.

If the layer is loaded into QGIS, there is no need to enter the filename. The layer object can be obtained with the getobject() method and then passed to the algorithm call instead of the filename. For a layer named mylayer, that would be:

import sextante
layer = sextante.getobject("mylayer")
sextante.runalg("gspg:importvectorintogeoserver","http://localhost:8080/geoserver/rest","admin","geoserver",layer,"workspace_name")

Finally, a last productivity tool is available in SEXTANTE: the batch processing interface. Repeated calls to a single algorithm are simplified by using the batch processing interface. This can be used, for instance, to perform a bulk import of layers into GeoServer, by setting the batch processing interface to call the Import into GeoServer algorithm as many times as layers are to be imported.

To open the batch processing interface, right-click on the name of an algorithm in the toolbox and select Run as batch process.

[image: ../../../_images/batch.png]
Each row in the table (3 by default) represents a single execution, and more rows can be added manually, or will be automatically added when selecting a set of input layers, each of them to be used as input in a different execution of the algorithm.

[image: ../../../_images/batch_import.png]
Models can also be run as a batch process. The model defined above, which computed a set of contour lines from a points layer and imported the result into GeoServer, can be called repeatedly using the same input layer and different intervals, to get contour layers of different level of detail, suitable to be rendered at different scales.

More detailed documentation about SEXTANTE can be found at a dedicated chapter in the current QGIS manual, at http://docs.qgis.org/html/en/docs/user_manual/sextante/index.html. For the most up-to-date version, check the corresponding entry at the QGIS documentation github repository, at https://github.com/qgis/QGIS-Documentation/tree/master/source/docs/user_manual/sextante

GeoNode Advanced Configuration

Here you will find information about each and every component of Geonode, for example geoserver, geonode settings, security, etc.

Settings

GeoNode Django Apps

Make a GeoNode release

Settings

Here’s a list of settings available in GeoNode and their default values. This includes settings for some external applications that
GeoNode depends on.

Documents settings

Here’s a list of settings available for the Documents app in GeoNode.

ALLOWED_DOCUMENT_TYPES

Default: ['doc', 'docx', 'xls', 'xlsx', 'pdf', 'zip', 'jpg', 'jpeg', 'tif', 'tiff', 'png', 'gif', 'txt']

A list of acceptable file extensions that can be uploaded to the Documents app.

MAX_DOCUMENT_SIZE

Default: 2

Metadata settings

CATALOGUE

A dict with the following keys:

	ENGINE: The CSW backend (default is geonode.catalogue.backends.pycsw_local)

	URL: The FULLY QUALIFIED base url to the CSW instance for this GeoNode

	USERNAME: login credentials (if required)

	PASSWORD: login credentials (if required)

pycsw is the default CSW enabled in GeoNode. pycsw configuration directives
are managed in the PYCSW entry.

PYCSW

A dict with pycsw’s configuration. Of note are the sections
metadata:main to set CSW server metadata and metadata:inspire
to set INSPIRE options. Setting metadata:inspire['enabled'] to true
will enable INSPIRE support. Server level configurations can be overridden
in the server section. See http://docs.pycsw.org/en/latest/configuration.html
for full pycsw configuration details.

DEFAULT_TOPICCATEGORY

Default: 'location'

The identifier of the default topic category to use when uploading new layers. The value specified for this setting must be
present in the TopicCategory table or GeoNode will return a TopicCategory.DoesNotExist exception.

MODIFY_TOPICCATEGORY

Default: False

Metadata Topic Categories list should not be modified, as it is strictly defined
by ISO (See: http://www.isotc211.org/2005/resources/Codelist/gmxCodelists.xml
and check the <CodeListDictionary gml:id=”MD_MD_TopicCategoryCode”> element).

Some customisation it is still possible changing the is_choice and the GeoNode
description fields.

In case it is absolutely necessary to add/delete/update categories, it is
possible to set the MODIFY_TOPICCATEGORY setting to True.

Maps settings

DEFAULT_MAP_BASE_LAYER

The name of the background layer to include in newly created maps.

DEFAULT_MAP_CENTER

Default: (0, 0)

A 2-tuple with the latitude/longitude coordinates of the center-point to use
in newly created maps.

DEFAULT_MAP_ZOOM

Default: 0

The zoom-level to use in newly created maps. This works like the OpenLayers
zoom level setting; 0 is at the world extent and each additional level cuts
the viewport in half in each direction.

MAP_BASELAYERS

Default:

MAP_BASELAYERS = [{
"source": {
 "ptype": "gxp_wmscsource",
 "url": OGC_SERVER['default']['PUBLIC_LOCATION'] + "wms",
 "restUrl": "/gs/rest"
 }
 },{
 "source": {"ptype": "gxp_olsource"},
 "type":"OpenLayers.Layer",
 "args":["No background"],
 "visibility": False,
 "fixed": True,
 "group":"background"
 }, {
 "source": {"ptype": "gxp_osmsource"},
 "type":"OpenLayers.Layer.OSM",
 "name":"mapnik",
 "visibility": False,
 "fixed": True,
 "group":"background"
 }, {
 "source": {"ptype": "gxp_mapquestsource"},
 "name":"osm",
 "group":"background",
 "visibility": True
 }, {
 "source": {"ptype": "gxp_mapquestsource"},
 "name":"naip",
 "group":"background",
 "visibility": False
 }, {
 "source": {"ptype": "gxp_bingsource"},
 "name": "AerialWithLabels",
 "fixed": True,
 "visibility": False,
 "group":"background"
 },{
 "source": {"ptype": "gxp_mapboxsource"},
 }, {
 "source": {"ptype": "gxp_olsource"},
 "type":"OpenLayers.Layer.WMS",
 "group":"background",
 "visibility": False,
 "fixed": True,
 "args":[
 "bluemarble",
 "http://maps.opengeo.org/geowebcache/service/wms",
 {
 "layers":["bluemarble"],
 "format":"image/png",
 "tiled": True,
 "tilesOrigin": [-20037508.34, -20037508.34]
 },
 {"buffer": 0}
]

}]

A list of dictionaries that specify the default map layers.

LAYER_PREVIEW_LIBRARY

Default: "leaflet"

The library to use for display preview images of layers. The library choices are:

	"leaflet"

	"geoext"

OGC_SERVER

Default: {} (Empty dictionary)

A dictionary of OGC servers and and their options. The main
server should be listed in the ‘default’ key. If there is no ‘default’
key or if the OGC_SERVER setting does not exist Geonode will raise
an Improperly Configured exception. Below is an example of the OGC_SERVER
setting:

OGC_SERVER = {
 'default' : {
 'LOCATION' : 'http://localhost:8080/geoserver/',
 'USER' : 'admin',
 'PASSWORD' : 'geoserver',
 }
}

BACKEND

Default: "geonode.geoserver"

The OGC server backend to use. The backend choices are:

	'geonode.geoserver'

BACKEND_WRITE_ENABLED

Default: True

Specifies whether the OGC server can be written to. If False, actions that modify
data on the OGC server will not execute.

DATASTORE

Default: '' (Empty string)

An optional string that represents the name of a vector datastore that Geonode uploads
are imported into. In order to support vector datastore imports there also needs to be an
entry for the datastore in the DATABASES dictionary with the same name. Example:

OGC_SERVER = {
 'default' : {
 'LOCATION' : 'http://localhost:8080/geoserver/',
 'USER' : 'admin',
 'PASSWORD' : 'geoserver',
 'DATASTORE': 'geonode_imports'
 }
}

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.sqlite3',
 'NAME': 'development.db',
 },
 'geonode_imports' : {
 'ENGINE': 'django.contrib.gis.db.backends.postgis',
 'NAME': 'geonode_imports',
 'USER' : 'geonode_user',
 'PASSWORD' : 'a_password',
 'HOST' : 'localhost',
 'PORT' : '5432',
 }
 }

GEOGIG_ENABLED

Default: False

A boolean that represents whether the OGC server supports GeoGig datastores.

GEONODE_SECURITY_ENABLED

Default: True

A boolean that represents whether Geonode’s security application is enabled.

LOCATION

Default: "http://localhost:8080/geoserver/"

A base URL from which GeoNode can construct OGC service URLs.
If using Geoserver you can determine this by
visiting the GeoServer administration home page without the
/web/ at the end. For example, if your GeoServer administration app is at
http://example.com/geoserver/web/, your server’s location is http://example.com/geoserver.

MAPFISH_PRINT_ENABLED

Default: True

A boolean that represents whether the Mapfish printing extension is enabled on the server.

PASSWORD

Default: 'geoserver'

The administrative password for the OGC server as a string.

PRINT_NG_ENABLED

Default: True

A boolean that represents whether printing of maps and layers is enabled.

PUBLIC_LOCATION

Default: "http://localhost:8080/geoserver/"

The URL used to in most public requests from Geonode. This settings allows a user to write to one OGC server (the LOCATION setting)
and read from a seperate server or the PUBLIC_LOCATION.

USER

Default: 'admin'

The administrative username for the OGC server as a string.

WMST_ENABLED

Default: False

Not implemented.

WPS_ENABLED

Default: False

Not implemented.

TIMEOUT

Default: 10

The maximum time, in seconds, to wait for the server to respond.

SITEURL

Default: 'http://localhost:8000/'

A base URL for use in creating absolute links to Django views and generating links in metadata.

Proxy settings

PROXY_ALLOWED_HOSTS

Default: () (Empty tuple)

A tuple of strings representing the host/domain names that GeoNode can proxy requests to. This is a security measure
to prevent an attacker from using the GeoNode proxy to render malicious code or access internal sites.

Values in this tuple can be fully qualified names (e.g. ‘www.geonode.org’), in which case they will be matched against
the request’s Host header exactly (case-insensitive, not including port). A value beginning with a period can be used
as a subdomain wildcard: .geonode.org will match geonode.org, www.geonode.org, and any other subdomain of
geonode.org. A value of ‘*’ will match anything and is not recommended for production deployments.

PROXY_URL

Default /proxy/?url=

The url to a proxy that will be used when making client-side requests in GeoNode. By default, the
internal GeoNode proxy is used but administrators may favor using their own, less restrictive proxies.

Search settings

DEFAULT_SEARCH_SIZE

Default: 10

An integer that specifies the default search size when using geonode.search for querying data.

Security settings

AUTH_EXEMPT_URLS

Default: () (Empty tuple)

A tuple of url patterns that the user can visit without being authenticated.
This setting has no effect if LOCKDOWN_GEONODE is not True. For example,
AUTH_EXEMPT_URLS = ('/maps',) will allow unauthenticated users to
browse maps.

LOCKDOWN_GEONODE

Default: False

By default, the GeoNode application allows visitors to view most pages without being authenticated. If this is set to True
users must be authenticated before accessing URL routes not included in AUTH_EXEMPT_URLS.

RESOURCE_PUBLISHING

Default: True

By default, the GeoNode application allows GeoNode staff members to
publish/unpublish resources.
By default resources are published when created. When this settings is set to
True the staff members will be able to unpublish a resource (and eventually
publish it back).

Social settings

SOCIAL_BUTTONS

Default: True

A boolean which specifies whether the social media icons and javascript should be rendered in GeoNode.

SOCIAL_ORIGINS

Default:

SOCIAL_ORIGINS = [{
 "label":"Email",
 "url":"mailto:?subject={name}&body={url}",
 "css_class":"email"
}, {
 "label":"Facebook",
 "url":"http://www.facebook.com/sharer.php?u={url}",
 "css_class":"fb"
}, {
 "label":"Twitter",
 "url":"https://twitter.com/share?url={url}",
 "css_class":"tw"
}, {
 "label":"Google +",
 "url":"https://plus.google.com/share?url={url}",
 "css_class":"gp"
}]

A list of dictionaries that is used to generate the social links displayed in the Share tab. For each origin, the name and and url format parameters are replaced by the actual values of the ResourceBase object (layer, map, document).

CKAN_ORIGINS

Default:

CKAN_ORIGINS = [{
 "label":"Humanitarian Data Exchange (HDX)",
 "url":"https://data.hdx.rwlabs.org/dataset/new?title={name}¬es={abstract}",
 "css_class":"hdx"
}]

A list of dictionaries that is used to generate the links to CKAN instances displayed in the Share tab. For each origin, the name and and abstract format parameters are replaced by the actual values of the ResourceBase object (layer, map, document). This is not enabled by default. To enabled, uncomment the following line: SOCIAL_ORIGINS.extend(CKAN_ORIGINS).

TWITTER_CARD

Default:: True

A boolean that specifies whether Twitter cards are enabled.

TWITTER_SITE

Default:: '@GeoNode'

A string that specifies the site to for the twitter:site meta tag for Twitter Cards.

TWITTER_HASHTAGS

Default:: ['geonode']

A list that specifies the hastags to use when sharing a resource when clicking on a social link.

OPENGRAPH_ENABLED

Default:: True

A boolean that specifies whether Open Graph is enabled. Open Graph is used by Facebook and Slack.

Upload settings

GEOGIG_DATASTORE_NAME

Default: None

A string with the default GeoGig datastore name. This value is only used if no GeoGig datastore name is provided
when data is uploaded but it must be populated if your deployment supports GeoGig.

UPLOADER

Default:

{
 'BACKEND' : 'geonode.rest',
 'OPTIONS' : {
 'TIME_ENABLED': False,
 'GEOGIG_ENABLED': False,
 }
}

A dictionary of Uploader settings and and their values.

BACKEND

Default: 'geonode.rest'

The uploader backend to use. The backend choices are:

	'geonode.importer'

	'geonode.rest'

The importer backend requires the Geoserver importer extension to be enabled and is required for uploading data into
GeoGig datastores.

OPTIONS

Default:

'OPTIONS' : {
 'TIME_ENABLED': False,
 'GEOGIG_ENABLED': False,
}

TIME_ENABED

Default: False

A boolean that specifies whether the upload should allow the user to enable time support when uploading data.

GEOGIG_ENABED

Default: False

A boolean that specifies whether the uploader should allow the user to upload data into a GeoGig datastore.

User Account settings

REGISTRATION_OPEN

Default: False

A boolean that specifies whether users can self-register for an account on your site.

THEME_ACCOUNT_CONTACT_EMAIL

Default: 'admin@example.com'

This email address is added to the bottom of the password reset page in case users have trouble un-locking their account.

Download settings

DOWNLOAD_FORMATS_METADATA

Specifies which metadata formats are available for users to download.

Default:

DOWNLOAD_FORMATS_METADATA = [
 'Atom', 'DIF', 'Dublin Core', 'ebRIM', 'FGDC', 'ISO',
]

DOWNLOAD_FORMATS_VECTOR

Specifies which formats for vector data are available for users to download.

Default:

DOWNLOAD_FORMATS_VECTOR = [
 'JPEG', 'PDF', 'PNG', 'Zipped Shapefile', 'GML 2.0', 'GML 3.1.1', 'CSV',
 'Excel', 'GeoJSON', 'KML', 'View in Google Earth', 'Tiles',
]

DOWNLOAD_FORMATS_RASTER

Specifies which formats for raster data are available for users to download.

Default:

DOWNLOAD_FORMATS_RASTER = [
 'JPEG', 'PDF', 'PNG' 'Tiles',
]

Contrib settings

EXIF_ENABED

Default: False

A boolean that specifies whether the Exif contrib app is enabled. If enabled, metadata is generated from Exif tags when documents are uploaded.

NLP_ENABED

Default: False

A boolean that specifies whether the NLP (Natural Language Processing) contrib app is enabled. If enabled, NLP (specifically MITIE) is used to infer additional metadata from uploaded documents to help fill metadata gaps.

NLP_LOCATION_THRESHOLD

Default: 1.0

A float that specifies the threshold for location matches.

NLP_LIBRARY_PATH

Default:: '/opt/MITIE/mitielib'

A string that specifies the location of the MITIE library

NLP_MODEL_PATH

Default:: '/opt/MITIE/MITIE-models/english/ner_model.dat'

A string that specifies the location of the NER (Named Entity Resolver). MITIE comes with English and Spanish NER models. Other models can be trained.

SLACK_ENABED

Default: False

A boolean that specifies whether the Slack contrib app is enabled. If enabled, GeoNode will send messages to the slack channels specified in SLACK_WEBHOOK_URLS when a document is uploaded, metadata is updated, etc. Coverage of events is still incomplete.

SLACK_WEBHOOK_URLS

A list that specifies the urls to post Slack messages to. Each url is for a different channel. The default url should be replaced when slack integration is enabled.

Default:

SLACK_WEBHOOK_URLS = [
 "https://hooks.slack.com/services/T000/B000/XX"
]

GeoNode Django Apps

The user interface of a GeoNode site is built on top of the Django web
framework. GeoNode includes a few “apps” (reusable Django modules) to support
development of those user interfaces. While these apps have reasonable default
configurations, for customized GeoNode sites you will probably want to adjust
these apps for your specific needs.

geonode.base - GeoNode core functionality

Stores core functionality used throughout the GeoNode application.

Template Tags

num_ratings <object>

Returns the number of ratings an object has. Example usage:

{% load base_tags %}
{% num_ratings map as num_votes %}

<p>Map votes: {{num_votes}}.</p>

categories

Returns topic categories and the count of objects in each category.

geonode.documents - Document creation and management

Manages uploaded files that can be related to maps. Documents can be any type of file that is included in the
ALLOWED_DOCUMENTS_TYPES setting.

settings.py Entries

	ALLOWED_DOCUMENT_TYPES

	Default: ['doc', 'docx', 'xls', 'xslx', 'pdf', 'zip', 'jpg', 'jpeg', 'tif', 'tiff', 'png', 'gif', 'txt']

A list of acceptable file extensions that can be uploaded to the Documents app.

	MAX_DOCUMENT_SIZE

	Default: 2

The maximum size (in megabytes) that an upload will be before it gets rejected.

geonode.layers - Layer creation and geospatial data management

This Django app provides support for managing and manipulating single geospatial datasets known as layers.

Models

	Attribute - Feature attributes for a layer managed by the GeoNode.

	Layer - A data layer managed by the GeoNode

	Style - A data layer’s style managed by the GeoNode

Views

	Creating, viewing, browsing, editing, and deleting layers and their metadata

Template Tags

	featured_layers

	Returns the the 7 newest layers.

	layer_thumbnail <layer>

	Returns the layer’s thumbnail.

manage.py Commands

	importlayers

	python manage.py importlayers

Brings a data file or a directory full of data files into a
GeoNode site. Layers are added to the Django database, the
GeoServer configuration, and the GeoNetwork metadata index.

	updatelayers

	python manage.py updatelayers

Scan Geoserver for data that has not been added to GeoNode.

geonode.maps - Map creation and geospatial data management

This Django app provides some support for managing and manipulating geospatial
datasets. In particular, it provides tools for editing, viewing, and searching
metadata for data layers, and for editing, viewing, and searching maps that
aggregate data layers to display data about a particular topic.

Models

	Map - A collection of data layers composed in a particular order to form a map

	MapLayer - A model that maintains some map-specific information related to a layer, such as the z-indexing order.

Views

The maps app provides views for:

	Creating, viewing, browsing, editing, and deleting Maps

These operations require the use of GeoServer to manage map rendering, as well
as GeoExt to provide interactive editing and previewing of maps and data layers.

There are also some url mappings in the geonode.maps.urls module for easy
inclusion in GeoNode sites.

settings.py Entries

	OGC_SERVER

	Default: {} (Empty dictionary)

A dictionary of OGC servers and and their options. The main
server should be listed in the ‘default’ key. If there is no ‘default’
key or if the OGC_SERVER setting does not exist GeoNode will raise
an Improperly Configured exception. Below is an example of the OGC_SERVER
setting:

OGC_SERVER = {
 'default' : {
 'LOCATION' : 'http://localhost:8080/geoserver/',
 'USER' : 'admin',
 'PASSWORD' : 'geoserver',
 }
}

	BACKEND

	Default: "geonode.geoserver"

The OGC server backend to use. The backend choices are:

	'geonode.geoserver'

	BACKEND_WRITE_ENABLED

	Default: True

Specifies whether the OGC server can be written to. If False, actions that modify
data on the OGC server will not execute.

	LOCATION

	Default: "http://localhost:8080/geoserver/"

A base URL from which GeoNode can construct OGC service URLs.
If using Geoserver you can determine this by
visiting the GeoServer administration home page without the
/web/ at the end. For example, if your GeoServer administration app is at
http://example.com/geoserver/web/, your server’s location is http://example.com/geoserver.

	PUBLIC_LOCATION

	Default: "http://localhost:8080/geoserver/"

The URL used to in most public requests from GeoNode. This settings allows a user to write to one OGC server (the LOCATION setting)
and read from a seperate server or the PUBLIC_LOCATION.

	USER

	Default: 'admin'

The administrative username for the OGC server as a string.

	PASSWORD

	Default: 'geoserver'

The administrative password for the OGC server as a string.

	MAPFISH_PRINT_ENABLED

	Default: True

A boolean that represents whether the Mapfish printing extension is enabled on the server.

	PRINT_NG_ENABLED

	Default: True

A boolean that represents whether printing of maps and layers is enabled.

	GEONODE_SECURITY_ENABLED

	Default: True

A boolean that represents whether GeoNode’s security application is enabled.

	GEOGIT_ENABLED

	Default: False

A boolean that represents whether the OGC server supports Geogig datastores.

	WMST_ENABLED

	Default: False

Not implemented.

	WPS_ENABLED

	Default: False

Not implemented.

	DATASTORE

	Default: '' (Empty string)

An optional string that represents the name of a vector datastore that GeoNode uploads
are imported into. In order to support vector datastore imports there also needs to be an
entry for the datastore in the DATABASES dictionary with the same name. Example:

OGC_SERVER = {
 'default' : {
 'LOCATION' : 'http://localhost:8080/geoserver/',
 'USER' : 'admin',
 'PASSWORD' : 'geoserver',
 'DATASTORE': 'geonode_imports'
 }
}

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.sqlite3',
 'NAME': 'development.db',
 },
 'geonode_imports' : {
 'ENGINE': 'django.contrib.gis.db.backends.postgis',
 'NAME': 'geonode_imports',
 'USER' : 'geonode_user',
 'PASSWORD' : 'a_password',
 'HOST' : 'localhost',
 'PORT' : '5432',
 }
 }

	GEOSERVER_CREDENTIALS

	Removed in GeoNode 2.0, this value is now specified in the OGC_SERVER settings.

	GEOSERVER_BASE_URL

	Removed in GeoNode 2.0, this value is now specified in the OGC_SERVER settings.

	CATALOGUE

	A dict with the following keys:

	ENGINE: The CSW backend (default is geonode.catalogue.backends.pycsw_local)

	URL: The FULLY QUALIFIED base url to the CSW instance for this GeoNode

	USERNAME: login credentials (if required)

	PASSWORD: login credentials (if required)

pycsw is the default CSW enabled in GeoNode. pycsw configuration directives
are managed in the PYCSW entry.

	PYCSW

	A dict with pycsw’s configuration. Of note are the sections
metadata:main to set CSW server metadata and metadata:inspire
to set INSPIRE options. Setting metadata:inspire['enabled'] to true
will enable INSPIRE support. Server level configurations can be overridden
in the server section. See http://pycsw.org/docs/configuration.html
for full pycsw configuration details.

	SITEURL

	Default: 'http://localhost:8000/'

A base URL for use in creating absolute links to Django views.

	DEFAULT_MAP_BASE_LAYER

	The name of the background layer to include in newly created maps.

	DEFAULT_MAP_CENTER

	Default: (0, 0)

A 2-tuple with the latitude/longitude coordinates of the center-point to use
in newly created maps.

	DEFAULT_MAP_ZOOM

	Default: 0

The zoom-level to use in newly created maps. This works like the OpenLayers
zoom level setting; 0 is at the world extent and each additional level cuts
the viewport in half in each direction.

geonode.proxy - Assist JavaScript applications in accessing remote servers

This Django app provides some HTTP proxies for accessing data from remote
servers, to overcome restrictions imposed by the same-origin policy used by
browsers. This helps the GeoExt applications in a GeoNode site to access various XML documents from OGC-compliant data services.

Views

	geonode.proxy.views.proxy

	This view forwards requests without authentication to a URL provided in the
request, similar to the proxy.cgi script provided by the OpenLayers project.

	geonode.proxy.views.geoserver

	This view proxies requests to GeoServer. Instead of a URL-encoded URL
parameter, the path component of the request is expected to be a path
component for GeoServer. Requests to this URL require valid authentication
against the Django site, and will use the default OGC_SERVER USER,
PASSWORD and LOCATION settings as defined in the maps application.

geonode.search - Provides the GeoNode search functionality.

This Django app provides a fast search functionality to GeoNode.

Views

	search_api- Builds and executes a search query based on url parameters and returns matching results in requested format.

geonode.security - GeoNode granular Auth Backend

This app provides an authentication backend for use in assigning permissions to individual objects (maps and layers).

settings.py Entries

	LOCKDOWN_GEONODE

	Default: False

By default, the GeoNode application allows visitors to view most pages without
being authenticated. Set LOCKDOWN_GEONODE = True to require a user to
be authenticated before viewing the application.

	AUTH_EXEMPT_URLS

	Default: () (Empty tuple)

A tuple of url patterns that the user can visit without being authenticated.
This setting has no effect if LOCKDOWN_GEONODE is not True. For example,
AUTH_EXEMPT_URLS = ('/maps',) will allow unauthenticated users to
browse maps.

Template Tags

	geonode_media <media_name>

	Accesses entries in MEDIA_LOCATIONS without requiring the view to explicitly
add it to the template context. Example usage:

{% include geonode_media %}
{% geonode_media "ext_base" %}

	has_obj_perm <user> <obj> <permission>

	Checks whether the user has the specified permission on an object.

{% has_obj_perm user obj "app.view_thing" as can_view_thing %}

Django’s error templates

GeoNode customizes some of Django’s default error templates.

500.html

If no custom handler for 500 errors is set up in the URLconf module, django will call django.views.defaults.server_error which expects a 500.html file in the root of the templates directory. In GeoNode, we have put a template that does not inherit from anything as 500.html and because most of Django’s machinery is down when an INTERNAL ERROR (500 code) is encountered the use of template tags should be avoided.

Make a GeoNode release

Making a GeoNode release requires a quite complex preparation of the environment while once everything is set up is a really easy and quick task.
As said the complex part is the preparation of the environment since it involves, the generation of a password key to be uploaded to the Ubuntu servers and imported in launchpad.

If you have already prepared the environment then jump to the last paragraph.

Before start, make sure to have a pypi [https://pypi.python.org/pypi] and a launchpad [https://launchpad.net/] account.

Before doing the release, a GeoNode team member who can already make release has to add you as a launchpad GeoNode team member.

Creating and importing a gpg key

A gpg key is needed to push and publish the package.
There is a complete guide on how to create and import [https://help.launchpad.net/YourAccount/ImportingYourPGPKey] a gpg key

Preparing the environment

Make sure to have a Ubuntu 12.04 machine.
Install the following packages in additon to the python virtulenv tools:

$ sudo apt-get install git-core git-buildpackage debhelper devscripts

Get the GeoNode code (from master) in a virtuelnv:

$ mkvirtualenv geonode
$ git clone https://github.com/GeoNode/geonode.git
$ cd geonode

Edit the .bashrc file and add the following lines (the key ID can be found in “your personal keys” tab:

export GPG_KEY_GEONODE="your_gpg_key_id"
export DEBEMAIL=yourmail@mail.com
export EDITOR=vim
export DEBFULLNAME="Your Full Name"

then close and:

$ source .bashrc

Type “env” to make sure all the variables are correctly exported

Set the correct git email:

$ git config --global user.email "yourmail@mail.com"

Register on Pypi with your Pypi credentials:

$ python setup.py register

Make the release

The followings are the only commands needed if the environment and the various registrations have already been done.

Make sure to have pulled the master to the desired commit.
Edit the file geonode/__init__.py at line 21 and set the correct version.

Install GeoNode in the virtualenv (make sure to have the virtualenv activated and be in the geonode folder):

$ pip install -e geonode

Publish the package:

$ cd geonode
$ paver publish

The last command will:

	Tag the release and push it to GitHub

	Create the debian package and push it at ppa:geonode/testing in launchpad

	Create the .tar.gz sources and push them to Pypi

	Update the changelog and commit it to master

GeoNode on Production

Configuring GeoNode for Production

Advanced GeoServer Configuration

Running GeoNode under SSL

GeoSites: GeoNode Multi-Tenancy

Configuring GeoNode for Production

This page documents recommendations for configuring GeoNode in production environments.
The steps mentioned in the first section are required to run GeoNode, the ones in the second section are either optional or ways to get more performance.

Note

This document makes numerous references to the <host> variable, please replace it with the IP Address of your GeoNode or the DNS entry.

For example: instead of http://<host>/geoserver, write down: http://mygeonode.com/geoserver or http://127.0.0.1/geoserver

Set the correct GeoServer Proxy URL value

Navigate to http://localhost/geoserver, log in and click on the Global link in the Settings section.

Note

The Geoserver default username is admin with geoserver as the password. Change this ASAP.

[image: ../../_images/geoserver_global_settings.png]
Find the Proxy Base URL text field, put the complete address there:

http://<host>/geoserver/

[image: ../../_images/geoserver_proxy_url.png]

Configure the Printing Module

This lives in the GeoServer Data dir /usr/share/geoserver/data/printing/config.yaml, add your server’s IP address or domain name to the list of exceptions.
Please refer to http://docs.geoserver.org/2.4.x/en/user/datadirectory/index.html for additional information on managing the geoserver data directory:

hosts:
 - !dnsMatch
 host: YOUR_IP_ADDRESS
 port: 80

Recommended Steps (optional)

Adding layers from Google, Bing and other providers

Bing

Get an API key from Microsoft at http://bingmapsportal.com/ and place it in local_settings.py.:

BING_API_KEY="zxcxzcXAWdsdfkjsdfWWsdfjpowxcxz"

Copy the MAP_BASELAYERS dictionary from settings.py into local_settings.py and add the following snippet:

},{
"source": {
 "ptype":"gxp_bingsource",
 "apiKey": BING_API_KEY
 },
"group":"background",
"name":"Aerial",
"visibility": False,
"fixed": True,

Google

Get an API key from Google at http://code.google.com/apis/maps/signup.html and place it in local_settings.py, for example:

GOOGLE_API_KEY="zxcxzcXAWdqwdQWWQEDzxcxz"

Copy the MAP_BASELAYERS dictionary from settings.py into local_settings.py (or edit the previously copied snippet) and add the following snippet:

},{
"source": {
 "ptype":"gxp_googlesource",
 "apiKey": GOOGLE_API_KEY
 },
"group":"background",
"name":"SATELLITE",
"visibility": False,
"fixed": True,

Sitemaps Configuration

GeoNode can automatically generate a sitemap suitable for submission to search
engines which can help them to index your GeoNode site more efficiently and
effectively.

In order to generate the sitemap properly, the sites domain name must be set
within the sites framework. This requires that an superuser login to the
admin interface and navigate to the sites module and change example.com to the
actual domain name (and port if applicable). The admin interface can be accessed
at http://<host>/admin/sites/site/. Click on the example.com link, and change
both the Domain name and Display name entries to match your system.

It is possible to ‘inform’ google of changes to your sitemap. This is accomplished
using the ping_google management command. More information can be found here
http://docs.djangoproject.com/en/dev/ref/contrib/sitemaps/#django.contrib.sitemaps.ping_google
It is recommended to put this call into a cron (scheduled) job to update google periodically.

Configuring User Registration

You can optionally configure GeoNode to allow new users to register through the web. New registrants will be sent an email inviting them to activate their account.

To allow new user registration:

	Set up the email backend for Django (see Django documentation [http://docs.djangoproject.com/en/dev/topics/email/#e-mail-backends]) and add the appropriate settings to ./src/GeoNodePy/geonode/local_settings.py. For example:

EMAIL_BACKEND = 'django.core.mail.backends.smtp.EmailBackend'
EMAIL_HOST = 'smtp.gmail.com'
EMAIL_HOST_USER = 'foo@gmail.com'
EMAIL_HOST_PASSWORD = 'bar'
EMAIL_PORT = 587
EMAIL_USE_TLS = True

	In the same settings file set:

REGISTRATION_OPEN=True

	With the Django application running, set the domain name of the service properly through the admin interface as specified above in the Sitemaps section. (This domain name is used in the account activation emails.).

	Restart apache:

$ sudo service apache2 restart

	(Optional) Disable automatic approval of new users. Administrators would receive an email and need to manually approve new accounts. For this option to work, an email backed has to be defined in order to email the users with Staff status the notification to approve the new account:

ACCOUNT_APPROVAL_REQUIRED = True

To register as a new user, click the ‘’Register’’ link in the GeoNode index header.

Additional Configuration

Some other things that require tweaking:

	Web-accessible uploads directory for user profile photos

Robot Exclusion File

GeoNode has several views that require considerable resources to properly respond - for example, the download links on layer detail pages require GeoServer to dynamically generate output in PDF, PNG, etc. format.

Crawlers for web search engines such as Google may cause problems by quickly following many such links in succession.

In order to request that “robots” do not make requests directly to GeoServer, you can ensure that requests to /robots.txt return a text file with the following content:

User-agent: *
Disallow: /geoserver/

This will only affect automated web agents; web browsers in particular are unaffected.

Memory Management

At the time of the GeoNode 1.0 release, the GeoNode manual recommended at least 4GB RAM for servers running GeoNode.

While 4GB physical RAM is sufficient, it is recommended that machines be configured with at least 6GB total virtual memory.

For example, a machine with 4GB physical RAM and 2GB swap space should be able to run GeoNode, but if you would like to run without a swapfile then you should configure the machine with at least 6GB RAM.

On Linux and MacOSX hosts, you can check the available RAM with the following command:

$ free -m
 total used free shared buffers cached
Mem: 6096 3863 2232 0 0 0
-/+ buffers/cache: 3863 2232
Swap: 0 0 0

The “total” column lists the available physical memory and swap space in megabytes; adding them together yields the amount of virtual memory available to the system.

In this example, there is no Swap space so that field is 0 and the available RAM on the system is 6096MB (6 GB).

Security Integration Optimization

GeoServer delegates authentication and authorization to GeoNode. The default configuration uses an HTTP endpoint in GeoNode to discover the current user and the layers that are accessible. For production, it is advisable to use a database-level connection.

Installing the Stored Procedure

The SQL for the stored procedure is distributed with the GeoServer web application archive and can be found at WEB-INF/classes/org/geonode/security/geonode_authorize_layer.sql in the webapps directory. It can be loaded using the psql command by following these steps (if not using tomcat6 or Ubuntu, locate the webapps directory for your configuration):

$ cd /var/lib/tomcat6/webapps
$ sudo su - postgres
$ psql -d YOUR_DATABASE < geoserver/WEB-INF/classes/org/geonode/security/geonode_authorize_layer.sql

Configuring GeoServer to Use the Database Security Client

If a context configuration XML file does not already exist, create one for GeoServer. If using Tomcat6 on Ubuntu, this file resides at /etc/tomcat6/Catalina/localhost/geoserver.xml. If creating a new file, the following XML should be added (replace ALLCAPS with your specific values):

<Context path="/geoserver"
 antiResourceLocking="false" >
 <Parameter name="org.geonode.security.databaseSecurityClient.url"
 value="jdbc:postgresql://localhost:5432/DATABASE?user=USER&password=PASSWORD"/>
</Context>

If the file exists already, just add the Parameter element from above.

Verification of Database Security Client

To verify the settings change, look in the GeoServer logs for a line that notes: “using geonode database security client”. If any issues arise, check your connection configuration as specified in the context file above.

Configuring the Servlet Container

GeoServer is the most resource intensive component of GeoNode.

There are some general notes on setting up GeoServer for production environments in the GeoServer manual [http://docs.geoserver.org/stable/en/user/production/index.html] .

However, the following are some GeoServer recommendations with GeoNode’s specific needs in mind.

JVM Options

The JRE used with GeoNode should be that distributed by Oracle.

Others such as OpenJDK may work but Oracle’s JRE is recommended for higher performance rendering.

Startup options should include the following:

-Xmx1024M -Xms1024M -XX:MaxPermSize=256M \
 -XX:CompileCommand=exclude,net/sf/saxon/event/ReceivingContentHandler.startEvent

These can be specified using the CATALINA_OPTS variable in Tomcat’s bin/catalina.sh file, or the JETTY_OPTS in Jetty’s bin/jetty.sh file.

Constrain GeoServer Worker Threads

While the JVM provides memory management for most operations in Java applications, the memory used for rendering (in GeoServer’s case, responding to WMS GetMap requests) is not managed this way, so it is allocated in addition to the memory permitted by the JVM options above.

If GeoServer receives many concurrent requests, it may increase the memory usage significantly, so it is recommended to constrain the number of concurrent requests at the servlet container (ie, Jetty or Tomcat).

For Tomcat, you can edit conf/server.xml. By default, this file contains an entry defining a ContextHandler:

<Connector port="8080" protocol="HTTP/1.1"
 connectionTimeout="20000"
 redirectPort="8443"/>

Add a maxThreads attribute to limit the number of threads (concurrent requests) to 50 (the default in Tomcat is 200):

<Connector port="8080" protocol="HTTP/1.1"
 connectionTimeout="20000"
 redirectPort="8443" maxThreads="50"/>

Note

This configuration is possible in Jetty as well but not yet documented in this manual.

Native JAI and JAI ImageIO

Using the native-code implementation of JAI and JAI ImageIO speeds up GeoServer, thereby requiring less concurrency at the same level of throughput.

The GeoServer manual contains platform-specific instructions [http://docs.geoserver.org/stable/en/user/production/java.html#install-native-jai-and-jai-image-i-o-extensions] for configuring JAI and JAI ImageIO.

GeoServer Configuration

There are a few controls to be set in the GeoServer configuration itself as well.

On the JAI Settings page

[image: ../../_images/GeoServer-JAI-Settings.png]
There are two considerations for the JAI settings.

	Enable JPEG and PNG Native Acceleration to speed up the performance of WMS requests

	Disable Tile Recycling as this optimization is less relevant on recent JVM implementations and has some overhead itself.

On the WMS Service page

[image: ../../_images/GeoServer-Web-Map-Service.png]
There is only one consideration for the Web Map Service page

	Don’t set the “Resource Consumption Limits.”
This sounds a bit counter intuitive, but these limits are implemented in an inefficient way such that unless resource-intensive requests are common on your server it is more efficient to avoid the limits.
A better implementation of this feature is available for GeoServer 2.1 and will be incorporated in GeoNode 1.1.

Printing with the Mapfish Print Service

The GeoNode map composer can “print” maps to PDF documents using the Mapfish
print service [http://www.mapfish.org/doc/print]. The recommended way to run
this service is by using the printing extension to GeoServer (if you are using
the pre-built GeoNode package, this extension is already installed for you).
However, the print service includes restrictions on the servers that can
provide map tiles for printed maps. These restrictions have a fairly strict
default, so you may want to loosen these constraints.

Adding servers by hostname

The Mapfish printing module is configured through a YAML
configuration file, usually named print.yaml. If you are using the
GeoServer plugin to run the printing module, this configuration file can be
found at GEOSERVER_DATA_DIR/printing/config.yaml. The default
configuration should contain an entry like so:

hosts:
 - !dnsMatch
 host: labs.metacarta.com
 port: 80
 - !dnsMatch
 host: terraservice.net
 port: 80

You can add host/port entries to this list to allow other servers.

See also

The Mapfish documentation [http://www.mapfish.org/doc/print/configuration.html] on configuring the
print module.

The GeoServer documentation [http://docs.geoserver.org/stable/en/user/community/printing/] on
configuring the print module.

Advanced GeoServer Configuration

In this module we are going to cover some advanced configurations and :

	Configuring GeoServer for robustness

	Advanced Production GeoServer configuration

	Advanced Coordinate Reference System Handling

	Advanced Database Connection Pooling Configuration

	Installing and Configuring the Monitoring Extension

	How to measure performances with JMeter

	Configuring the Control flow Extension

Configuring GeoServer for robustness

In a production environment may be necessary to properly configure the WMS service in order to give a limit to resources associated with a request. The Resource Limits options allow the administrator to limit the resources consumed by each WMS GetMap request.

GeoServer provides a user interface for these options:

[image: ../../../_images/parameters1.png]
Setting the Resource consumption limits

The following table shows each option name, a description, and the minimum GeoServer version at which the option is available (old versions will just ignore it if set).

	Option

	Description

	Version

	Max rendering memory

	Sets the maximum amount of memory, in kilobytes, a single GetMap request is allowed to use. Each output format will make a best effort attempt to respect the maximum using the highest consuming portion of the request processing as a reference. For example, the PNG output format will take into consideration the memory used to prepare the image rendering surface in memory, usually proportional to the image size multiplied by the number of bytes per pixel

	1.7.5

	Max rendering time

	Sets the maximum amount of time, in seconds, GeoServer will use to process the request. This time limits the “blind processing” portion of the request serving, that is, the part in which GeoServer is computing the results before writing them out to the client. The portion that is writing results back to the client is not under the control of this parameter, since this time is also controlled by how fast the network between the server and the client is. So, for example, in the case of PNG/JPEG image generation, this option will control the pure rendering time, but not the time used to write the results back.

	1.7.5

	Max rendering errors

	Sets the maximum amount of rendering errors tolerated by a GetMap. Usually GetMap skips over faulty features, reprojection errors and the like in an attempt to serve the results anyways. This makes for a best effort rendering, but also makes it harder to spot issues, and consumes CPU cycles as each error is handled and logged

	1.7.5

Out of the box GeoServer uses 65MB, 60 seconds and 1000 errors respectively. All limits can be disabled by setting their value to 0.

Once any of the set limits is exceeded, the GetMap operation will stop and a ServiceException will be returned to the client.

It is suggested that the administrator sets all of the above limits taking into consideration peak conditions. For example, while a GetMap request under normal circumstance may take less than a second, under high load it is acceptable for it to take longer, but usually, it’s not sane that a request goes on for 30 minutes straight. The following table shows some example values for the configuration options above, with explanations of how each is computed:

	Option

	Value

	Rationale

	maxRequestMemory

	65000

	65MB are sufficient to render a 4078x4078 image at 4 bytes per pixel (full color and transparency), or a 8x8 meta-tile if you are using GeoWebCache or TileCache. Mind the rendering process will use an extra in memory buffer for each subsequent FeatureTypeStyle in your SLD, so this will also limit the size of the image. For example, if the SLD contains two FeatureTypeStyle element in order to draw cased lines for an highway the maximum image size will be limited to 2884x2884 (the memory goes like the square of the image size, so halving the memory does not halve the image size)

	maxRenderingTime

	60

	A request that processes for one minute straight is probably drawing a lot of features independent of the current load. It might be the result of a client making a GetMap against a big layer using a custom style that does not have the proper scale dependencies

	maxRenderingErrors

	1000

	Encountering 1000 errors is probably the result of a request that is trying to reproject a big data set into a projection that is not suited to area it covers, resulting in many reprojection failures.

Advanced Production GeoServer configuration

Most of the GeoServer downloads are geared towards quickly showing off the capabilities, with an array of demos, sample layers, and an embedded servlet container. If you are using GeoServer in a production environment, there are a few things we’d like to recommend. In this section the task is to configure your system to use it in production.

Note

Before you start, ensure that the Web Administrator Interface - Server section has been completed.

Configuring your container for production

Note

Most open source Java web containers, such as Tomcat, ship with development mode configurations that allow for quick startup but don’t deliver the best performance.

Make sure that in the ‘setenv.sh’, or ‘setenv.bat’ on Windows machines, file exists the following configuration to set up the Java virtual machine options in your container. Open the ‘setenv.sh/.bat’ file located in ‘<TRAINING_ROOT>’ directory and look at the options:

[image: ../../../_images/java_opts.png]
Setting the JAVA_OPTS for Tomcat container

	-server: Not present among the training options, this option enables the server JVM, which JIT compiles bytecode much earlier, and with stronger optimizations. Startup and first calls will be slower due to JIT compilation taking more time, but subsequent ones will be faster (to give you some numbers, on the same machine a vanilla VM returns GML at 7MB/s speed, a -server one runs at 10MB/s). This option is required only if the JMV does not already get into server mode, which happens on a server opearting system (Linux, Windows server) with at least 2 cores and 2 GB of memory.

Note

This parameter is necessary only for Windows environments of class workstation

	-Xms512m -Xmx512M: give your server memory. By default JVM will use only 64MB of heap. If you’re serving just vector data, you’ll be full streaming, so having much memory won’t help a lot, but if you’re serving coverages JAI will use a cache to avoid hitting the disk often. In this case, give Geoserver at least 256MB or memory, or more if you have plenty of RAM, and go configure the JAI title cache size in the Geoserver configuration panel so that it uses 75% of the heap (0.75). If you have plenty of memory it is suggested to set -Xms to the same value as -Xmx, this will make heap management more stable during heavy load serving. Generally speaking, don’t allocate more than 2GB for the GeoServer heap.

	-XX:MaxPermSize=128m (or more): the permanent generation is the heap portion where the class bytecode is stored. GeoServer uses lots of classes, and it may exhaust that space quickly leading to out of memory errors. If you’redeploying GeoServer along with other applications in the same container or if you need to deploy multiple GeoServer instances inside the same container (e.g., different instances for different customers or similar needs) you better raise up the MaxPermSize to 128m or more.

Warning

In order to obtain best performance, install the native JAI version in your JDK. In particular, installing the native JAI is important for all raster processing, which is used heavily in both WMS and WCS to rescale, cut and reproject rasters. Installing the native JAI is also important for all raster reading and writing, which affects both WMS and WCS. Finally, native JAI is very useful even if there is no raster data involved, as WMS output encoding requires writing PNG/GIF/JPEG images, which are themselves rasters. For more information how to installa JAI and ImageIO see the Installing the native JAI and ImageIO section

Setting up logging for production

Note

Logging may visibly affect the performance of your server. High logging levels are often necessary to track down issues, but by default you should run with low ones (and you can switch the logging levels at runtime, so don’t worry about having to stop the server to gather more information). You can change the logging level by going to the GeoServer configuration panel, Server section.

	Go to http://localhost:8083/geoserver and click on the ‘Global’ link in the ‘Settings’ section.

	Select ‘PRODUCTION_LOGGING.properties’ in Logging Profile and click submit.

[image: ../../../_images/login_setup.png]
Set up logging for production

Choosing a service strategy

Note

A service strategy is the way we serve the output to the client. Basically, you have to choose between being absolutely sure of reporting errors with the proper OGC codes and serving output quickly.

You can configure the service strategy modifying the web.xml file located in ‘<TOMCAT_HOME>/instances/instance1/webapps/geoserver/WEB-INF’ directory of your GeoServer install:

	Set the ‘serviceStrategy’ param-name with ‘SPEED’.

All the possible strategies are:

	SPEED: serve outputs right away. The fastest strategy, make it unlikely to be able to report proper OGC errors in WFS though (they are reported only if the error occurs before the GML encodingstarts).

	BUFFER: stores the whole result in memory, and then serves it after the output is complete. This ensures proper OGC error reporting, but delays the response quite a bit and will exhaust memory if the response is big.

	FILE: same as buffer, but uses a file storage for buffering. Slower than BUFFER, ensures there won’t be memory issues.

	PARTIAL-BUFFER2: a balance between the two, tries to buffer in memory a few kilobytes of response, then behaves like SPEED.

Configuring all data and metadata to your instance

Note

It may be tempting to just skip some of the configuration steps, leave in the same keywords and abstract as the sample. Please do not, as this will only confuse potential users. They will have a list of GeoServers called ‘My GeoServer’.

	Completely fill out the WFS and WMS Contents sections.

	Put in your own URI (such as the name of your website) for the Namespace (Data -> Workspace) and remove the defaults.

	Make sure your datastores all use your URI.

	Remove the sample layers (states, spearfish, New York roads and the like, the easiest way to is go and remove the demo workspaces, everything contained in them will be removed as a result)

Change the administrator password

GeoServer ships by default with “admin” and “geoserver” as the default administrator user name and password. Before putting the GeoServer on-line it is imperative to change at least the administrator password.

Making use of an external Data Directory to store your configurations

Note

The configuration data resides within the GEOSERVER_DATA_DIR. To increase the portability of their data and to facilitate updates GeoServer, you should place this directory outside of GeoServer editing the web.xml file with the path that you prefer

See the ‘GEOSERVER_DATA_DIR’ context param in ‘<TRAINING_ROOT>/tomcat-6.0.36/instances/instance1/webapps/geoserver/WEB-INF’:

<context-param>
 <param-name>GEOSERVER_DATA_DIR</param-name>
 <param-value>$GEOSERVER_DATA_DIR</param-value>
</context-param>

Note

The external data dir can be also configured throught the environment variables on the ‘setenv.sh/.bat’ file.

Using a Spatial Database

We make shapefiles available as a datastore, as they are such a common format. But if you are running GeoServer in a production environment and if you need to manage the spatial indexes, transactions or if you have specific requirements involving the use of a database, setting up a spatial database and converting your shapefiles is highly recommended. If you’re doing transactions against GeoServer this is essential. Even though we have a very nice transaction framework, doubling up with the native transaction support of relational databases ensures your data integrity. Most all the major spatial dbs provide support to easily turn shapefiles into their native format. We recommend PostGIS, open source extensions to the postgresql db, most of our testing has been performed against it. Oracle, DB2, SQL Server and ArcSDE are also well supported. At the moment we don’t recommend MySQL, as it has trouble with rollbacks on geometry tables, and lacks advanced spatial functionality, but it is an option.

Setting security

GeoServer by default includes WFS-T, which lets users modify your backend database. If you don’t want that to happen, you can turn off transactions in the web admin tool, Service Panel -> WFS and set Service Level to Basic. If you’d like some users to be able to modify it, but not all, you’ll have to set up data access level security. For extra security when operating in read only mode, make sure that the connection to the datastore that is open to all is with a user who has read only permissions. That will make it so it’s completely impossible to do a SQL injection (though GeoServer is generally designed well enough that it’s not vulnerable).

Dealing with a locked down environment

GeoServer code, and the libraries it uses (Geotools, JAI) are not designed to be run in a security locked down enviroment. They need free access to environment variables, temp directory, user preferences and the like. In operating systems like Ubuntu the default Tomcat is locked down so that most of the above is not authorized. So far, the only way to run Geoserver in that environment is to grant all permissions to it.

Caching

Server-side caching of WMS tiles is the best way to get performance. Essentially how the caching works is the server will recognize a request and quickly return a pre-rendered result. This is how you can optimize for tile-based WMS clients and it works the best for them. There are several ways to set up caching for GeoServer like GeoWebCache.

Advanced Coordinate Reference System Handling

This section describes how coordinate reference systems (CRS) are handled in GeoServer, as well as what can be done to extend GeoServer’s CRS handling abilities.

Coordinate Reference System Configuration

When adding data, GeoServer tries to inspect data headers looking for an EPSG code: if the data has a CRS with an explicit EPSG code and the full CRS definition behind the code matches the one in GeoServer, the CRS will be already set for the data.
If the data has a CRS but no EPSG code, you’ll have to manually guess the EPSG code. Browsing to www.spatialreference.org might be a good option to find the exact EPSG code for your data.

If an EPSG code cannot be found, then either the data has no CRS or it is unknown to GeoServer. In this case, there are a few options:

	Force the declared CRS, ignoring the native one. This is the best solution if the native CRS is known to be wrong.

	Reproject from the native to the declared CRS. This is the best solution if the native CRS is correct, but cannot be matched to an EPSG number. An alternative is to add a custom EPSG code that matches exactly the native SRS.

If your data has no native CRS information, the only option is to specify/force an EPSG code.

Custom CRS Definitions

Add a custom CRS

This example shows how to add a custom projection in GeoServer.

	The projection parameters need to be provided as a WKT (well known text) definition. The code sample below is just an example:

PROJCS["NAD83 / Austin",
 GEOGCS["NAD83",
 DATUM["North_American_Datum_1983",
 SPHEROID["GRS 1980", 6378137.0, 298.257222101],
 TOWGS84[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]],
 PRIMEM["Greenwich", 0.0],
 UNIT["degree", 0.017453292519943295],
 AXIS["Lon", EAST],
 AXIS["Lat", NORTH]],
 PROJECTION["Lambert_Conformal_Conic_2SP"],
 PARAMETER["central_meridian", -100.333333333333],
 PARAMETER["latitude_of_origin", 29.6666666666667],
 PARAMETER["standard_parallel_1", 31.883333333333297],
 PARAMETER["false_easting", 2296583.333333],
 PARAMETER["false_northing", 9842500.0],
 PARAMETER["standard_parallel_2", 30.1166666666667],
 UNIT["m", 1.0],
 AXIS["x", EAST],
 AXIS["y", NORTH],
 AUTHORITY["EPSG","100002"]]

Note

This code sample has been formatted for readability. The information will need to be provided on a single line instead, or with backslash characters at the end of every line (except the last one).

	Go into the user_projections directory inside your data directory, and open the epsg.properties file. If this file doesn’t exist, you can create it.

	Insert the code WKT for the projection at the end of the file (on a single line or with backslash characters):

100002=PROJCS["NAD83 / Austin", \
 GEOGCS["NAD83", \
 DATUM["North_American_Datum_1983", \
 SPHEROID["GRS 1980", 6378137.0, 298.257222101], \
 TOWGS84[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]], \
 PRIMEM["Greenwich", 0.0], \
 UNIT["degree", 0.017453292519943295], \
 AXIS["Lon", EAST], \
 AXIS["Lat", NORTH]], \
 PROJECTION["Lambert_Conformal_Conic_2SP"], \
 PARAMETER["central_meridian", -100.333333333333], \
 PARAMETER["latitude_of_origin", 29.6666666666667], \
 PARAMETER["standard_parallel_1", 31.883333333333297], \
 PARAMETER["false_easting", 2296583.333333], \
 PARAMETER["false_northing", 9842500.0], \
 PARAMETER["standard_parallel_2", 30.1166666666667], \
 UNIT["m", 1.0], \
 AXIS["x", EAST], \
 AXIS["y", NORTH], \
 AUTHORITY["EPSG","100002"]]

Note

Note the number that precedes the WKT. This will determine the EPSG code. So in this example, the EPSG code is 100002.

	Save the file.

	Restart GeoServer.

	Verify that the CRS has been properly parsed by navigating to the srs_list page in the web_admin.

	If the projection wasn’t listed, examine the logs for any errors.

Override an official EPSG code

In some situations it is necessary to override an official EPSG code with a custom definition. A common case is the need to change the TOWGS84 parameters in order to get better reprojection accuracy in specific areas.

The GeoServer referencing subsystem checks the existence of another property file, epsg_overrides.properties, whose format is the same as epsg.properties. Any definition contained in epsg_overrides.properties will override the EPSG code, while definitions stored in epsg.properties can only add to the database.

Special care must be taken when overriding the Datum parameters, in particular the TOWGS84 parameters. To make sure the override parameters are actually used the code of the Datum must be removed, otherwise the referencing subsystem will keep on reading the official database in search of the best Datum shift method (grid, 7 or 5 parameters transformation, plain affine transform).

For example, if you need to override the official TOWGS84 parameters of EPSG:3003 to better match the peninsular area of Italy:

PROJCS["Monte Mario / Italy zone 1",
GEOGCS["Monte Mario",
 DATUM["Monte Mario",
 SPHEROID["International 1924", 6378388.0, 297.0, AUTHORITY["EPSG","7022"]],
 TOWGS84[-50.2, -50.4, 84.8, -0.69, -2.012, 0.459, -5.791915759418465],
 AUTHORITY["EPSG","6265"]],
 PRIMEM["Greenwich", 0.0, AUTHORITY["EPSG","8901"]],
 UNIT["degree", 0.017453292519943295],
 AXIS["Geodetic longitude", EAST],
 AXIS["Geodetic latitude", NORTH],
 AUTHORITY["EPSG","4265"]],
PROJECTION["Transverse Mercator", AUTHORITY["EPSG","9807"]],
PARAMETER["central_meridian", 9.0],
PARAMETER["latitude_of_origin", 0.0],
PARAMETER["scale_factor", 0.9996],
PARAMETER["false_easting", 1500000.0],
PARAMETER["false_northing", 0.0],
UNIT["m", 1.0],
AXIS["Easting", EAST],
AXIS["Northing", NORTH],
AUTHORITY["EPSG","3003"]]

You should write the following (in a single line, here it’s reported formatted over multiple lines for readability):

3003 =
 PROJCS["Monte Mario / Italy zone 1",
GEOGCS["Monte Mario",
 DATUM["Monte Mario",
 SPHEROID["International 1924", 6378388.0, 297.0, AUTHORITY["EPSG","7022"]],
 TOWGS84[-104.1, -49.1, -9.9, 0.971, -2.917, 0.714, -11.68],
 AUTHORITY["EPSG","6265"]],
 PRIMEM["Greenwich", 0.0, AUTHORITY["EPSG","8901"]],
 UNIT["degree", 0.017453292519943295],
 AXIS["Geodetic longitude", EAST],
 AXIS["Geodetic latitude", NORTH]],
PROJECTION["Transverse_Mercator"],
PARAMETER["central_meridian", 9.0],
PARAMETER["latitude_of_origin", 0.0],
PARAMETER["scale_factor", 0.9996],
PARAMETER["false_easting", 1500000.0],
PARAMETER["false_northing", 0.0],
UNIT["m", 1.0],
AXIS["Easting", EAST],
AXIS["Northing", NORTH],
AUTHORITY["EPSG","3003"]]

The definition has been changed in two places, the TOWGS84 paramerers, and the Datum code, AUTHORITY["EPSG","4265"], has been removed.

Advanced Database Connection Pooling Configuration

	Database connections are valuable resources and as such shall be managed with care:

	
	they are heavy to create and maintain for the database server itself since they are usually child processes of the DBMS server process

	being processes that means that creating a connection is not a zero-cost process therefore we should avoid creating connections as we need to connect to a DB but we should tend to create them in advance in order to minimize the impact of the time needed to create them on the time needed to serve a request.

	as a consequence of the fact that a connection require non negligible resources on the server DBMS DBAs tend to

	limit the number of connections globally available (e.g. PostgreSQL by default has a limit set to 100)

	limit the lifetime of connections created in order to discourage clients from retaining connections for a really long time

The purpose served by a connection pool is to maintain connections to an underlying database between requests. The benefit is that connection set-up only need to occur once on the first request while subsequent requests use existing connections and achieve a performance benefit as a result.

Ok, now let’s go into GeoServer specifics. In most GeoServer DataStores you have the possibility to use the JNDI 1 or the standard store which basically means you can have GeoServer manage the connection pool for you or you can configure it externally (from within the Application Server of choice) and then have GeoServer lean onto it to get connections. Baseline is, one way or the other you’ll always end-up using a connection pool in GeoServer.

GeoServer Internal Connection Pool Parameters

Whenever a data store backed by a database is added to GeoServer an internal connection pool, for which relies on Apache Commons DBCP 2, is created by default. This connection pool is configurable, however let me say this upfront, the number of pool configuration parameters that we expose is a subset of the possible ones, although the most interesting are there. Namely there are a few that you might want to customize. Here below you can find some more details on the available connection parameters.

	max connections

	The maximum number of connections the pool can hold. When the maximum number of connections is exceeded, additional requests that require a database connection will be halted until a connection from the pool becomes available and eventually times out if that’s not possible within the time specified in the connection time-out. The maximum number of connections limits the number of concurrent requests that can be made against the database.

	min connections

	
	The minimum number of connections the pool will hold. This number of connections is held even when there are no active requests. When this number of connections is exceeded due to serving incoming requests additional connections are opened until the pool reaches its maximum size (described above). The implications of this number are multiple:

	-1- If it is very far from the max connections this might limit the ability of the GeoServer to respond quickly to unexpected or random heavy load situations due to the fact that it takes a non negligible time to create a new connections. However this set up is very good when the DBMS is quite loaded since it tends to use as less connections as possible at all times.

-2- If it is very close to the max connections value the GeoServer will be very fast to respond to random load situation. However in this case the GeoServer would put a big burden on DBMS shoulders as the the poll will try to hold all needed connections at all times.

	validate connections

	Flag indicating whether connections from the pool should be validated before they are used. A connection in the pool can become invalid for a number of reasons including network breakdown, database server timeout, etc.. The benefit of setting this flag is that an invalid connection will never be used which can prevent client errors. The downside of setting the flag is that a small performance penalty is paid in order to validate connections when the connection is borrowed from the pool since the validation is done by sending smal query to the server. However the cost of this query is usually small, as an instance on PostGis the validation query is Select 1.

	fetch size

	The number of records read from the database in each network exchange. If set too low (<50) network latency will affect negatively performance, if set too high it might consume a significant portion of GeoServer memory and push it towards an Out Of Memory Error. Defaults to 1000, it might be beneficial to push it to a higher number if the typical database query reads much more data than this, and there is enough heap memory to hold the results

	connection timeout

	Time, in seconds, the connection pool will wait before giving up its attempt to get a new connection from the database. Defaults to 20 seconds. This timeout kicks in during heavy load conditions when the number of requests needing a connection to a certain DB outnumber greatly the number of available connections in the pool, therefore some requests might get error messages due to the timeouts while acquiring a connection. This condition is not per se problematic since usually a request does not use a DB connection for its entire lifecycle hence we do not need 100 connections at hand to respond to 100 requests; however we should strive to limit this condition since it would queue threads on the connection pool after they might have allocated memory (e.g. for rendering). We will get back to this later on.

	max open prepared statements

	Maximum number of prepared statements kept open and cached for each connection in the pool.

	max wait

	number of seconds the connection pool will wait before timing out attempting to get a new connection (default, 20 seconds)

	validate connection

	It forces GeoServer to check that the connections borrowed from the pool are valid (i.e. not closed on the DMBS side) before using them.

	Test while idle

	Periodically test if the connections are still valid also while idle in the pool. Sometimes performing a test query using an idle connection can make the datastore unavailable for a while. Often the cause of this troublesome behaviour is related to a network firewall placed between Geoserver and the Database that force the closing of the underlying idle TCP connections.

	Evictor run periodicity

	Number of seconds between idle object evictor runs.

	Max connection idle time

	Number of seconds a connection needs to stay idle before the evictor starts to consider closing it.

	Evictor tests per run

	Number of connections checked by the idle connection evictor for each of its runs.

Prepared statements consideration

Prepared statements are used by databases to avoid re-planning the data access every time, the plan is done only once up-front, and as long as the statement is cached, the plan does not need to be re-computed.

In business applications fetching a small amount of data at a time this is beneficial for performance, however, in spatial ones, where we typically fetch thousands of rows, the benefit is limited, and sometimes, turns into a performance problem.
This is the case with PostGIS, that is able to tune the access plan by inspecting the requested BBOX, and deciding if a sequential scan is preferable (the BBOX really accesses most of the data) or using the spatial index is best instead. So, as a rule of thumb, when working with PostGis, it’s better not to enable prepared statements.

With other databases there are no choices, Oracle currently works only with prepared statements, SQL server only without them (this is often related to implementation limitations than database specific issues).

There is an upside of using prepared statement though: no sql injection attacks are possible when using them. GeoServer code tries hard to avoid this kind of attack when working without prepared statements, but enabling them makes the attack via filter parameters basically impossible.

Final Thoughts

Summarising, when creating standard DataStores for serving vector data from DBMS in GeoServer you need to remember that internally a connection pool will be created.
This approach is the simplest to implement but might lead to an inefficient distribution of the connections between different stores in the following cases:

	if we tend to separate tables into different schemas this will lead to the need for creating multiple stores to serve them out since GeoServer works best if the “schema” parameter is specified, this leading to the creation of (mostly unnecessary) connection pools

	if we want to create stores in different workspaces connecting to the same database this again will lead to unnecessary duplication of connection pools in different store leading to inefficient usage of connections

Long story short the fact that the pool is internal with respect to the stores may lead to inefficient usage of connections to the underlying DBMS since they will be splitted between multiple stores limiting the scalability of each of them: in fact having 100 connections shared between N normal DataStore will impose limits to the maximum number that each can use, otherwise if we managed to keep the connections into a single pool shared, in turn, with the various DataStore we would achieve a much more efficient sharing between the store as, as an instance, a single store under high load could scale to use all the connections available.

Configuration of a JNDI connection pool with Tomcat

Many DataStore in GeoServer provide the option of exploiting Java Naming and Directory Interface or JNDI [http://en.wikipedia.org/wiki/Java_Naming_and_Directory_Interface]. for managing the connections pools. JNDI allows for components in a Java system to look up other objects and data by a predefined name. A common use of JNDI is to set-up a connection pool in order to improve the database resource management.

In order to set-up a connection pool, Tomcat needs to be provided with a JDBC driver for the database used and the necessary pool configurations.
Usually the JDBC driver can be found in the website of the DBMS provider or can be available in the database installation directory. This is important to know since we are not usually allowed to redistribute them.

The JDBC driver for creating connection pool to be shared via JNDI shall be placed in the $TOMCAT_HOME/lib directory, where $TOMCAT_HOME is the directory on which Tomcat is installed.

Note

Make sure to remove the JDBC driver from the Geoserver WEB-INF/lib folder when copied to the Tomcat shared libs, to avoid issues in JNDI DataStores usage.

The configuration is very similar between different databases. Here below some typical examples will be described.

PostgreSQL JNDI Configuration

For configuring a PostgreSQL JNDI pool you have to remove the Postgres JDBC driver (it should be named postgresql-X.X-XXX.jdbc3.jar) from the GeoServer WEB-INF/lib folder and put it into the TOMCAT_HOME/lib folder.

Tomcat Set-up

The first step to perform for creating a JNDI DataSource (connection pool) is to edit the context.xml file inside $TOMCAT_HOME/conf directory. This file contains the different JNDI resources configured for Tomcat.
In this case, we are going to configure a JNDI DataSource for a PostgreSQL database. If the file is not present you should create it and add a content similar to the following:

<Context>
 <Resource
 name="jdbc/postgres" auth="Container" type="javax.sql.DataSource"
 driverClassName="org.postgresql.Driver"
 url="jdbc:postgresql://localhost:5432/testdb"
 username="admin"
 password="admin"
 maxActive="20"
 maxIdle="10"
 maxWait="10000"
 minEvictableIdleTimeMillis="300000"
 timeBetweenEvictionRunsMillis="300000"
 validationQuery="SELECT 1"/>
</Context>

Note

If the file is already present, do not add the <Context></Context> labels.

In the previous XML snippet we configured a connection to a PostrgreSQL database called testdb which have the hostname as localhost and port number equal to 5432.

Note

Note that the user shall set proper username and password for the database.

Some of the parameters that can be configured for the JNDI connection pool are as follows:

	maxActive : The number of maximum active connections to use.

	maxIdle : The number of maximum unused connections.

	maxWait : The maximum number of milliseconds that the pool will wait.

	poolPreparedStatements : Enable the prepared statement pooling (very important for good performance).

	maxOpenPreparedStatements : The maximum number of prepared statements in pool.

	validationQuery : (default null) A validation query that double checks the connection is still alive before actually using it.

	timeBetweenEvictionRunsMillis : (default -1) The number of milliseconds to sleep between runs of the idle object evictor thread. When non-positive, no idle object evictor thread will be run.

	numTestsPerEvictionRun : (default 3) The number of objects to examine during each run of the idle object evictor thread (if any).

	minEvictableIdleTimeMillis : : (default 1000 * 60 * 30) The minimum amount of time, in milliseconds, an object may sit idle in the pool before it is eligable for eviction by the idle object evictor (if any).

	removeAbandoned : (default false) Flag to remove abandoned connections if they exceed the removeAbandonedTimout. If set to true a connection is considered abandoned and eligible for removal if it has been idle longer than the removeAbandonedTimeout. Setting this to true can recover db connections from poorly written applications which fail to close a connection.

	removeAbandonedTimeout : (default 300) Timeout in seconds before an abandoned connection can be removed.

	logAbandoned : (default false) Flag to log stack traces for application code which abandoned a Statement or Connection.

	testWhileIdle : (default false) Flag used to test connections when idle.

Warning

The previous settings should be modified only by experienced users. Using wrong low values for removedAbandonedTimeout and minEvictableIdleTimeMillis may result in connection failures; if so try it is important to set-up logAbandoned to true and check your catalina.out log file.

More informations about the parameters can be found at the DBCP documentation [http://commons.apache.org/proper/commons-dbcp/configuration.html].

GeoServer Set-up

Launch GeoServer and navigate to the Stores ‣ Add new Store section.

First, choose the PostGIS (JNDI) datastore and give it a name:

[image: ../../../_images/postgis_start.png]
PostGIS JNDI Store Configuration

And then you can configure the connection pool:

[image: ../../../_images/postgis_conf.png]
PostGIS JNDI Store Configuration

When you are doing this, make sure the schema is properly configured, or the DataStore will list all the tables it can find in the schema it is given access to.

Microsoft SQLServer JNDI Configuration

Before configuring a SQLServer connection pool you must follow these Guidelines [http://docs.geoserver.org/stable/en/user/data/database/sqlserver.html].

Warning

You must remove the sqljdbc.jar file from the WEB-INF/lib folder and put it inside the $TOMCAT_HOME/lib folder.

Tomcat Set-up

In this case, we are going to configure a JNDI DataSource for a SQLServer database. You shall create/edit the context.xml file inside $TOMCAT_HOME/conf directory
with the following lines:

<Context>
 <Resource
 name="jdbc/sqlserver"
 auth="Container"
 type="javax.sql.DataSource"
 url="jdbc:sqlserver://localhost:1433;databaseName=test;user=admin;password=admin;"
 driverClassName="com.microsoft.sqlserver.jdbc.SQLServerDriver"
 username="admin"
 password="admin"
 maxActive="20"
 maxIdle="10"
 maxWait="10000"
 minEvictableIdleTimeMillis="300000"
 timeBetweenEvictionRunsMillis="300000"
 validationQuery="SELECT 1"/>
</Context>

Note

Note that database name, username and password must be defined directly in the URL.

GeoServer Set-up

Launch GeoServer and navigate to the Stores ‣ Add new Store section.

Then choose the Microsoft SQL Server (JNDI) datastore and give it a name:

[image: ../../../_images/sqlserver_start.png]
Microsoft SQLServer JNDI Store Configuration

After, you can configure the connection pool:

[image: ../../../_images/sqlserver_conf.png]
Microsoft SQLServer JNDI Store Configuration

Oracle JNDI Configuration

Before configuring an Oracle connection pool you should download the Oracle plugin from the GeoServer Download Page [http://geoserver.org/download/]
and then put the the ojdbc14.jar file into the $TOMCAT_HOME/lib folder.

Warning

You must remove the ojdbc14.jar file from the WEB-INF/lib folder and put it inside the $TOMCAT_HOME/lib folder.

Tomcat Set-up

First you must create/edit the context.xml file inside $TOMCAT_HOME/conf directory with the following lines:

<Context>
 <Resource
 name="jdbc/oralocal"
 auth="Container" type="javax.sql.DataSource"
 url="jdbc:oracle:thin:@localhost:1521:xe"
 driverClassName="oracle.jdbc.driver.OracleDriver"
 username="dbuser"
 password="dbpasswd"
 maxActive="20"
 maxIdle="3"
 maxWait="10000"
 minEvictableIdleTimeMillis="300000"
 timeBetweenEvictionRunsMillis="300000"
 poolPreparedStatements="true"
 maxOpenPreparedStatements="100"
 validationQuery="SELECT SYSDATE FROM DUAL" />
</Context>

GeoServer Set-up

Launch GeoServer and navigate to the Stores ‣ Add new Store section.

Then choose the Oracle NG (JNDI) datastore and give it a name:

[image: ../../../_images/oracle_start.png]
Oracle JNDI Store Configuration

After, you can configure the connection pool:

[image: ../../../_images/oracle_conf.png]
Oracle JNDI Store Configuration

Note

In Oracle the schema is usually the user name, upper cased.

Configuring Connection Pools for production usage

Connection waiting time and relation with other params

In general it is important to set the connection waiting time in a way that the connection pool does not become a place where to queue threads executing requests under big load. It is indeed possible that under big load threads executing requests for a vector layer will outnumber the available connections in the pool hence such threads will be blocked trying to acquire a new connection; if the number of connections is much smaller than the number of incoming requests and the max wait time is quite big (e.g. 60 seconds) we will find ourselves in the condition to have many threads waiting for a long time to acquire a connection after most of the resources they need will be allocated, especially the memory back buffer if these are WMS requests.

The max wait time in general shall be set accordingly to the expected maximum execution time for a requests, end-to-end. This include things like, accessing the file system, loading the data. As an instance if we take into account WMS requests we are allowed to specify a maximum response time, therefore if set this to N seconds the max wait time should be set to a value smaller than that since we don’t want to waste resources having threads blocked unnecessarily waiting for a connection. In this case it shall be preferable to fail fast to release resources that might be used unnecessarily otherwise.

Maximizing sharing of Connection Pools

	How the data is organized between database, schemas and table impact the degree of flexibility we have when trying to best share connections, regardless of the fact that we were using JNDI pools or not. Summarising:

	
	Splitting tables in many schemas makes it hard for GeoServer to access table belonging to different schemas unless we switch to JNDI since the schema must be specified as part of the connection params when using internal pools

	Using different users for different schemas prevent JNDI from working efficiently across schemas. It’s best to use when possible a single dedicated account across schemas

	Generally speaking having a complex combination of users and schema can lead to inefficient split of available connections in multiple pools

Long story short, whenever it’s possible strive to make use of a small number of users and if not using JNDI to a small number of schema, although JNDI is a must for organization willing to create a complex set up where different workspaces (i.e Virtual Services) serve the same content differently.

Query Validation

Regardless of how we configure the validation query it is extremely important that we always remember to validate connections before using them in GeoServer; not doing this might lead to spurious errors due to stale connections sitting the pool. This can be achieved with the internal connection pool (via the validate connections box) as well as with the pools declared in JNDI (via the validation query mechanism); it is worth to remind that the latter will account for finer grain configurability.

Footnotes

	1

	http://en.wikipedia.org/wiki/Java_Naming_and_Directory_Interface

	2

	http://commons.apache.org/proper/commons-dbcp/

Installing and Configuring the Monitoring plugin

The monitoring extension provides a request monitor for GeoServer. It captures
information about each request a GeoServer instance handles and produces reports
based on the request data.

	Installation of the Extension

	Basic Configuration of the Extension

	Configuring Auditing (File Bases Monitoring Logging)

Installing the Monitoring Extension

Monitoring is an official extension, as such it can be found alongside any GeoServer release. The extension is split into two modules, “core” and “hibernate”, where core provides the basic underpinnings of the module and allows to monitor “live” requests, while the hibernate extension provides database storage of the requests.

	Get the monitoring zip files, already downloaded for you, from the training material data\plugins folder (search for zip files containing the monitoring word, there will be two)

	Extract the contents of the archives into the <TRAINING_ROOT>/tomcat-6.0.36/instances/instance1/webapps/geoserver/WEB-INF/lib directory of the GeoServer installation.

Verifying the Installation

There are two ways to verify that the monitoring extension has been properly installed.

	Start GeoServer and open the Web Administration interface [http://localhost:8083/geoserver]. Log in using the administration account. If successfully installed, there will be a Monitor section on the left column of the home page.

[image: ../../../_images/monitorwebadmin.png]
Monitoring section in the web admin interface

	Start GeoServer and navigate to the current data directory. If successfully installed, a new directory named monitoring will be created in the data directory.

Basic Configuration of the Monitor Extension

Many aspects of the monitor extension are configurable. All configuration files
are stored in the data directory under the monitoring directory:

<data_directory>
 monitoring/
 db.properties
 filter.properties
 hibernate.properties
 monitor.properties

The function of these files will be discussed below.

Monitor Mode

The monitoring extension supports different “monitoring modes” that control how
request data is captured and stored. Currently three modes are supported:

	history (Default) - Only historical request information is available. No live information is maintained.

	live - Only information about live requests is maintained.

	mixed - A combination of live and history. This mode is experimental.

The mode is set in the monitor.properties file.

Note

For the Virtual Machine GeoServer instance we are “live” mode.

History Mode

History mode persists information about all requests in an external database. It
does not provide any real time information. This mode is appropriate in cases
where a user is most interested in analyzing request history over a given time
period.

Live Mode

Live mode only maintains short lived information about requests that are
currently executing. It also maintains a small buffer of recent requests. No
external database is used with this mode and no information is persisted for
the long term.

This mode is most appropriate in cases where a user only cares about what a
server is doing in real time and is not interested about request history.

Mixed Mode

Mixed mode combines both live and history mode in that it maintains both real
time information and persists all request data to the monitoring database. This
mode however is experimental and comes with more overhead than the other two
modes. This is because mixed mode must perform numerous database transactions
over the life cycle of a single request (in order to maintain live information),
whereas history mode only has to perform a single database transaction for a
request.

This mode is most appropriate when both real time request information and
request history are desired. This mode is also most appropriate in a clustered
server environment in which a user is interested in viewing real time request
information about multiple nodes in a cluster.

Monitor Database

By default monitored request data is stored in an embedded H2 database located
in the monitoring directory. This can be changed by editing the
db.properties file:

default configuration is for h2
driver=org.h2.Driver
url=jdbc:h2:file:${GEOSERVER_DATA_DIR}/monitoring/monitoring

For example to store request data in an external PostgreSQL database:

driver=org.postgresql.Driver
url=jdbc:postgresql://localhost:5432/monitoring
username=bob
password=foobar

Warning

The above is just an example. Does not match the training users and environment.

Request Filters

By default not all requests are monitored. Those requests excluded include any web admin requests or any monitor HTTP API requests. These exclusions are configured in the filter.properties file:

/rest/monitor/**
/web
/web/**

These default filters can be changed or extended to filter more types of
requests. For example to filter out all WFS requests:

/wfs

How to determine the filter path

The contents of filter.properties are a series of ant-style patterns that
are applied to the path of the request. Consider the following request:

http://localhost:8083/geoserver/wms?request=getcapabilities

The path of the above request is /wms. In the following request:

http://localhost:8083/geoserver/rest/workspaces/topp/datastores.xml

The path is /rest/workspaces/topp/datastores.xml.

In general, the path used in filters is comprised of the portion of the URL
after /geoserver (including the preceding /) and before the query string ?:

http://<host>:<port>/geoserver/<path>?<queryString>

Note

For more information about ant-style pattern matching, see the Apache Ant manual [http://ant.apache.org/manual/dirtasks.html].

	Go to the Map Map Preview [http://localhost:8083/geoserver/web/?wicket:bookmarkablePage=:org.geoserver.web.demo.MapPreviewPage] and open the geosolutions:Counties layer clicking on the OpenLayer link.

	Perform a few times zoom the map.

	Use also the GML preview for said layer

	Navigate to the Monitor/Reports section [http://localhost:8083/geoserver/web/?wicket:bookmarkablePage=:org.geoserver.monitor.web.ReportPage]

	Click on OWS Request Summary to show a detailed chart like the following:

[image: ../../../_images/monitor1.png]

Logging all requests on the file system

The history mode logs all requests into a database. This can put a very significant strain
on the database and can lead to insertion issues as the request table begins to host
millions of records.

As an alternative to the history mode it’s possible to enable the auditing logger, which will log
the details of each request in a file, which is periodically rolled. Secondary applications can
then process these log files and built ad-hoc summaries off line.

Configuration

The monitor.properties file can contain the following items to enable and configure file auditing:

	Go to the ${GEOSERVER_DATA_DIR}/monitoring and open the monitor.properties then append the following configuration:

audit.enabled=true
audit.path=${TRAINING_ROOT}
audit.roll_limit=20

	Replace ${TRAINING_ROOT} with the full path to the workshop root folder, and rememeber to always use forward slashes, /, in the path, regardless of the operating system. For example, on Windows the path might look like c:/data/Training_2.5.X-32

	Go to the Map Map Preview [http://localhost:8083/geoserver/web/?wicket:bookmarkablePage=:org.geoserver.web.demo.MapPreviewPage] and open the geosolutions:states layer clicking on the OpenLayer link.

	Perform a few times zoom the map.

	Open the new created log file (named like geoserver_audit_yyyymmdd_nn.log) located at ${TRAINING_ROOT}.

Note

	audit.enable: is used to turn on the logger (it is off by default).

	audit.path: is the directory where the log files will be created.

	audit.roll_limit: is the number of requests logged into a file before rolling happens.

Note

The files are also automatically rolled at the beginning of each day.

Outputs and contents

The log directory will contain a number of log files following the geoserver_audit_yyyymmdd_nn.log
pattern. The nn is increased at each roll of the file. The contents of the log directory will look like:

geoserver_audit_20110811_2.log
geoserver_audit_20110811_3.log
geoserver_audit_20110811_4.log
geoserver_audit_20110811_5.log
geoserver_audit_20110811_6.log
geoserver_audit_20110811_7.log
geoserver_audit_20110811_8.log

Customizing the log contents

The log contents are driven by three FreeMarker templates. We can customize them to have the log file be a csv file for example.

	On the file system navigate to the GeoServer data directory located at $GEOSERVER_DATA_DIR.

	In the monitoring directory create a new file named header.ftl (is used once when a new log file is created to form the first few lines of the file).

	Open header.ftl in the text editor of your choice and enter the following content:

start time,services,version,operation,url,response content type,total time,response length,error flag

	Create another file named content.ftl.

	Open content.ftl in the text editor of your choice and enter the following content:

${startTime?datetime?iso_utc_ms},${service!""},${owsVersion!""},${operation!""},"${path!""}${queryString!""}",${responseContentType!""},${totalTime},${responseLength?c},<#if error??>failed<#else>success</#if>

	Create a last file named footer.ftl, and leave its contents empty

	Run again a few requests, the log files should contain something like the following now:

start time,services,version,operation,url,response content type,total time,response lenght,error flag
2012-06-07T10:37:09.725Z,WMS,1.1.1,GetMap,"/geosolutions/wmsLAYERS=geosolutions:ccounties&STYLES=&FORMAT=image/png&SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&SRS=EPSG:4269&BBOX=-106.17254516602,39.489453002927,-105.18378466798,40.054948608395&WIDTH=577&HEIGHT=330",image/png,59,30420,success
2012-06-07T10:37:10.075Z,WMS,1.1.1,GetMap,"/geosolutions/wmsLAYERS=geosolutions:ccounties&STYLES=&FORMAT=image/png&SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&SRS=EPSG:4269&BBOX=-105.84010229493,39.543136352537,-105.34572204591,39.825884155271&WIDTH=577&HEIGHT=330",image/png,45,18692,success

How to measure performances with JMeter

In this submodule we are going to describe how to use the JMeter tool :

	Configuring JMeter for a simple test

	Configuring JMeter for a Multiscale test

	Configuring JMeter for testing Raster optimization

	Configuring JMeter for testing Vector data

	Configuring JMeter for testing Style optimization

	Configuring JMeter for testing GeoWebCache fullWMS support

	Configuring JMeter for testing WMS Resource Limits

	Configuring JMeter for testing Control Flow plugin

	Configuring JMeter for testing the Marlin renderer

Configuring JMeter for a simple test

Apache JMeter is an open source Java desktop application, built to verify functional behavior, perform load tests, and measure performance.

This section explains how to run performance tests using JMeter in order to evaluate the GeoServer performances when serving WMS requests.
The performance test aim to stress the server and evaluate the response time and throughput with an increasing number of simulated users
sending concurrent request to the server.

Note

Ideally, to avoid adding extra load to the server JMeter should run on a different machine.

Warning

If you have performed the exercises in the security section, please go back to the layer and
service security pages and open access to everybody, on all data and all services, before performing
the exercises in this section

	From the training root, on the command line, run jmeter.bat (or jmeter.sh if you’re on Linux) to start JMeter:

[image: ../../../../_images/jmeter2.png]
jMeter interface

	Add a new Thread Group with the mouse right click on Test Plan tree node:

[image: ../../../../_images/jmeter3.png]
Adding a new Thread Group

	Add a new Loop Controller with the mouse right click on Thread Group tree node:

[image: ../../../../_images/jmeter4.png]
Adding a new Loop Controller

	In the Thread Group panel set the number of thread for the test to 4 (this represents the number of simultaneous requests that are made to GeoServer) and the ramp-up period to 60. Also, chek Forever on the Loop Count field.

[image: ../../../../_images/jmeter14.png]
Setting the Thread Group

	Right click on the Loop Controller tree node and add a new HTTP Request element:

[image: ../../../../_images/jmeter5.png]
Adding a new HTTP Request

	Add the following listeners by right clicking on Test Plan tree node: View results Tree, Summary Report, Graph results

[image: ../../../../_images/jmeter7.png]
Adding a Listeners

	In the HTTP Request enter the following basic configuration:

	Field

	Value

	Server Name or IP

	localhost

	Port Number

	8083

	Path

	geoserver/ows

[image: ../../../../_images/jmeter9.png]
HTTP Request host/port/path configuration

	From the training data dir root, open the data/jmeter_data/jmeter_request_params.txt, select and copy its contents in the clipboard, then click “Add from Clipboard” in the “HTTP request” panel to setup a sample GetMap request:

[image: ../../../../_images/jmeter_request_params.png]
HTTP parameters configuration

At this point jMeter is configured to run a GeoServer performance test:

	Select on Thread Group tree node and afted click on Run tool and select Start to startig the jMeter test.

[image: ../../../../_images/jmeter13.png]
starting jMeter test

	Select View Results Tree to directly see the request informations produced and the request result:

[image: ../../../../_images/jmeter15.png]
The View Results Tree panel

	Select Suymmary report to view the statistical information about the requests:

[image: ../../../../_images/jmeter19.png]
The Aggregate Graph panel

	Select Graph Results to analyze the technical trend of the requests:

[image: ../../../../_images/jmeter17.png]
The Spline Visualizer panel

Configuring JMeter for a Multiscale test

This chapter explains how to create a custom randomized Multiscale test with a set of multiple concurrent threads.

In the first paragraph is described how to generate a CSV file for randomized requests at different scales. In the second one is shown how to configure a new JMeter test
with multiple simultaneous threads.

Create CSV file

	Open the file gdal.bat under $TRAINING_ROOT folder inside the training home folder.

	Run:

cd %TRAINING_ROOT%\geoserver_data\data\boulder

gdalinfo srtm_boulder.tiff

	The output of the command will be something like this:

Driver: GTiff/GeoTIFF
Files: srtm_boulder.tiff
Size is 2520, 1800
Coordinate System is:
GEOGCS["WGS 84",
 DATUM["WGS_1984",
 SPHEROID["WGS 84",6378137,298.257223563,
 AUTHORITY["EPSG","7030"]],
 AUTHORITY["EPSG","6326"]],
 PRIMEM["Greenwich",0],
 UNIT["degree",0.0174532925199433],
 AUTHORITY["EPSG","4326"]]
Origin = (-105.700138888888890,40.300138888888888)
Pixel Size = (0.000277777777778,-0.000277777777778)
Metadata:
 AREA_OR_POINT=Area
Image Structure Metadata:
 INTERLEAVE=BAND
Corner Coordinates:
Upper Left (-105.7001389, 40.3001389) (105d42' 0.50"W, 40d18' 0.50"N)
Lower Left (-105.7001389, 39.8001389) (105d42' 0.50"W, 39d48' 0.50"N)
Upper Right (-105.0001389, 40.3001389) (105d 0' 0.50"W, 40d18' 0.50"N)
Lower Right (-105.0001389, 39.8001389) (105d 0' 0.50"W, 39d48' 0.50"N)
Center (-105.3501389, 40.0501389) (105d21' 0.50"W, 40d 3' 0.50"N)
Band 1 Block=256x256 Type=Int16, ColorInterp=Gray
 Overviews: 1260x900, 630x450, 315x225, 158x113, 79x57, 40x29

	The information needed for create a multiscale CSV file are:

	Tile Size

	256 x 256

	Pixel Size

	0.000277777777778

	Bounding Box

	((-105.7001389, -105.0001389), (39.8001389, 40.3001389))

	Run:

cd %TRAINING_ROOT%\data\jmeter_data

wms_request.py -count 100 -region -105.7 39.8 -105.0 40.3 -minres 0.00028 -maxres 0.00224 -minsize 256 256 -maxsize 1024 1024 > multiscale.csv

wms_request.py is a python script which generates randomized request at different bounding box and resolutions. The parameters are described in the following table:

	Parameter

	Description

	count

	Indicates the number of requests to generate

	region

	Indicates the maximum bounding box of each request

	minres/maxres

	Indicates the minimum and maximum value for the Pixel Size to request (Tipically it should be at least the minimum resolution)

	minsize/maxsize

	Indicates the minimum and maximum dimensions of the requested image (Tipically it should be at least as big as the tile size)

The CSV file is structured following the rule $width;$height;$bbox.

For example 290;444;-105.5904,39.910198,-105.48776,40.067338 indicates a request of size 290x444 and Bounding box [-105.5904,39.910198,-105.48776,40.067338].

JMeter must be configured for parsing the CSV file correctly by using the CSV Data Set Config element.

Configure JMeter

	From the training root, on the command line, run jmeter.bat (or jmeter.sh if you’re on Linux) to start JMeter:

[image: ../../../../_images/jmeter2.png]
jMeter interface

	Add 3 new Thread Group called 1, 2, 4

	For each Thread Group set the Number of Thread(users) field equal to the Thread Group name, the ramp-up period and Loop Count fields to 1.

[image: ../../../../_images/jmeter18.png]
Setting the Thread Group

	In the Test Plan section, check the Run Thread Groups consecutively checkbox

	Add a new Loop Controller for each Thread Group object:

	Each Loop Controller should be configured following this schema:

	
	Thread Group

	
	1

	
	Loop Controller –> Loop Count

	
	100

	
	Thread Group

	
	2

	
	Loop Controller –> Loop Count

	
	50

	
	Thread Group

	
	4

	
	Loop Controller –> Loop Count

	
	50

	Right click on each Loop Controller tree node and add a new HTTP Request element with the same name of the Thread Group:

[image: ../../../../_images/jmeter21.png]
Setting the HTTP Request

	In each HTTP Request add the following fields to the panel:

	Name

	Value

	Encode?

	Include Equals?

	bbox

	${bbox}

	unchecked

	checked

	height

	${height}

	unchecked

	checked

	width

	${width}

	unchecked

	checked

Which should look like in the picture

[image: ../../../../_images/jmeter20.png]
HTTP Request panel configuration

	Uncheck the Follow Redirects and Use KeepAlive checkbox

	Right click on each Loop Controller tree node and add a new CSV Data Set Config element:

[image: ../../../../_images/jmeter22.png]
Setting the CSV Data Set Config

	Configure the CSV Data Set Config element by adding the path of the CSV file created before and setting the variable definitions:

[image: ../../../../_images/jmeter23.png]
Configuring the CSV Data Set Config

	From the Test Plan tree node add an HTTP Request Default element and enter the following basic configuration:

	Field

	Value

	Server Name or IP

	localhost

	Port Number

	8083

	Path

	geoserver/ows

It should look like this:

[image: ../../../../_images/jmeter9.png]
HTTP Default Request host/port/path configuration

	From the training data dir root, open the data/jmeter_data/jmeter_request_params_2.txt, select and copy its contents in the clipboard, then click “Add from Clipboard” in the “HTTP request” panel to setup a sample GetMap request:

	Add the following listeners by right clicking on Test Plan tree node: “View results Tree”, “Summary Report”

	Add the following assertions by right clicking on Test Plan tree node: “Response Assertion”

[image: ../../../../_images/jmeter24.png]
Adding Assertions

Note

Using Assertions is helpful because it avoids to continuously do a visual check on the results.

	Configure the “Response Assertion” following this table:

	Field

	Value

	Apply to

	Main sample only

	Response field to test

	Response Headers

	Pattern Matching Rules

	Contains

In the Pattern to test panel add:

Content-Type: image/png

The final result should look like in the picture:

[image: ../../../../_images/jmeter25.png]
Configuring Response Assertion

At this point jMeter is configured to run a GeoServer performance test:

	Select the Test Plan tree node and select Run - Start from the top menu to start the jMeter test.

[image: ../../../../_images/jmeter13.png]
starting jMeter test

	Select View Results Tree to directly see the request information produced and the requests results:

[image: ../../../../_images/jmeter26.png]
The View Results Tree panel with a sample request

[image: ../../../../_images/jmeter27.png]
Another request with different resolution and bounding box

	Select Summary report to view the statistical information about the requests:

[image: ../../../../_images/jmeter28.png]
Suymmary report panel

Configuring JMeter for testing Raster optimization

The following section explains how the GeoServer performances improves with the optimization of raster files.

Optimization has already been discussed in the Introduction To Processing With GDAL sections, describing the most common techniques used.

Note

This section requires the layers published in the Adding an Image Mosaic, Introduction To Processing With GDAL and Advanced Mosaics Configuration sections.

Test the Unoptimized Mosaic

	Go to $TRAINING_ROOT/data/jmeter_data and copy the file template.jmx file, creating a mosaic.jmx file

	From the training root, on the command line, run jmeter.bat (or jmeter.sh if you’re on Linux) to start JMeter

	On the top left go to File –> Open and search for the new jmx file copied

	Disable the Thread Groups 8, 16, 32, 64 by right-clicking on them and selecting Disable.

	In the CSV Data Set Config element of the remaining thread groups, modify the path of the CSV file by setting the path for the file optimized.csv in the $TRAINING_ROOT/data/jmeter_data directory

	In the HTTP Request Default element modify the following parameters:

	Name

	Value

	layers

	geosolutions:boulder_bg

	srs

	EPSG:26913

At this point jMeter is configured to run a GeoServer performance test:

	Run the test

Note

Remember to run and stop the test a few times for having stable results

	You should see something like this:

[image: ../../../../_images/jmeter29.png]
`View Results Tree` panel

	When the test is completed, Save the results in a text file and remove them from the console by clicking on Run –> Clear All on the menu

Test the Optimized Mosaic

	In the HTTP Request Default section modify the following parameter:

	Name

	Value

	layers

	geosolutions:boulder_bg_optimized

	Run the test again

	Compare the results of this test with the ones saved before. You should see that throughput is increased with the optimized Mosaic

Configuring JMeter for testing Vector data

The following section compare vector data preparation using Shapefile and PostGis. For this example a Shapefile containing primary or secondary roads is used.

The purpose is to test the throughput between the shapefile and an optimized database containing the same data. The result will demonstrate that database optimization can provide a better
throughput than the one of the shapefile

Configuring the database

	Open the terminal and go to the %TRAINING_ROOT%

	Load the shapefile tl_2014_01_prisecroads located in %TRAINING_ROOT%\data\user_data into PostGIS with the following commands:

setenv.bat

createdb -U postgres -T postgis20 shape2

shp2pgsql -k -I "data\user_data\tl_2014_01_prisecroads\tl_2014_01_prisecroads.shp" public.pgroads | psql -U postgres -d shape2

Note

More information can be found at Loading a Shapefile into PostGIS

	On the %TRAINING_ROOT% run pgAdmin.bat

	Go to the table pgroads inside database shape2 and execute the following SQL script for creating an index on the MTFCC column:

CREATE INDEX mtfcc_idx ON pgroads ("MTFCC");

[image: ../../../../_images/jmeter46.png]
Create a new index

The following index optimizes the access to the database when filtering on the MTFCC column.

Configuring GeoServer

	On your Web browser, navigate to the GeoServer Welcome Page [http://localhost:8083/geoserver/].

	Following the instructions on Adding a Postgis layer, configure the database shape2 in GeoServer and call it pgroads

Note

Note that the database Coordinate Reference System is EPSG:4269

	Configure the shapefile tl_2014_01_prisecroads used before in GeoServer following the instructions in Adding a Shapefile and call it allroads

Note

Note that the shapefile Coordinate Reference System is EPSG:4269

	Go to Styles and click on Add new Style

	On the bottom of the page, click on Choose File and select the SLD file called shproads in the $TRAINING_ROOT/data/jmeter_data directory

	Click on Upload and then on Submit. This new style supports scale dependency which is used as filter on the roads to display.

Configuring JMeter

	Go to $TRAINING_ROOT/data/jmeter_data and copy the file template.jmx file creating a vector.jmx file.

	From the training root, on the command line, run jmeter.bat (or jmeter.sh if you’re on Linux) to start JMeter

	On the top left go to File –> Open and search for the new jmx file copied

	In the CSV Data Set Config element, modify the path of the CSV file by setting the path for the file shp2pg.csv in the $TRAINING_ROOT/data/jmeter_data directory

	In the HTTP Request Default element modify the following parameters:

	Name

	Value

	layers

	geosolutions:allroads

	srs

	EPSG:4269

	styles

	shproads

Test the Shapefile

	Run the test. You should see something like this:

[image: ../../../../_images/jmeter47.png]
Sample request on the Shapefile

Note

Remember to run and stop the test a few times for having stable results

	When the test is completed, Save the results in a text file.

	Remove the result from JMeter by clicking on Run –> Clear All on the menu

Test the Database

	In the HTTP Request Default element modify the following parameter:

	Name

	Value

	layers

	geosolutions:pgroads

	Run the test again. It should be noted that database throughput is greater than that of the Shapefile, because the new index created provides a faster access on the database, improving GeoServer performances

Configuring JMeter for testing Style optimization

The following section explains how GeoServer performances are improved when using optimized styles. Styling is an important feature for GeoServer, but requires some
attention in order to avoid slowing down the performances.

This tutorial is aimed to show how GeoServer performances change by choosing a different style for the same data set using JMeter.

Note

This example requires to have already completed the first 9 steps of the Creating a Base Map with a Layer Group section, Adding a Shapefile and Adding a Style sections .

Configuring GeoServer

	On your Web browser, navigate to the GeoServer Welcome Page [http://localhost:8083/geoserver/].

	Go to Styles and click on Add new Style

	On the bottom of the page, click on Choose File and select the SLD file called line_label in the $TRAINING_ROOT/data/jmeter_data directory

	Click on Upload and then on Submit. Now we have a style which supports labeling but has no control on the label conflicts and overlapping

	Return to the GeoServer Welcome Page [http://localhost:8083/geoserver/].

	Go to Layer Groups and click on test

	Add a new Layer to the Layer Group called bbuildings

[image: ../../../../_images/jmeter36.png]
Add a new Layer to the Layer Group

	Change the associated styles by clicking on each style and choosing another one on the list. Use the following styles:

	Layer

	Style

	geosolutions:Mainrd

	line_label

	geosolutions:BoulderCityLimits

	polygon

	geosolutions:bplandmarks

	polygon

	geosolutions:bbuildings

	polygon

[image: ../../../../_images/jmeter37.png]
Styles configuration

	Click on Save. With this configuration we have a Layer Group composed by 4 Layers with 4 bad styles associated. This will result in a low throughput, if compared to that of the test with optimized styels.

Configuring JMeter

	Go to $TRAINING_ROOT/data/jmeter_data and copy the file template.jmx file and create a styles.jmx one

	From the training root, on the command line, run jmeter.bat (or jmeter.sh if you’re on Linux) to start JMeter

	On the top left go to File –> Open and search for the new jmx file copied

	Disable Thread Group 8, 16, 32 and 64

	In the CSV Data Set Config element, modify the path of the CSV file by setting the path for the file style.csv in the $TRAINING_ROOT/data/jmeter_data directory

	In the HTTP Request Default element modify the following parameters:

	Name

	Value

	layers

	test

	srs

	EPSG:2876

Test with unoptimized styles

	Run the test. You should see something like this:

[image: ../../../../_images/jmeter38.png]
View Results Tree panel with a bad styling

Note

Remember to run and stop the test a few times for having stable results

	When the test is completed, Save the results in a text file.

	Remove the result from JMeter by clicking on Run –> Clear All on the menu

Setting optimized styles

	Go to Layer Groups and click on test

	Change the associated styles by clicking on each style and choosing another one on the list. Use the following styles:

	Layer

	Style

	geosolutions:Mainrd

	mainrd

	geosolutions:BoulderCityLimits

	citylimits

	geosolutions:bplandmarks

	arealandmarks

	geosolutions:bbuildings

	buildings

[image: ../../../../_images/jmeter39.png]
Styles configuration

	Click on Save. The new styles contain scale dependencies and label optimization, which will result in a better throughput.

Test with optimized styles

	Run again the test.

[image: ../../../../_images/jmeter40.png]
View Results Tree panel with good styling

You may see that the throughput is greater than that of the first test. The use of scale dependencies reduces the layers to see at lower zoom levels while conflict resolution avoids to show multiple overlapping label at each zoom level.

Configuring JMeter for testing GeoWebCache fullWMS support

The following section compare GeoServer WMS with GeoWebCache fullWMS support. FullWMS is a new feature which allows GeoWebCache to act as a WMS endpoint, like GeoServer.
Using GeoWebCache, the server is able to cache the requested tiles in order to return them faster then GeoServer.

This example will show how to configure GeoWebCache with fullWMS support and how the performances are improved.

Configuring GeoServer/GeoWebCache

	On your Web browser, navigate to the GeoServer Welcome Page [http://localhost:8083/geoserver/].

	Go to Gridsets and click on Create a new gridest

	Call it EPSG_2876 and set EPSG:2876 as Coordinate Reference System

	Click on Compute from maximum extent of CRS and add 15 new Zoom Levels (from 0 to 14)by clicking on Add zoom level. It should look like this picture:

[image: ../../../../_images/jmeter41.png]
Create a new Gridset

	Click on Save. Now this GridSet can be added to the Layer Group boulder for caching it with GeoWebCache

	Go to Layer Groups and click on boulder

	On the Available gridsets panel add the gridset EPSG_2876 from the list. Then click on Save.

[image: ../../../../_images/jmeter42.png]
Add the new Gridset

Note

Remember to set Published zoom levels to Min and Max

Configuring JMeter

	Go to $TRAINING_ROOT/data/jmeter_data and copy the file template.jmx file into gwc.jmx

	From the training root, on the command line, run jmeter.bat (or jmeter.sh if you’re on Linux) to start JMeter

	On the top left go to File –> Open and search for the new jmx file copied

	Disable all the Thread Groups except for 8

	Disable the Content-Type Check

	In the CSV Data Set Config element, modify the path of the CSV file by setting the path for the file gwc.csv in the $TRAINING_ROOT/data/jmeter_data directory

	In the HTTP Request Default element modify the following parameters:

	Name

	Value

	layers

	boulder

	srs

	EPSG:2876

Test GeoServer WMS

	Run the test

Note

Remember to run and stop the test a few times for having stable results

	When the test is completed, Save the results in a text file.

	Remove the result from JMeter by clicking on Run –> Clear All on the menu

	Stop GeoServer

Test GeoWebCache fullWMS

	Go to $TRAINING_ROOT/data/gwc/geowebcache.xml and add the following snippet:

<gwcConfiguration>

 ...

 <fullWMS>true</fullWMS>
</gwcConfiguration>

Setting fullWMS to true allows GeoWebCache to use fullWMS support

	Restart GeoServer

	On the JMeter HTTP Request Default panel, change the Path from geoserver/ows to geoserver/gwc/service/wms in order to execute WMS requests directly to GeoWebCache, without passing from GeoServer

	Add a new parameter called hints which can have 3 values speed, default and quality. The first one should be used for having a faster response without concerning about image quality; the last one, instead, is slower but with a better quality; the second one is a good trade off between them. For the first test set hints to speed.

	Run the test

Note

At the first run, the throughput should be lower than that of GeoServer, because GeoWebCache has spent much time on generating the cached tiles.

	Remove the result from JMeter by clicking on Run –> Clear All on the menu

	Run the same test again.

Now the throughput should be improved, because GeoWebCache have already generated the tiles to cache and can reuse them. Image quality should be very poor because of the hints=speed configuration.

[image: ../../../../_images/jmeter43.png]
Result from GeoWebCache fullWMS with hints=speed

	Run the same test with hints=default

[image: ../../../../_images/jmeter44.png]
Result from GeoWebCache fullWMS with hints=default

	Run the same test with hints=quality

[image: ../../../../_images/jmeter45.png]
Result from GeoWebCache fullWMS with hints=quality

It should be noted that changing the hints parameter changes the image quality, but the throughput is always greater than that of GeoServer WMS

Configuring JMeter for testing WMS Resource Limits

The following section explains how GeoServer performances are improved when setting the resource limits for WMS.

Preliminary Steps

	Open your Web browser and navigate to the GeoServer Welcome Page [http://localhost:8083/geoserver/].

	Go to Stores and select storms DataStore

	Change the following parameters:

	Name

	Value

	max connections

	1

	Connection timeout

	20000000

It should appear something like this:

[image: ../../../../_images/jmeter30.png]
Change `storms` parameters

Now you have configured this store to enqueue all the requests in a single queue until they are not timed out.

Configure JMeter

	Go to $TRAINING_ROOT/data/jmeter_data and copy the file template.jmx file and create limit.jmx

	From the training root, on the command line, run jmeter.bat (or jmeter.sh if you’re on Linux) to start JMeter

	On the top left go to File –> Open and search for the new jmx file copied

	Disable all the Thread Groups except for the 64 one in order to create a test environment with multiple concurrent requests to be enqueued.

	In the CSV Data Set Config element, modify the path of the CSV file by setting the path for the file limits.csv in the $TRAINING_ROOT/data/jmeter_data directory

	In the HTTP Request Default element modify the following parameters:

	Name

	Value

	layers

	geosolutions:storm_obs

	srs

	EPSG:4326

Test without WMS Limits

	Run the test

Note

Remember to run and stop the test a few times for having stable results

	You should see something like this:

[image: ../../../../_images/jmeter31.png]
View Results Tree

	When the test is completed, Save the results in a text file and remove them from the console by clicking on Run –> Clear All on the menu

Configure WMS Limits

	On your Web browser, navigate to the GeoServer Welcome Page [http://localhost:8083/geoserver/].

	Go to WMS and edit the Raster Rendering Options section:

	Name

	Value

	Max rendering time

	10

[image: ../../../../_images/jmeter32.png]
Changing WMS limit configuration

With this option, GeoServer will cut off all the requests that need more than 10s to be rendered, making GeoServer more responsive. Note that this
will result in various error returned by GeoServer for those operations which are cut off.
You can choose another value to set. For having a good result you should take a value minor than the average response time of the first test.

Test with WMS Limits

	Run again the test. You should see multiple errors like this:

[image: ../../../../_images/jmeter33.png]
Exceptions caused by maximum rendering limit exceeded

You may see that the throughput is increased because most of the timed out requests have been removed. With this kind of configuration you can control the responsiveness
of your GeoServer by removing stale requests instead of waiting for them.

Note

At the end of the test remove the limits and restore the previous configuration of the storms DataStore

Configuring JMeter for testing Control Flow plugin

This section explains how GeoServer performances are improved when using Control-Flow plugin.

This plugin avoid GeoServer to execute too many requests together, which could lead to bad performances, by reducing the number of concurrent operations to execute and appending the others to a queue. This behaviour improves GeoServer scalability.

Note

This example requires to have already completed Adding a ShapeFile and Adding a Style sections.

Configure JMeter

	Go to $TRAINING_ROOT/data/jmeter_data and copy the file template.jmx file into controlflow.jmx

	From the training root, on the command line, run jmeter.bat (or jmeter.sh if you’re on Linux) to start JMeter

	On the top left go to File –> Open and search for the new jmx file copied

	Disable View Results Tree section

	In the CSV Data Set Config element, modify the path of the CSV file by setting the path for the file controlflow.csv in the $TRAINING_ROOT/data/jmeter_data directory

	In the HTTP Request Default element modify the following parameters:

	Name

	Value

	layers

	geosolutions:Mainrd

	srs

	EPSG:2876

Test without Control Flow

	Run the test

Note

Remember to run and stop the test a few times for having stable results

	When the test is completed, Save the results in a text file.

You should notice that the throughput initially increases and then starts to decrease. This is associated to a bad scalability of the input requests. Remember which number of threads provides better throughput (it should be 8). This value indicates the maximum number of concurrent requests that the server can execute simultaneously.

[image: ../../../../_images/jmeter34.png]
Decreased throughput (Note the results may be different in other machines)

	Remove the result from JMeter by clicking on Run –> Clear All on the menu

	Stop GeoServer

Configure Control Flow

	Go to $TRAINING_ROOT/data/plugins/not_installed and copy geoserver-2.6-SNAPSHOT-control-flow-plugin.zip zip file inside $TRAINING_ROOT/tomcat-6.0.36/instances/instance1/webapps/geoserver/WEB-INF/lib

	Unzip the content of geoserver-2.6-SNAPSHOT-control-flow-plugin.zip inside the same folder

	Go to $TRAINING_ROOT/geoserver_data and create a new file called controlflow.properties and add the following snippet

don't allow more than 8 WMS GetMap in parallel
ows.wms.getmap=8

This code snippet indicates that no more than 8 GetMap request can be executed simultaneously by the WMS service. Other informations about the configuration can be found in the next section

Note

If during your test you have found another number for the maximum throughput, you should set that value instead of 8

Test with Control Flow

	Restart GeoServer

	Run again the test.

You may see that the throughput is no more reduced after the control-flow configuration, because the input requests are scheduled by the control-flow plugin, improving GeoServer scalability.

[image: ../../../../_images/jmeter35.png]
Stable throughput (Note the results may be different in other machines)

Configuring JMeter for testing the Marlin renderer

This section explains how GeoServer performances are improved when using the Marlin renderer.

The Oracle JDK and OpenJDK come with two different anti-aliased renderers:

	Oracle JDK uses Ductus, a fast native renderer that has scalability issues (good for desktop use, less so on the server side)

	OpenJDK uses Pisces, a pure java renderer that is not as fast as “Ductus”, but has good scalability (anecdotally, it becomes faster than Ductus above the 4 concurrent requests)

The Marlin [https://github.com/bourgesl/marlin-renderer] renderer is an improved version of Pisces that is as fast, if not faster, than Ductus, and scales up just as well as Pisces.

Configure JMeter

	Go to $TRAINING_ROOT/data/jmeter_data and copy the file template.jmx file creating a marlin.jmx file

	From the training root, on the command line, run jmeter.bat (or jmeter.sh if you’re on Linux) to start JMeter

	On the top left go to File –> Open and search for the new jmx file copied

	Disable View Results Tree section

	In the CSV Data Set Config element, modify the path of the CSV file by setting the path for the file controlflow.csv in the $TRAINING_ROOT/data/jmeter_data directory

	In the HTTP Request Default element modify the following parameters:

	Name

	Value

	layers

	boulder

	srs

	EPSG:2876

Test without Marlin

	Go and remove the contro

	Run the test

Note

Remember to run and stop the test a few times for having stable results

	When the test is completed, Save the results in a text file.

[image: ../../../../_images/no_marlin.png]
Throughput without Marlin (Note the results may be different in other machines)

	Remove the result from JMeter by clicking on Run –> Clear All on the menu

	Stop GeoServer

Setup Marlin

	Stop GeoServer

	Download the Marlin rasterizer library at https://github.com/bourgesl/marlin-renderer/releases/download/v0.4.4/marlin-0.4.4.jar and save it in %TRAINING_ROOT%\data

	Open %TRAINING_ROOT%\setenv.bat and add the following lines to enable the Marlin renderer, right before the “Tomcat options for the JVM” section:

REM Marlin support
set JAVA_OPTS=%JAVA_OPTS% -Xbootclasspath/p:"%ROOT%\data\marlin-0.4.4.jar"
set JAVA_OPTS=%JAVA_OPTS% -Dsun.java2d.renderer=org.marlin.pisces.PiscesRenderingEngine

	Start GeoServer again

	Go to the map preview and open the boulder layer, you should see the following in the Tomcat console:

INFO: ===
INFO: Marlin software rasterizer = ENABLED
INFO: Version = [marlin-0.4.4]
INFO: sun.java2d.renderer = org.marlin.pisces.PiscesRenderingEngine
INFO: sun.java2d.renderer.useThreadLocal = true
INFO: sun.java2d.renderer.useRef = soft
INFO: sun.java2d.renderer.pixelsize = 2048
INFO: sun.java2d.renderer.subPixel_log2_X = 3
INFO: sun.java2d.renderer.subPixel_log2_Y = 3
INFO: sun.java2d.renderer.tileSize_log2 = 5
INFO: sun.java2d.renderer.useFastMath = true
INFO: sun.java2d.renderer.useSimplifier = false
INFO: sun.java2d.renderer.doStats = false
INFO: sun.java2d.renderer.doMonitors = false
INFO: sun.java2d.renderer.doChecks = false
INFO: sun.java2d.renderer.useJul = false
INFO: sun.java2d.renderer.logCreateContext = false
INFO: sun.java2d.renderer.logUnsafeMalloc = false
INFO: ===

Test with Marlin renderer

	Run again the test.

You may see that the throughput got significantly higher, especially at mid-high thread counts

[image: ../../../../_images/marlin.png]
Throughput with Marlin (Note the results may be different in other machines)

Configuring the Control flow plugin

The control-flow module for GeoServer allows the administrator to control the amount of concurrent requests actually executing inside the server.
This kind of control is useful for a number of reasons:

	Performance: tests show that, with local data sources, the maximum throughput in GetMap requests is achieved when allowing at most 2 times the number of CPU cores requests to run in parallel.

	Resource control: requests such as GetMap can use a significant amount of memory. The WMS request limits allow to control the amount of memory used per request, but an OutOfMemoryError is still possible if too many requests run in parallel. By controlling also the amount of requests executing it’s possible to limit the total amount of memory used below the memory that was actually given to the Java Virtual Machine.

	Fairness: a single user should not be able to overwhelm the server with a lot of requests, leaving other users with tiny slices of the overall processing power.

The control flow method does not normally reject requests, it just queues up those in excess and executes them late. However, it’s possible to configure the module to reject requests that have been waited in queue for too long.

Rule syntax reference

The current implementation of the control flow module reads its rules from a controlflow.properties property file located in the GeoServer data directory.

Total OWS request count

The global number of OWS requests executing in parallel can be specified with:

ows.global=<count>

Every request in excess will be queued and executed when other requests complete leaving some free execution slot.

Per request control

A per request type control can be demanded using the following syntax:

ows.<service>[.<request>[.<outputFormat>]]=<count>

Where:

	<service> is the OWS service in question (at the time of writing can be wms, wfs, wcs)

	<request>, optional, is the request type. For example, for the wms service it can be GetMap, GetFeatureInfo, DescribeLayer, GetLegendGraphics, GetCapabilities

	<outputFormat>, optional, is the output format of the request. For example, for the wms GetMap request it could be image/png, image/gif and so on

A few examples:

don't allow more than 16 WCS requests in parallel
ows.wcs=16
don't allow more than 8 GetMap requests in parallel
ows.wms.getmap=8
don't allow more than 2 WFS GetFeature requests with Excel output format
ows.wfs.getfeature.application/msexcel=2

Per user control

This avoid a single user to make too many requests in parallel:

user=<count>

Where <count> is the maximum number of parallel requests a single user can execute in parallel. The user tracking mechanism is cookie based, so it will work fine for browsers but not as much for other kinds of clients. An IP based mechanism is not provided at the time, but it would have its own fallacies as well, as it would limit all the users sitting behind a single router to <count> requests (imagine the effect on a big public administration).

Timeout

A request timeout is specified with the following syntax:

timeout=<seconds>

where <seconds> is the number of seconds a request can stay queued waiting for execution. If the request does not enter execution before the timeout expires it will be rejected.

A complete example

Assuming the server we want to protect has 4 cores a sample configuration could be:

if a request waits in queue for more than 60 seconds it's not worth executing,
the client will likely have given up by then
timeout=60
don't allow the execution of more than 100 requests total in parallel
ows.global=100
don't allow more than 10 GetMap in parallel
ows.wms.getmap=10
don't allow more than 4 outputs with Excel output as it's memory bound
ows.wfs.getfeature.application/msexcel=4
don't allow a single user to perform more than 6 requests in parallel
(6 being the Firefox default concurrency level at the time of writing)
user=6

Running GeoNode under SSL

Enabling SSL will encrypt traffic between your GeoNode server and client browsers. This approach involves re-configuring Apache to serve on port 443, instead of port 80. Other approaches exist and should be added to this document.

Generate SSL Key & Certificate

The first step is to generate a DES key.:

for CommonName use GeoNode domain name or ip address as specified in GeoNode's SITEURL
openssl genrsa -des3 -out server.key 1024
openssl req -new -key server.key -out server.csr

generate new server.key without challenge password, or Apache will ask for password at startup
mv server.key server.key.tmp
openssl rsa -in server.key.tmp -out server.key

generate certificate
openssl x509 -req -days 365 -in server.csr -signkey server.key -out server.crt

Copy the key and certificate to the standard locations:

sudo cp server.crt /etc/ssl/certs/geonode.crt
sudo cp server.key /etc/ssl/private/geonode.key

Next add the certificate to the cacerts file for python and java:

sudo -s "cat server.crt >> /var/lib/geonode/lib/python2.6/site-packages/httplib2/cacerts.txt"
sudo keytool -import -alias geonodessl -keystore /etc/ssl/certs/java/cacerts -file server.crt

Note keytool will ask for a password and the standard password for the java cacerts file is changeit.

Apache Configuration

Enable the ssl module in Apache with the command:

sudo a2enmod ssl

Next as root edit the Apache geonode config file /etc/apache2/sites-available/geonode. At the beginning of the file replace:

<VirtualHost *:80>

with:

<IfModule mod_ssl.c>
<VirtualHost _default_:443>

At the bottom of the file, replace:

</VirtualHost>

with:

 SSLEngine on
 SSLCertificateFile /etc/ssl/certs/geonode.crt
 SSLCertificateKeyFile /etc/ssl/private/geonode.key
 BrowserMatch "MSIE [2-6]" \
 nokeepalive ssl-unclean-shutdown \
 downgrade-1.0 force-response-1.0
 # MSIE 7 and newer should be able to use keepalive
 BrowserMatch "MSIE [17-9]" ssl-unclean-shutdown
</VirtualHost>
</IfModule>

<VirtualHost *:80>
 Redirect permanent / https://192.168.10.10/
</VirtualHost>

This tells Apache where to fine the key and certificate. There are also some additional lines to handle MSIE, taken from Apache’s default-ssl file.

Tomcat Configuration

As root edit the Tomcat server config file /var/lib/tomcat6/conf/server.xml, and replace:

<Connector port="8080" protocol="HTTP/1.1"
 connectionTimeout="20000"
 URIEncoding="UTF-8"
 redirectPort="8443"
/>

with:

<Connector port="8080" protocol="HTTP/1.1"
 connectionTimeout="20000"
 URIEncoding="UTF-8"
 scheme="https"
 proxyName="<yourServersIPorDomainName>"
 proxyPort="443"
/>

This tells Tomcat that it is running behind an https proxy. If this is omitted Tomcat will try to redirect to http.

GeoNode Configuration

As root edit the geonode config file /etc/geonode/local_settings.py and change the SITEURL protocol to https:

SITEURL = 'https://<ipaddressOrDomainName>/'

GeoServer Configuration

As root edit the file /var/lib/tomcat6/webapps/geoserver/WEB-INF/web.xml and ensure the GEONODE_BASE_URL is specified as follows:

<context-param>
 <param-name>GEONODE_BASE_URL</param-name>
 <param-value>https://localhost/</param-value>
</context-param>

Also update proxyBaseUrl in the Geoserver global settings file /var/lib/geoserver/geonode-data/global.xml:

<proxyBaseUrl>https://192.168.10.10/geoserver/</proxyBaseUrl>

Restart

Finally restart Apache and Tomcat with:

sudo /etc/init.d/apache2 restart
sudo /etc/init.d/tomcat6 restart

This information was complied from a number of sources. The main links are listed below. Please contact the GeoNode list with any updates or corrections.

	http://confluence.atlassian.com/display/JIRA/Connecting+to+SSL+services

	http://confluence.atlassian.com/display/JIRA/Integrating+JIRA+with+Apache+using+SSL

	http://www.akadia.com/services/ssh_test_certificate.html

	https://help.ubuntu.com/10.04/serverguide/C/httpd.html

	https://help.ubuntu.com/10.04/serverguide/C/certificates-and-security.html

GeoSites: GeoNode Multi-Tenancy

GeoSites is a way to run multiple websites with a single instance of GeoNode. Each GeoSite can have different templates, apps, and data permissions but share a single database (useful for sharing users and data layers), GeoServer, and CSW. This is useful when multiple websites are desired to support different sets of users, but with a similar set of data and overall look and feel of the sites. Users can be given permission to access multiple sites if needed, which also allows administrative groups can be set up to support all sites with one account.

Master Website

A GeoSites installation uses a ‘master’ GeoNode website that has soms additional administrative pages for doing data management. Layers, Maps, Documents, Users, and Groups can all be added and removed from different sites. Users can be given access to any number of sites, and data may appear on only a single site, or all of them. Additionally, if desired, any or all of the django apps installed on the other sites can be added to the master site to provide a single administrative interface that gives full access to all apps. The master site need not be accessible from the outside so that it can be used as an internal tool to the organization.

Users created on a particular site are created with access to just that site. Data uploaded to a particular site is given permission on that site as well as the master site. Any further adjustments to site-based permissions must be done from the master site.

Database

The master site, and all of the individual GeoSites, share a single database. Objects, including users, groups, and data layers, all appear within the database but an additional sites table indicates which objects have access to which sites. The geospatial data served by GeoServer (e.g., from PostGIS) can exist in the database like normal, since GeoServer will authenticate against GeoNode, which will use it’s database to determine permissions based on the object, current user, and site.

GeoServer

A single GeoServer instance is used to serve data to all of the GeoSites. To keep data organized each site specifies a default workspace (DEFAULT_WORKSPACE) that GeoServer will use to partition the data depending on which site uploaded the data. The workspaces themselves don’t have any impact on permissions, since data can be added and removed from different sites, however it provides at least some organization of the data based on the initial site.

Data that is common to all sites can be added to the master site which will appear in the generic ‘geonode’ workspace.

Settings Files and Templates

A key component in managing multiple sites is keeping data organized and using a structured series of settings files so that common settings can be shared and only site specific settings are separated out. It is also best to import the default GeoNode settings from the GeoNode installation. This prevents the settings from having to be manually upgraded if there is any default change the GeoNode settings.

Settings which are common to all GeoSites, but differ from the default GeoNode, are separated into a master_settings.py file. Then, each individual site has settings file which imports from the master site and will then only need to specify a small selection that make that site unique, such as:

	SITE_ID: Each one is unique, the master site should have a SITE_ID of 1.

	SITENAME

	SITEURL

	ROOT_URLCONF: This may be optional. The master site url.conf can be configured to automatically import the urls.py of all SITE_APPS, so a different ROOT_URLCONF is only needed if there are further differences.

	SITE_APPS: Containing the site specific apps

	App settings: Any further settings required for the above sites

	Other site specific settings, such as REGISTRATION_OPEN

A GeoSite therefore has three layers of imports, which is used for settings as well as the search path for templates. First it uses the individual site files, then the master GeoSite, then default GeoNode. These are specified via variables defined in settings:

	SITE_ROOT: The directory where the site specific settings and files are located (templates, static)

	PROJECT_ROOT: The top-level directory of all the GeoSites which should include the global settings file as well as template and static files

	GEONODE_ROOT: The GeoNode directory.

The TEMPLATE_DIRS, and STATICFILES_DIRS will then include all three directories as shown:

TEMPLATE_DIRS = (
 os.path.join(SITE_ROOT, 'templates/'),
 os.path.join(PROJECT_ROOT,'templates/'), # files common to all sites
 os.path.join(GEONODE_ROOT, 'templates/')
)

STATICFILES_DIRS = (
 os.path.join(SITE_ROOT, 'static/'),
 os.path.join(PROJECT_ROOT, 'static/'),
 os.path.join(GEONODE_ROOT, 'static/')
)

At the end of the settings_global.py the following variables will be set based on site specific settings:

STATIC_URL = os.path.join(SITEURL,’static/’)
GEONODE_CLIENT_LOCATION = os.path.join(STATIC_URL,’geonode/’)
GEOSERVER_BASE_URL = SITEURL + ‘geoserver/’
if SITE_APPS:
 INSTALLED_APPS += SITE_APPS

Templates and Static Files

As mentioned above for each website there will be three directories used for template and static files. The first template file found will be the one used so templates in the SITE_ROOT/templates directory will override those in PROJECT_ROOT/templates, which will override those in GEONODE_ROOT/templates.

Static files work differently because (at least on a production server) they are collected and stored in a single location. Because of this care must be taken to avoid clobbering of files between sites, so each site directory should contain all static files in a subdirectory with the name of the site (e.g., static/siteA/logo.png)

The location of the proper static directory can then be found in the templates syntax such as:

{{ STATIC_URL }}{{ SITENAME|lower }}/logo.png

Permissions by Site

By default GeoNode is publicly available. In the case of GeoSites, new data will be publicly available, but only for the site it was added to, and the master site (all data is added to the master site).

Adding New Sites

A management command exists to easily create a new site. This will create all the needed directories, as well as a site specific settings file. The command may also create a website configuration file.

GeoNode Customization and Source Code Revision Control

This tutorial collects in a single place the steps for the customization of GeoNode (how to create a custom branch of the project and modify only the parts of intereset) and how to save back the work on a Source Code Revision Control system, like GitHub, and manage the team development process.

GeoNode Customization Setup Steps

Warning

These instructions are only valid if you’ve installed GeoNode following the guide at Setup & Configure HTTPD !!

If you are working remotely, you should first connect to the machine that has your GeoNode installation. You will need to perform the following steps in a directory where you intend to keep your newly created project.

	1
2
3
4
5
6
7
8

	$ sudo su
$ cd /home/geonode
$ disable_local_repo.sh
$ apt-get install python-django
$ django-admin startproject geonode_custom --template=https://github.com/GeoNode/geonode-project/archive/master.zip -epy,rst
$ chown -Rf geonode: geonode_custom
$ exit
$ sudo pip install -e geonode_custom

Note

You should NOT use the name geonode for your project as it will conflict with your default geonode package name.

These commands create a new template based on the geonode example project.

Make sure that the directories are reachable and have the correct rights for the users geonode and www-data:

	1
2

	$ sudo chown -Rf geonode: *
$ sudo chmod -Rf 775 geonode_custom

If you have a brand new installation of GeoNode, rename the /home/geonode/geonode/local_settings.py.sample to local_settings.py and edit it’s content by setting the SITEURL and SITENAME. This file will be your main settings file for your project. It inherits all the settings from the original one plus you can override the ones that you need.

Note

You can also decide to copy the /home/geonode/geonode/local_settings.py.sample to /path/to/geonode_custom/geonode_custom/local_settings.py in order to keep all the custom settings confined into the new project.

Warning

In order for the edits to the local_settings.py file to take effect, you have to restart apache.

Edit the file /etc/apache2/sites-available/geonode.conf and change the following directive from:

WSGIScriptAlias / /home/geonode/geonode/wsgi/geonode.wsgi

to:

WSGIScriptAlias / /home/geonode/geonode_custom/geonode_custom/wsgi.py

	1
2
3
4
5
6
7
8
9

	$ sudo vi /etc/apache2/sites-available/geonode.conf

 WSGIScriptAlias / /home/geonode/geonode_custom/geonode_custom/wsgi.py

 ...

 <Directory "/home/geonode/geonode_custom/geonode_custom/">

 ...

Edit the file /etc/apache2/sites-available/geonode.conf and modify the DocumentRoot as follows:

Note

It’s a good practice to make copies and backups of the configuration files before modifying or updating them in order to revert the configuration at the previous state if something goes wrong.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

	<VirtualHost *:80>
 ServerName http://localhost
 ServerAdmin webmaster@localhost
 DocumentRoot /home/geonode/geonode_custom/geonode_custom

 ErrorLog /var/log/apache2/error.log
 LogLevel warn
 CustomLog /var/log/apache2/access.log combined

 WSGIProcessGroup geonode
 WSGIPassAuthorization On
 WSGIScriptAlias / /home/geonode/geonode_custom/geonode_custom/wsgi.py

 <Directory "/home/geonode/geonode_custom/geonode_custom/">
 <Files wsgi.py>
 Order deny,allow
 Allow from all
 Require all granted
 </Files>

 Order allow,deny
 Options Indexes FollowSymLinks
 Allow from all
 IndexOptions FancyIndexing
 </Directory>

 ...

Then regenerate the static JavaScript and CSS files from /path/to/geonode_custom/ and restart apache

	1
2
3
4
5
6

	$ cd /home/geonode/geonode_custom
$ python manage.py collectstatic
$ python manage.py syncdb
$ /home/geonode/geonode
$ sudo pip install -e .
$ sudo service apache2 restart

Source code revision control

It is recommended that you immediately put your new project under source code revision control. The GeoNode development team uses Git and GitHub and recommends that you do the same. If you do not already have a GitHub account, you can easily set one up. A full review of Git and distributed source code revision control systems is beyond the scope of this tutorial, but you may find the Git Book [http://git-scm.com/book] useful if you are not already familiar with these concepts.

	Create a new repository in GitHub. You should use the GitHub user interface to create a new repository for your new project.

[image: ../../_images/github_home1.jpg]
Creating a new GitHub Repository From GitHub’s Homepage

[image: ../../_images/create_repo1.jpg]
Specifying new GitHub Repository Parameters

[image: ../../_images/new_repo1.jpg]
Your new Empty GitHub Repository

	Initialize your own repository in the geonode_custom folder:

	1

	$ sudo git init

	Add the remote repository reference to your local git configuration:

	1
2
3

	$ sudo git remote add origin <https url of your custom repo>

 https://github.com/geosolutions-it/geonode_custom.git

	Add your project files to the repository:

	1

	$ sudo git add .

	Commit your changes:

	1
2
3
4
5

	 # Those two command must be issued ONLY once
$ sudo git config --global user.email "geo@geo-solutions.it"
$ sudo git config --global user.name "GeoNode Training"

$ sudo git commit -am "Initial commit"

	Push to the remote repository:

	1

	$ sudo git push origin master

A Typical GitHub Project Structure

Warning

This section is freely adapted from the official GitHub guides [https://guides.github.com].

A great way to get involved in open source is to contribute to the existing projects you’re using.

The Community

Projects often have a community around them, made up of other users in different (formal or informal) roles:

	Owner is the user or organization that created the project has the project on their account.

	Maintainers and Collaborators are the users primarily doing the work on a project and driving the direction. Oftentimes the owner and the maintainer are the same. They have write access to the repository.

	Contributors is everyone who has had a pull request merged into a project.

	Community Members are the users who often use and care deeply about the project and are active in discussions for features and pull requests.

Readme

Nearly all GitHub projects include a README.md file. The readme provides a lay of the land for a project with details on how to use, build and sometimes contribute to a project.

License

A LICENSE file, well, is the license for the project. An open source project’s license informs users what they can and can’t do (e.g., use, modify, redistribute), and contributors, what they are allowing others to do.

Documentation and Wikis

Many larger projects go beyond a readme to give instructions for how people can use their project. In such cases you’ll often find a link to another file or a folder named docs in the repository.

[image: ../../_images/docs-folder1.png]

Alternatively, the repository may instead use the GitHub wiki to break down documentation.

[image: ../../_images/d3-wiki1.png]

Issues

Issues are a great way to keep track of tasks, enhancements, and bugs for your projects. They’re kind of like email—except they can be shared and discussed with the rest of your team. Most software projects have a bug tracker of some kind. GitHub’s tracker is called Issues, and has its own section in every repository.

[image: ../../_images/navigation-highlight1.png]

For more information on how Issues work, see the section “Work With GitHub Issues and Pull Requests”

Pull Requests

If you’re able to patch the bug or add the feature yourself, make a pull request with the code.
Be sure you’ve read any documents on contributing, understand the license and have signed a CLA if required.

Once you’ve submitted a pull request the maintainer(s) can compare your branch to the existing one and decide whether or not to incorporate (pull in) your changes.

For more information on how Pull Requests work, see the section “Work With GitHub Issues and Pull Requests”

Work With GitHub Issues and Pull Requests

Warning

This section is freely adapted from the official GitHub guides [https://guides.github.com].

Issues

An Issue is a note on a repository about something that needs attention. It could be a bug, a feature request, a question or lots of other things. On GitHub you can label, search and assign Issues, making managing an active project easier.

For example, let’s take a look at Bootstrap’s Issues section [https://github.com/twbs/bootstrap/issues]:

[image: ../../_images/listing-screen1.png]

GitHub’s issue tracking is special because of our focus on collaboration, references, and excellent text formatting. A typical issue on GitHub looks a bit like this:

[image: ../../_images/example-issue1.png]

	A title and description describe what the issue is all about.

	Color-coded labels help you categorize and filter your issues (just like labels in email).

	A milestone acts like a container for issues. This is useful for associating issues with specific features or project phases (e.g. Weekly Sprint 9/5-9/16 or Shipping 1.0).

	One assignee is responsible for working on the issue at any given time.

	Comments allow anyone with access to the repository to provide feedback.

Open an Issue

	Click the Issues tab from the sidebar.

[image: ../../_images/navigation-highlight1.png]

	Click New Issue.

	Give your Issue a title and description: Add a new Logo to GeoNode custom.

[image: ../../_images/issue1.png]

Click Submit new Issue when you’re done. Now this issue has a permanent home (URL) that you can reference even after it is closed.

Issues Pro Tips

	Check existing issues for your issue. Duplicating an issue is slower for both parties so search through open and closed issues to see if what you’re running into has been addressed already.

	Be clear about what your problem is: what was the expected outcome, what happened instead? Detail how someone else can recreate the problem.

	Link to demos recreating the problem on things like JSFiddle or CodePen.

	Include system details like what the browser, library or operating system you’re using and its version.

	Paste error output or logs in your issue or in a Gist. If pasting them in the issue, wrap it in three backticks: ``` so that it renders nicely.

Branching

Branching is the way to work on different parts of a repository at one time.

When you create a repository, by default it has one branch with the name master. You could keep working on this branch and have only one, that’s fine. But if you have another feature or idea you want to work on, you can create another branch, starting from master, so that you can leave master in its working state.

When you create a branch, you’re making a copy of the original branch as it was at that point in time (like a photo snapshot). If the original branch changes while you’re working on your new branch, no worries, you can always pull in those updates.

[image: ../../_images/branching1.png]

At GeoNode developers use branches for keeping bug fixes and feature work separate from master (production) branch. When a feature or fix is ready, the branch is merged into master through a Pull Request.

To create a new branch

	Go to the project folder and create a new branch

$ cd /home/geonode/geonode_custom/
$ sudo git branch add_logo
$ sudo git checkout add_logo

[image: ../../_images/checkout1.png]

	Check that you are working on the correct branch: add_logo.

$ cd /home/geonode/geonode_custom/
$ git branch

[image: ../../_images/correct_branch1.png]

	Push the new branch to GitHub.

$ cd /home/geonode/geonode_custom/
$ sudo git push origin add_logo

[image: ../../_images/push_branch1.png]

Make a commit

On GitHub, saved changes are called commits.

Each commit has an associated commit message, which is a description explaining why a particular change was made. Thanks to these messages, you and others can read through commits and understand what you’ve done and why.

	Add a new logo to your custom GeoNode as described in the section Theming your GeoNode project

	Stash the new files into the working project using git add

$ cd /home/geonode/geonode_custom/
$ sudo git add geonode_custom/static
$ git status

[image: ../../_images/commit_logo1.png]

	Commit the changes providing a commit messages and push them into your branch : add_logo.

$ cd /home/geonode/geonode_custom/
$ sudo git commit -m "Adding a new logo to the custom GeoNode"
$ sudo git push origin add_logo

[image: ../../_images/push_logo1.png]

Pull Requests

Pull Requests are the heart of collaboration on GitHub. When you make a pull request, you’re proposing your changes and requesting that someone pull in your contribution - aka merge them into their branch. GitHub’s Pull Request feature allows you to compare the content on two branches. The changes, additions and subtractions, are shown in green and red and called diffs (differences).

As soon as you make a change, you can open a Pull Request. People use Pull Requests to start a discussion about commits (code review) even before the code is finished. This way you can get feedback as you go or help when you’re stuck.

By using GitHub’s @mention system in your Pull Request message, you can ask for feedback from specific people or teams.

Create a Pull Request for changes to the Logo

	Click the Pull Request icon on the sidebar, then from the Pull Request page, click the green New pull request button.

[image: ../../_images/gh_pullrequest1.gif]

	Select the branch you made, add_logo, to compare with master (the original).

[image: ../../_images/gh_pr_select_branch1.png]

	Look over your changes in the diffs on the Compare page, make sure they’re what you want to submit.

[image: ../../_images/gh_pr_compare1.png]

	When you’re satisfied that these are the changes you want to submit, click the big green Create Pull Request button.

[image: ../../_images/create-pr1.png]

	Give your pull request a title and since it relates directly to an open issue, include “fixes #” and the issue number in the title. Write a brief description of your changes.

[image: ../../_images/pr-form1.png]

When you’re done with your message, click Create pull request!

Merge your Pull Request

It’s time to bring your changes together – merge your add_logo branch into the master (the original) branch.

Click the green button to merge the changes into master.
Click Confirm merge.
Go ahead and delete the branch, since its changes have been incorporated, with the Delete branch button in the purple box.

[image: ../../_images/merge-button1.png]

If you revisit the issue you opened, it’s now closed! Because you included “fixes #1” in your Pull Request title, GitHub took care of closing that issue when the Pull Request was merged!

Customize the Look & Feel

Now you can edit the templates in geonode_custom/templates, the css and images to match your needs and save the changes back to the Source Revision Control.

Theming your GeoNode project

There are a range of options available to you if you want to change the default look and feel of your GeoNode project. Since GeoNode’s style is based on Bootstrap [http://twitter.github.com/bootstrap/] you will be able to make use of all that Bootstrap has to offer in terms of theme customization. You should consult Bootstrap’s documentation as your primary guide once you are familiar with how GeoNode implements Bootstrap and how you can override GeoNode’s theme and templates in your own project.

Logos and graphics

GeoNode intentionally does not include a large number of graphics files in its interface. This keeps page loading time to a minimum and makes for a more responsive interface. That said, you are free to customize your GeoNode’s interface by simply changing the default logo, or by adding your own images and graphics to deliver a GeoNode experience the way you envision int.

Your GeoNode project has a directory already set up for storing your own images at <geonode_custom>/static/img. You should place any image files that you intend to use for your project in this directory.

Let’s walk through an example of the steps necessary to change the default logo.

	Change to the img directory:

$ cd /home/geonode/geonode_custom/geonode_custom/static/img

	If you haven’t already, obtain your logo image. The URL below is just an example, so you will need to change this URL to match the location of your file or copy it to this location:

$ sudo wget http://www2.sta.uwi.edu/~anikov/UWI-logo.JPG
$ sudo chown -Rf geonode: .

	Change to the css directory:

$ cd /home/geonode/geonode_custom/geonode_custom/static/css

	Override the CSS that displays the logo by editing <geonode_custom>/static/css/site_base.css with your favorite editor and adding the following lines, making sure to update the width, height, and URL to match the specifications of your image.

$ sudo vi site_base.css

.navbar-brand {
 width: 373px;
 height: 79px;
 background: transparent url("img/UWI-logo.JPG") no-repeat scroll 15px 0px;
}

	Restart your GeoNode project and look at the page in your browser:

$ cd /home/geonode
$ sudo rm -Rf geonode/geonode/static_root/*
$ cd geonode_custom
$ python manage.py collectstatic
$ sudo service apache2 restart

Note

It is a good practice to cleanup the static_folder and the Browser Cache before reloading in order to be sure that the changes have been correctly taken and displayed on the screen.

Visit your site at http://localhost/ or the remote URL for your site.

[image: ../../_images/logo_override1.png]
Custom logo

You can see that the header has been expanded to fit your graphic. In the following sections you will learn how to customize this header to make it look and function the way you want.

Note

You should commit these changes to your repository as you progress through this section, and get in the habit of committing early and often so that you and others can track your project on GitHub. Making many atomic commits and staying in sync with a remote repository makes it easier to collaborate with others on your project.

Cascading Style Sheets

In the last section you already learned how to override GeoNode’s default CSS rules to include your own logo. You are able to customize any aspect of GeoNode’s appearance this way. In the last screenshot, you saw that the main area in the homepage is covered up by the expanded header.

First, we’ll walk through the steps necessary to displace it downward so it is no longer hidden, then change the background color of the header to match the color in our logo graphic.

	Reopen <geonode_custom>/static/css/site_base.css in your editor and add the following rule after the one added in the previous step:

$ cd /home/geonode/geonode_custom/geonode_custom/static/css
$ sudo vi site_base.css

#wrap {
 margin: 75px 75px;
}

	Add a rule to change the background color of the header to match the logo graphic we used:

.navbar-inverse {
 background: #0e60c3;
}

	Your project CSS file should now look like this:

.navbar-brand {
 width: 373px;
 height: 79px;
 background: url(img/UWI-logo.JPG) no-repeat;
}

#wrap {
 margin: 75px 75px;
}

.navbar-inverse {
 background: #0e60c3;
}

	Restart the development server and reload the page:

$ python manage.py collectstatic
$ sudo service apache2 restart

[image: ../../_images/css_overrides1.png]
CSS overrides

Note

You can continue adding rules to this file to override the styles that are in the GeoNode base CSS file which is built from base.less [https://github.com/GeoNode/geonode/blob/master/geonode/static/geonode/less/base.less]. You may find it helpful to use your browser’s development tools to inspect elements of your site that you want to override to determine which rules are already applied. See the screenshot below. Another section of this workshop covers this topic in much more detail.

[image: ../../_images/inspect_element1.png]
Screenshot of using Chrome’s debugger to inspect the CSS overrides

Templates and static pages

Now that we have changed the default logo and adjusted our main content area to fit the expanded header, the next step is to update the content of the homepage itself. Your GeoNode project includes two basic templates that you will use to change the content of your pages.

The file site_base.html (in <geonode_custom>/templates/) is the basic template that all other templates inherit from and you will use it to update things like the header, navbar, site-wide announcement, footer, and also to include your own JavaScript or other static content included in every page in your site. It’s worth taking a look at GeoNode’s base file on GitHub [https://github.com/GeoNode/geonode/blob/master/geonode/templates/base.html]. You have several blocks available to you to for overriding, but since we will be revisiting this file in future sections of this workshop, let’s just look at it for now and leave it unmodified.

Open <geonode_custom>/templates/site_base.html in your editor:

 $ cd /home/geonode/geonode_custom/geonode_custom/templates
 $ sudo vi site_base.html

.. code-block:: html

 {% extends "base.html" %}
 {% block extra_head %}
 <link href="{{ STATIC_URL }}css/site_base.css" rel="stylesheet"/>
 {% endblock %}

You will see that it extends from base.html, which is the GeoNode template referenced above and it currently only overrides the extra_head block to include our project’s site_base.css which we modified in the previous section. You can see on line 22 of the GeoNode base.html template [https://github.com/GeoNode/geonode/blob/master/geonode/templates/base.html#L22] that this block is included in an empty state and is set up specifically for you to include extra CSS files as your project is already set up to do.

Now that we have looked at site_base.html, let’s actually override a different template.

The file site_index.html is the template used to define your GeoNode project’s homepage. It extends GeoNode’s default index.html template and gives you the option to override specific areas of the homepage like the hero area, but also allows you leave area like the “Latest Layers” and “Maps” and the “Contribute” section as they are. You are of course free to override these sections if you choose and this section shows you the steps necessary to do that below.

	Open <geonode_custom>/templates/site_index.html in your editor.

	Edit the <h1> element on line 9 to say something other than “Welcome”:

<h1>{% trans "UWI GeoNode" %}</h1>

	Edit the introductory paragraph to include something specific about your GeoNode project:

<p>
 {% blocktrans %}
 UWI's GeoNode is setup for students and faculty to collaboratively
 create and share maps for their class projects. It is maintained by the
 UWI Geographical Society.
 {% endblocktrans %}
</p>

	Change the Getting Started link to point to another website:

 For more information about the UWI Geographical society,
 visit our website

	Add a graphic to the hero area above the paragraph replaced in step 3:

	Your edited site_index.html file should now look like this:

{% extends 'index.html' %}
{% load i18n %}
{% comment %}
This is where you can override the hero area block. You can simply modify the content below or replace it wholesale to meet your own needs.
{% endcomment %}
 {% block hero %}
 <div class="jumbotron">
 <div class="container">
 <h1>{% trans "UWI GeoNode" %}</h1>
 <div class="hero-unit-content"/>
 <div class="intro">

 </div>
 <p>
 {% blocktrans %}
 UWI's GeoNode is setup for students and faculty to collaboratively
 create and share maps for their class projects. It is maintained by the
 UWI Geographical Society.
 {% endblocktrans %}
 </p>

 For more information about the UWI Geographical society,
 visit our website

 </div>
 </div>
 {% endblock %}

	Refresh your GeoNode project and view the changes in your browser at http://localhost/ or the remote URL for your site:

$ python manage.py collectstatic
$ sudo service apache2 restart

[image: ../../_images/homepage1.png]

From here you can continue to customize your site_index.html template to suit your needs. This workshop will also cover how you can add new pages to your GeoNode project site.

Other theming options

You are able to change any specific piece of your GeoNode project’s style by adding CSS rules to site_base.css, but since GeoNode is based on Bootstrap, there are many pre-defined themes that you can simply drop into your project to get a whole new look. This is very similar to WordPress [http://wordpress.com] themes and is a powerful and easy way to change the look of your site without much effort.

Bootswatch

Bootswatch [http://bootswatch.com] is a site where you can download ready-to-use themes for your GeoNode project site. The following steps will show you how to use a theme from Bootswatch in your own GeoNode site.

	Visit http://bootswatch.com and select a theme (we will use Sandstone for this example). Select the download bootstrap.css option in the menu:

[image: ../../_images/bootswatch1.png]

	Put this file into <geonode_custom>/static/css.

$ cd /home/geonode/geonode_custom/geonode_custom/static/css

	Update the site_base.html template to include this file. It should now look like this:

$ cd /home/geonode/geonode_custom/geonode_custom/templates
$ sudo vi site_base.html

{% extends "base.html" %}
{% block extra_head %}
 <link href="{{ STATIC_URL }}css/site_base.css" rel="stylesheet"/>
 <link href="{{ STATIC_URL }}css/bootstrap.css" rel="stylesheet"/>
{% endblock %}

	Refresh the development server and visit your site:

$ python manage.py collectstatic
$ sudo service apache2 restart

[image: ../../_images/bootswatch_geonode1.png]

Your GeoNode project site is now using the Sandstone theme in addition to the changes you have made.

Final Steps

When you’ve done the changes, run the following command in the geonode_custom folder:

	1
2

	$ cd /home/geonode/geonode_custom
$ python manage.py collectstatic

And now you should see all the changes you’ve made to your GeoNode.

Migrate Data Between GeoNode Instances

This workshop shows how to migrate GeoNode Layers (along with GeoServer associated datasets and styles) from an instance to another.

The whole tutorial is divided in different parts, each one showing a different methodology to perform the data migration:

	Manual migration of data between to GeoNode instances with same version

	Semi-automatic migration of data between GeoNode instances with same version

	Automatic migration of data between GeoNode instances with same version

	Automatic migration of data between GeoNode instances with different version

Warning

Currently the points 2,3,4 are not yet feasable with the actual GeoNode version. Those section will be available as soon as the “GeoNode Backup & Restore” GNIP [https://github.com/GeoNode/geonode/issues/2401] development will be ready and merged to the master branch.

Manual migration of data between GeoNode instances with same version

This section shows how to export a Layer from a GeoNode instance and import it back to another one with the same versions.

Before going through the commands and the operations to perform the export/import tasks, the tutorial will explain in details the structure of a GeoNode Layer.

As you may already know, the physical geospatial data, along with its graphical stylesheets (also known as SLDs), are backed by GeoServer.
Each GeoNode version is shipped with a related GeoServer version and GeoServer Data Dir (we will see in details later what does it means).
For the moment the important thing to know is that GeoNode cannot live without a running instance of GeoServer. Therefore migrating data from a GeoNode instance to another one,
means also move geospatial data and stylesheets between the related GeoServer instances.

A GeoNode Layer Structure

Lets start anlysing deeply a GeoNode Layer structure.

Preparation Of The Webinar

This tutorial is generic and can be executed using any existing Layer of GeoNode, however in order to follow exactly the same passages, please execute this first simple exercise.

Warning

As a prerequisite, you must have access to a GeoNode instance with Admin rights.

Exercise

Add A Sample Layer To GeoNode

	Log into GeoNode as Administrator

	Click on the Add Layers button from the home page, in order to switch to the upload page

[image: ../../_images/layer_add_layers_button.jpg]
GeoNode Add Layers Button

	Click on the Browse on the upload page

[image: ../../_images/layer_upload_browse_button.jpg]
GeoNode Upload Browse Button

	Select from the folder gisdata/data/good/vector the 4 files

	san_andres_y_providencia_coastline.dbf

	san_andres_y_providencia_coastline.prj

	san_andres_y_providencia_coastline.shp

	san_andres_y_providencia_coastline.shx

[image: ../../_images/layer_upload_coastline.jpg]
GeoNode Upload Browse Button

	Click on the Upload Files button and make sure the operation completes successfully

[image: ../../_images/layer_upload_upload_files.jpg]
GeoNode Upload Files Button

Layer Metadata

Each resource in GeoNode has metadata. Metadada in GeoNode is quite important, it is used by the application to describe, search and identify a resource.
As an instance part the title, abstract, regions or keywords of a resource are all part of the metadata.

Metadata in GeoNode is stored on the backend databse as a set of fields associated to the resource. The catalogue service then, makes use of such information to dynamically generate ISO compliant XML records.
Those records can be used by external catalogiung applications, compliant with the standards supported by GeoNode, in order to automatically recognize and indexing the available resources on the server.

The GeoNode Layer info page makes use of some metadata fields to provide immediate description of the Layer.

As shown in the figure below, the GeoNode Info tab contains a table reporting basic information about the Layer, like the Title, the Abstract, the Category and others.

[image: ../../_images/layer_metadata_001.jpg]
GeoNode Layer Info

Warning

The Title shown on the Layer Metadata is not the real Layer name. We will deepen the topic on the following sections of this tutorial.

In order to obtain the whole Layer Metadata in one standard format (usually not quite human-friendly; a huge and long XML), it is possible to click on the Download Metadada button on the right panel.
GeoNode will present to the user a modal window with a list of permalinks to the dynamic XML supported formats.

[image: ../../_images/layer_metadata_002.jpg]
GeoNode Layer Download Metadada

As an instance, if you click on ISO, you will get an XML containing all the Layer metadata fields in ISOTC211/19115 format.

[image: ../../_images/layer_metadata_003.jpg]
GeoNode Layer Download Metadada ISOTC211/19115 Format

Excercise

Edit The Layer Metadada

	Go to the GeoNode Layer List

[image: ../../_images/layer_metadata_004.jpg]
GeoNode Layer List

	Click on a Layer in order to go to the resource info page

[image: ../../_images/layer_metadata_005.jpg]
GeoNode Layer Edit

	Click on the Edit Layer button

[image: ../../_images/layer_metadata_006.jpg]
GeoNode Layer Download Metadada Button

	Click on the Edit button under the Metadada incon of the modal window

[image: ../../_images/layer_styles_002.jpg]
GeoNode Metadada Edit

	Update the at least the Title, the Abstract and the Category and finally click on the Update button

[image: ../../_images/layer_edit_metadata_001.jpg]
GeoNode Metadada Edit

The export of metadata is a foundamental task to achieve when moving a resource from a GeoNode instance to another.

Excercise

Export the Layer Metadata as ISOTC211/19115 and save it to an XML files on the local storage

	Go to the GeoNode Layer List

[image: ../../_images/layer_metadata_004.jpg]
GeoNode Layer List

	Click on a Layer in order to go to the resource info page

[image: ../../_images/layer_metadata_005.jpg]
GeoNode Layer Edit

	Click on the Download Metadada button

[image: ../../_images/layer_metadata_006.jpg]
GeoNode Layer Download Metadada Button

	From the modal window, click with the right mouse button over the ISO link

[image: ../../_images/layer_metadata_007.jpg]
GeoNode Layer Download Metadada ISOTC211/19115 Format

	From the context menù, select the voice Save Link As

[image: ../../_images/layer_metadata_008.jpg]
GeoNode Layer Download Metadada ISOTC211/19115 Save Link As

	Store the xml into the hard disk and note the location for later use

[image: ../../_images/layer_metadata_009.jpg]
GeoNode Layer Download Metadada ISOTC211/19115 XML

Layer Styles

Each Layer in GeoNode has a representation style associated, or a Legend if you want.

A style is basically a set of rules instructing the geospatial server on how to create a portrayal of the original data. The figure shown in the map is only one of the inifite possible representation of the data stored on the server.

It is worth to point out that viewing the data is substantially different from getting the data. A portrayal of data provides to the users an immediate understanding of the meaning (or at least of one possible meaning), but this is not suitable for data analysis or more sophisticated computational tasks.

The legend (or style), depends exclusvely from the geometry of the layer and, optionally, from a subset of its atributes.

On GeoNode, if you move to a Layer info page, you can notice a small Legend panel on the right representing the style currently in use.

[image: ../../_images/layer_styles_001.jpg]
GeoNode Layer Download Metadada ISOTC211/19115 XML

A Layer can have a lot of different styles associated, of course. Usually there is a Default Style which is the one presented to the users if not differently specified.

It is possible from the GeoNode interface to manage the styles associated to a Layer and also change its Default Style.

Note

Only owners or users with write permissions on the Layer can update the styles.

Excercise

Layer Styles Management Panel

	Go to the GeoNode Layer List

[image: ../../_images/layer_metadata_004.jpg]
GeoNode Layer List

	Click on a Layer in order to go to the resource info page

[image: ../../_images/layer_metadata_005.jpg]
GeoNode Layer Edit

	Click on the Edit Layer button on the right panel

[image: ../../_images/layer_edit_button.jpg]
GeoNode Layer Edit Button

	Click on the Manage button under the Styles incon of the modal window

[image: ../../_images/layer_styles_002.jpg]
GeoNode Layer Styles Manage

	Play with the styles comboboxex in order to change the Default Style or add/remove more of them without updating the Layer

[image: ../../_images/layer_styles_003.jpg]
GeoNode Layer Styles Management Panel

Warning

Do not click on Update Available Styles button, otherwise you will change the current Layer styles.

GeoNode also provides a simple tool for the editing of the Layer style directly from the web interface.

Note

It is worth noting that the GeoNode style editor is very simple and does not allow advanced style editing. Also this tool may not work perfectly with complex layers. Further in the tutorial we will see how it is possible to edit directly the style using the SLD native format.

Excercise

Update the default style through the GeoNode Style Editor tool

	Go to the GeoNode Layer List

[image: ../../_images/layer_metadata_004.jpg]
GeoNode Layer List

	Click on a Layer in order to go to the resource info page

[image: ../../_images/layer_metadata_005.jpg]
GeoNode Layer Edit

	Click on the Edit Layer button on the right panel

[image: ../../_images/layer_edit_button.jpg]
GeoNode Layer Edit Button

	Click on the Edit button under the Styles incon of the modal window

[image: ../../_images/layer_styles_002.jpg]
GeoNode Layer Styles Edit

	You should see a small window similar to the one depicted below

[image: ../../_images/layer_styles_004.jpg]
GeoNode Layer Styles Editor

	Select the first Rule and click on the small Edit button below

[image: ../../_images/layer_styles_006.jpg]

[image: ../../_images/layer_styles_005.jpg]
GeoNode Layer Styles Edit Rules

	Modify the Name, the Color and the Width of the stroke and click save

[image: ../../_images/layer_styles_007.jpg]
GeoNode Layer Styles Edit Stroke

The GeoNode style editor tool just simplifies the editing of a Layer style by providing a small graphic user interface to one of the GeoServer capabilities.

Under the hood a Layer style is a special XML format defined from the Open Geospatial Consortium (OGC) as Style Layer Descriptor or SLD.

Advanced users can directly modify the SLD or use more advanced tools to create very complex and beautiful Layer styles.

In order to do that, you will need to update the SLD source directly through the GeoServer interface.

Excercise

Update the default style through the GeoServer interface

	Log inot GeoNode as Administrator. Then click on the user button on the top right.

[image: ../../_images/layer_styles_008.jpg]
GeoNode Admin

	From the menu, click on the GeoServer voice.

[image: ../../_images/layer_styles_009.jpg]
GeoNode Admin GeoServer

	You will be redirected to the GeoServer admin interface.

[image: ../../_images/layer_styles_010.jpg]
GeoServer Admin Gui

	Select the Styles topic from the left menu.

[image: ../../_images/layer_styles_011.jpg]
GeoServer Admin Styles

	Select the layer name from the list and click on it. You will be redirected to the SLD editor page.

[image: ../../_images/layer_styles_012.jpg]
GeoServer Admin Style Editor

	Modify the Color and the Width of the External Border XML rule. Click on Preview legend to see the changes, and when you are happy Submit the SLD.

[image: ../../_images/layer_styles_013.jpg]
GeoServer Admin Style Editor

	Go back to GeoNode. Reload the Layer in order to see the changes.

[image: ../../_images/layer_styles_014.jpg]
GeoNode Updated Layer Style

GeoServer Web Interface Basics

This section will introduce the basic concepts of the web administration interface (generally abbreviated to “web admin” .)

Welcome Page

For most installations, GeoServer will start a web server on localhost at port 8080, accessible at the following URL:

http://localhost:8080/geoserver/web

Note

This URL is dependent on your installation of GeoServer. When using the WAR installation, for example, the URL will be dependent on your container setup. A GeoNode/GeoServer production environment, usually maps GeoServer un the same port 80 like the following

http://<geonode_host>/geoserver/web

When correctly configured, a welcome page will open in your browser.

[image: ../../_images/web-admin.png]
Welcome Page

The welcome page contains links to various areas of the GeoServer configuration. The About GeoServer section in the Server menu provides external links to the GeoServer documentation, homepage, and bug tracker. The page also provides login access to the geoserver console. This security measure prevents unauthorized users from making changes to your GeoServer configuration. The default username and password is admin and geoserver. These can be changed only by editing the security/users.properties file in the data_directory.

[image: ../../_images/8080login.png]
Login

Regardless of authorization access, the web admin menu links to the Demo and Layer Preview portion of the console. The webadmin_demos page contains links to various information pages, while the layerpreview page provides spatial data in various output formats.

Warning

On a GeoNode/GeoServer environment, you need to login on GeoNode first. The authorization is automatically taken by GeoServer through your browser cookies.

Once logged into GeoNode, going to http://<geonode_host>/geoserver/web will automatically log into GeoServer with the same rights.

Note

On a GeoNode/GeoServer environment, GeoServer still allows FORM and BASIC authentication mechanism (like shown in this section). But this is useful only if you need to access to GeoServer from external applications or with another/specific GeoServer user. You must know the username and passowrd of the GeoServer user in this case.

When logged on, additional options will be presented.

[image: ../../_images/welcome_logged_in.png]
Additional options when logged in

Geoserver Web Coverage Service (WCS), Web Feature Service (WFS), and Web Map Service (WMS) configuration specifications can be accessed from this welcome page as well.

List Pages

Some web admin pages show list views of configuration data type items available in the GeoServer instance.
The page displays links to the items, and where applicable their parent items as well.
To facilitate working with large sets of items, list views allow sorting and searching across all items in the data type.

In the example below, the GeoServer Layers page displays a list of layers along with links to their parent GeoServer Stores and GeoServer Workspaces.

[image: ../../_images/data_layers.jpg]
Layers list page

Sorting

To sort a column alphabetically, click the column header.

[image: ../../_images/data_sort.png]
Unsorted (left) and sorted (right) columns

Searching

Searching can be used to filter the number of items displayed. This is useful for working with data types that contain a large number of items.

To search data type items, enter the search string in the search box and click Enter. GeoServer will search the data type for items that match your query, and display a list view showing the search results.

[image: ../../_images/data_search_results.jpg]
Search results for the query “coast” on the Layers page

GeoServer Workspaces

This section describes how to view and configure workspaces. Analogous to a namespace, a workspace is a container which organizes other items. In GeoServer, a workspace is often used to group similar layers together. Layers may be referred to by their workspace name, colon, layer name (for example geonode:san_andres_y_providencia_coastline). Two different layers can have the same name as long as they belong to different workspaces (for example sf:states and topp:states).

Note

On a GeoNode/GeoServer environment, by default there is only one workspace defined called geonode. You can still define other workspaces, but GeoNode will work only with Layers under the geonode workspace.

[image: ../../_images/data_workspaces.jpg]
Workspaces page

Edit a Workspace

To view or edit a workspace, click the workspace name. A workspace configuration page will be displayed.

[image: ../../_images/data_workspaces_URI.jpg]
Workspace named “geonode”

A workspace is defined by a name and a Namespace URI (Uniform Resource Identifier). The workspace name is limited to ten characters and may not contain space. A URI is similar to a URL, except URIs do not need to point to a actual location on the web, and only need to be a unique identifier. For a Workspace URI, we recommend using a URL associated with your project, with perhaps a different trailing identifier. For example, http://www.geonode.org/ is the URI for the “geonode” workspace, http://www.openplans.org/topp is the URI for the “topp” workspace.

Add a Workspace

The buttons for adding and removing a workspace can be found at the top of the Workspaces view page.

[image: ../../_images/data_workspaces_add_remove.png]
Buttons to add and remove

To add a workspace, select the Add new workspace button. You will be prompted to enter the the workspace name and URI.

[image: ../../_images/data_workspaces_medford.png]
New Workspace page with example

Remove a Workspace

To remove a workspace, select it by clicking the checkbox next to the workspace. Multiple workspaces can be selected, or all can be selected by clicking the checkbox in the header. Click the Remove selected workspaces(s) button. You will be asked to confirm or cancel the removal. Clicking OK removes the selected workspace(s).

[image: ../../_images/data_workspaces_rename_confirm.png]
Workspace removal confirmation

Warning

Removing a workspace will delete also all the layers associated with it.

Workspaces On The GeoServer Data Dir

All the configuration files of a workspace are stored into the GeoServer Data Dir. We will see later, on another section of the tutorial, how to access this folder.

It is worth noting that there is also a physical dependency between workspaces, stores and layers.

A GeoServer layer is always defined by its workspace and store.
In the GeoServer Data Dir the layer definition is stored as a subdirectory of its store, the store definition is stored as a subdirectory of its workspace.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	 <data_directory>/

 ...

 workspaces/
 |
 +- workspace dirs...
 |
 +- datastore dirs...
 |
 +- layer dirs...

GeoServer Stores

A store connects to a data source that contains raster or vector data.
A data source can be a file or group of files, a table in a database, a single raster file, or a directory (for example, a Vector Product Format library).
The store construct allows connection parameters to be defined once, rather than for each dataset in a source.
As such, it is necessary to register a store before configuring datasets within it.

[image: ../../_images/data_stores.png]
Stores View

Store types

While there are many potential formats for data sources, there are only four kinds of stores.
For raster data, a store can be a file. For vector data, a store can be a file, database, or server.

	Type Icon

	Description

	[image: ../../_images/data_stores_type1.png]

	raster data in a file

	[image: ../../_images/data_stores_type3.png]

	vector data in a file

	[image: ../../_images/data_stores_type2.png]

	vector data in a database

	[image: ../../_images/data_stores_type5.png]

	vector server (web feature server)

Edit a Store

To view or edit a store, click the store name. A store configuration page will be displayed.
The exact contents of this page depend on the specific format of the store.
See the sections Working with Vector Data [http://docs.geoserver.org/stable/en/user/data/vector/index.html#data-vector], Working with Raster Data [http://docs.geoserver.org/stable/en/user/data/raster/index.html#data-raster], and Working with Databases [http://docs.geoserver.org/stable/en/user/data/database/index.html#data-database] for information about specific data formats.
The example shows the configuration for the nurc:ArcGridSample store.

[image: ../../_images/data_stores_edit.png]
Editing a raster data store

Basic Store Info

The basic information is common for all formats.

	Workspace - the store is assigned to the selected workspace

	Data Source Name - the store name as listed on the view page

	Description - (optional) a description that displays in the administration interface

	Enabled - enables or disables access to the store, along with all datasets defined for it

Connection Parameters

The connection parameters vary depending on data format.

Add a Store

The buttons for adding and removing a store can be found at the top of the Stores page.

[image: ../../_images/data_stores_add_remove.png]
Buttons to add and remove a Store

To add a store, select the Add new Store button. You will be prompted to choose a data source. GeoServer natively supports many formats (with more available via extensions). Click the appropriate data source to continue.

[image: ../../_images/data_stores_chooser.png]
Choosing the data source for a new store

The next page configures the store. Since connection parameters differ across data sources, the exact contents of this page depend on the store’s specific format. See the sections data_vector, data_raster, and data_database for information on specific data formats.
The example below shows the ArcGrid raster configuration page.

[image: ../../_images/data_stores_add.png]
Configuration page for an ArcGrid raster data source

Remove a Store

To remove a store, click the checkbox next to the store. Multiple stores can be selected, or all can be selected by clicking the checkbox in the header.

[image: ../../_images/data_stores_delete.png]
Stores selected for removal

Click the Remove selected Stores button. You will be asked to confirm the removal of the configuration for the store(s) and all resources defined under them. Clicking OK removes the selected store(s), and returns to the Stores page.

[image: ../../_images/data_stores_delete_confirm.png]
Confirm removal of stores

How GeoNode Automatically Configures Workspaces And Stores

GeoNode currently creates the Stores automatically on Layer upload.

Summarizing GeoNode does:

	GeoNode uses always the Workspace geonode for each Layer

	GeoNode configures automatically the Stores for the Layers

	For Raster Layers; GeoNode creates a Store of type GeoTIFF with the same name of the Layer

	For Vectorial Layers; GeoNode creates a Store of type ESRI Shapefile with the same name of the Layer only if not connected to a Database

	For Vectorial Layers; GeoNode uses always the same Store of type Postgis and convert the vectorial data into Database Tables

Excercise

GeoNode Workspace And Stores

	Log inot GeoNode as Administrator. Then click on the user button on the top right.

[image: ../../_images/layer_styles_008.jpg]
GeoNode Admin

	From the menu, click on the GeoServer voice.

[image: ../../_images/layer_styles_009.jpg]
GeoNode Admin GeoServer

	You will be redirected to the GeoServer admin interface.

[image: ../../_images/layer_styles_010.jpg]
GeoServer Admin Gui

	Select the Workspaces topic from the left menu.

[image: ../../_images/geonode_workspaces.jpg]
GeoServer Workspace Menu

	Select the geonode workspace from the list.

[image: ../../_images/geonode_workspace_geonode_list.jpg]
GeoServer Workspace List

	Edit the geonode workspace.

[image: ../../_images/geonode_workspace_geonode_edit.jpg]
GeoServer Workspace geonode

	Select the Stores topic from the left menu.

[image: ../../_images/geonode_stores.jpg]
GeoServer Store Menu

	If GeoNode and GeoServer have been configured to use a Database backend, select the store datastore of type PostGIS.

[image: ../../_images/geonode_stores_datastore_list.jpg]
GeoServer Store List

[image: ../../_images/geonode_stores_datastore.jpg]
GeoServer Store datastore

Note

The Datastore is confiugured by using the same connection parameters specified in the GeoNode local_settings.py file.

	If GeoNode and GeoServer have been configured to use Shapefiles, select the store san_andres_y_providencia_coastline of type Shapefile.

[image: ../../_images/geonode_stores_datastore_list2.jpg]
GeoServer Store List

[image: ../../_images/geonode_stores_shapefile.jpg]
GeoServer Store san_andres_y_providencia_coastline

Note

The Store is confiugured by pointing directly to the path of the san_andres_y_providencia_coastline.shp file.

GeoServer Layers

In GeoServer, the term “layer” refers to a raster or vector dataset that represents a collection of geographic features. Vector layers are analogous to “featureTypes” and raster layers are analogous to “coverages”. All layers have a source of data, known as a Store. The layer is associated with the Workspace in which the Store is defined.

In the Layers section of the web interface, you can view and edit existing layers, add (register) a new layer, or remove (unregister) a layer. The Layers View page displays the list of layers, and the Store and Workspace in which each layer is contained. The View page also displays the layer’s status and native SRS.

[image: ../../_images/data_layers.png]
Layers View

Layer types

Layers can be divided into two types of data: raster and vector. These two formats differ in how they store spatial information. Vector types store information about feature types as mathematical paths—a point as a single x,y coordinate, lines as a series of x,y coordinates, and polygons as a series of x,y coordinates that start and end on the same place. Raster format data is a cell-based representation of features on the earth surface. Each cell has a distinct value, and all cells with the same value represent a specific feature.

	Field

	Description

	[image: ../../_images/data_layers_type1.png]

	raster (grid)

	[image: ../../_images/data_layers_type2.png]

	vector (feature)

Add a Layer

At the upper left-hand corner of the layers view page there are two buttons for the adding and removal of layers. The green plus button allows you to add a new layer (referred to as resource). The red minus button allows you to remove selected layers.

[image: ../../_images/data_layers_add_remove.png]
Buttons to Add and Remove a Layer

Clicking the Add a new resource button brings up a New Layer Chooser panel. The menu displays all currently enabled stores. From this menu, select the Store where the layer should be added.

[image: ../../_images/data_layers_add_chooser.png]
List of all currently enabled stores

Upon selection of a Store, a list is displayed of resources within the store.
Resources which have already been published as layers are listed first, followed by other resources which
are available to be published.
In this example, giant_polygon, poi, poly_landmarks and tiger_roads are all existing layers within the NYC store.

[image: ../../_images/data_layers_add_view.png]
List of published and available resources in a store

To add a layer for an available resource click Publish.
To add a new layer for a published resource click Publish Again.
(Note that when re-publishing the name of the new layer may have to be modified to avoid conflict with an existing layer.)
The actions display an Edit Layer page to enter the definition of the new layer.

Remove a Layer

To remove a layer, select it by clicking the checkbox next to the layer. As shown below, multiple layers can be selected for batch removal. Note that selections for removal will not persist from one results pages to the next.

[image: ../../_images/data_layers_delete.png]
Some layers selected for removal

All layers can be selected for removal by clicking the checkbox in the header.

[image: ../../_images/data_layers_delete_all.png]
All layers selected for removal

Once layer(s) are selected, the Remove selected resources link is activated. Once you’ve clicked the link, you will be asked to confirm or cancel the removal. Selecting OK removes the selected layer(s).

Edit Layer: Data

To view or edit a layer, click the layer name. A layer configuration page will be displayed. The Data tab, activated by default, allows you to define and change data parameters for a layer.

[image: ../../_images/data_layers_edit_data.png]
Edit Layer: Data tab

Basic Info

The beginning sections—Basic Resource Info, Keywords and Metadata link—are analogous to the Service Metadata section for WCS, WFS, and WMS.
These sections provide “data about the data,” specifically textual information that make the layer data easier to understand and work with.
The metadata information will appear in the capabilities documents which refer to the layer.

	Name—Identifier used to reference the layer in WMS requests. (Note that for a new layer for an already-published resource, the name must be changed to avoid conflict.)

	Title—Human-readable description to briefly identify the layer to clients (required)

	Abstract—Describes the layer in detail

	Keywords—List of short words associated with the layer to assist catalog searching

	Metadata Links—Allows linking to external documents that describe the data layer. Currently only two standard format types are valid: TC211 and FGDC. TC211 refers to the metadata structure established by the ISO Technical Committee for Geographic Information/Geomatics [http://www.isotc211.org/] (ISO/TC 211) while FGDC refers to those set out by the Federal Geographic Data Committee [http://www.fgdc.gov/] (FGDC) of the United States.

[image: ../../_images/data_layers_meta.png]
Adding a metadata link in FGDC format

Coordinate Reference Systems

A coordinate reference system (CRS) defines how georeferenced spatial data relates to real locations on the Earth’s surface. CRSes are part of a more general model called Spatial Reference Systems (SRS), which includes referencing by coordinates and geographic identifiers. GeoServer needs to know the Coordinate Reference System of your data. This information is used for computing the latitude/longitude bounding box and reprojecting the data during both WMS and WFS requests.

[image: ../../_images/data_layers_CRS.png]
Coordinate reference system of a layer

	Native SRS—Specifies the coordinate system the layer is stored in. Clicking the projection link displays a description of the SRS.

	Declared SRS—Specifies the coordinate system GeoServer publishes to clients

	SRS Handling—Determines how GeoServer should handle projection when the two SRSes differ

Bounding Boxes

The bounding box determines the extent of the data within a layer.

	Native Bounding Box—The bounds of the data specified in the Native SRS. These bounds can be generated by clicking the Compute from data button.

	Lat/Lon Bounding Box—The bounds specified in geographic coordinates. These bounds can be calculated by clicking the Compute from native bounds button.

[image: ../../_images/data_layers_BB.png]
Bounding Boxes of a layer

Feature Type Details (Vector)

Vector layers have a list of the Feature Type Details. These include the Property and Type of a data source. For example, the sf:archsites layer shown below includes a geometry (the_geom) of type “point”.

[image: ../../_images/data_layers_feature.png]
Feature Type Details

The Nillable option refers to whether the property requires a value or may be flagged as being null. Meanwhile Min/Max Occurrences refers to how many values a field is allowed to have. Currently both Nillable and Min/Max Occurrences are set to true and 0/1 but may be extended with future work on complex features.

Edit Layer: Publishing

The Publishing tab configures HTTP and WMS/WFS/WCS settings.

[image: ../../_images/data_layers_edit_publish.png]
Edit Layer: Publishing tab

	Enabled—A layer that is not enabled won’t be available to any kind of request, it will just show up in the configuration (and in REST config)

	Advertised—A layer is advertised by default. A non-advertised layer will be available in all data access requests (for example, WMS GetMap, WMS GetFeature) but won’t appear in any capabilities document or in the layer preview.

HTTP Settings

Cache parameters that apply to the HTTP response from client requests.

	Response Cache Headers— If selected, GeoServer will not request the same tile twice within the time specified in Cache Time. One hour measured in seconds (3600), is the default value for Cache Time.

WMS Settings

Sets the WMS specific publishing parameters.

[image: ../../_images/wms_settings.png]
WMS Settings

	Queryable—Controls whether the layer is queryable via WMS GetFeatureInfo requests.

	Default style—Style that will be used when the client does not specify a named style in GetMap requests.

	Additional styles—Other styles that can be associated with this layer. Some clients (and the GeoServer Layer Preview) will present those as styling alternatives for that layer to the user.

	Default rendering buffer—Default value of the buffer GetMap/GetFeatureInfo vendor parameter. See the Wms Vendor Parameters [http://docs.geoserver.org/stable/en/user/services/wms/vendor.html#wms-vendor-parameters] for more details.

	Default WMS path—Location of the layer in the WMS capabilities layer tree. Useful for building non-opaque layer groups

WMS Attribution

Sets publishing information about data providers.

[image: ../../_images/data_layers_WMS.png]
WMS Attribution

	Attribution Text—Human-readable text describing the data provider. This might be used as the text for a hyperlink to the data provider’s web site.

	Attribution Link—URL to the data provider’s website.

	Logo URL—URL to an image that serves as a logo for the data provider.

	Logo Content Type, Width, and Height—These fields provide information about the logo image that clients may use to assist with layout. GeoServer will auto-detect these values if you click the Auto-detect image size and type link at the bottom of the section. The text, link, and URL are each advertised in the WMS Capabilities document if they are provided. Some WMS clients will display this information to advise users which providers provide a particular dataset. If you omit some of the fields, those that are provided will be published and those that are not will be omitted from the Capabilities document.

WFS Settings

	Per-Request Feature Limit—Sets the maximum number of features for a layer a WFS GetFeature operation should generate (regardless of the actual number of query hits)

	Maximum number of decimals—Sets the maximum number of decimals in GML output.

Note

It is also possible to override the OtherSRS/OtherCRS list configured in the WFS service, including overriding it with an empty list if need be. The input area will accept a comma separated list of EPSG codes:

[image: ../../_images/data_layers_WFS.png]
WFS otherSRS/otherCRS override

The list will be used only for the capabilities document generation, but will not be used to limit the actual target SRS usage in GetFeature requests.

How GeoNode Automatically Configures Layers

GeoNode automatically sets and updates information on GeoServer every time a Layer is created or its metadata updated.

Excercise

Verify Information On GeoServer Side

	Log inot GeoNode as Administrator. Then click on the user button on the top right.

[image: ../../_images/layer_styles_008.jpg]
GeoNode Admin

	From the menu, click on the GeoServer voice.

[image: ../../_images/layer_styles_009.jpg]
GeoNode Admin GeoServer

	You will be redirected to the GeoServer admin interface.

[image: ../../_images/layer_styles_010.jpg]
GeoServer Admin Gui

	Select the Layers topic from the left menu.

[image: ../../_images/geonode_layers_menu.jpg]
GeoServer Layers Menu

	Select the Layer san_andres_y_providencia_coastline from the list.

[image: ../../_images/geonode_layers_list.jpg]
GeoServer Layers List

	Notice how the Basic Resource Info have been automatically configured by GeoNode.

	The Name reflects the original file name.

	The Title has been filled with the Metadata value

	The Abstract has been filled with the Metadata value

	The Keywords have been added with the Metadata values

[image: ../../_images/geonode_layers_basic_data.jpg]
GeoServer Layers Basic Resource Info

	Notice how the Metadata Links reflect the Metadada Download options available on GeoNode, along with the URLs.

[image: ../../_images/geonode_layers_metadata_links.jpg]
GeoServer Layers Metadata Links

	Notice how the Coordinate Reference System and the Bounding Boxes have been automatically filled by GeoNode accordingly with the data source info.

[image: ../../_images/geonode_layers_crs.jpg]
GeoServer Layers Coordinate Reference System

	On the Publishing Section the Default Style has been updated and configured by GeoNode.

[image: ../../_images/geonode_layers_styles.jpg]
GeoServer Layers Publishing Section

GeoServer Stylesheets (SLD)

Styles render, or make available, geospatial data. Styles for GeoServer are written in Styled Layer Descriptor (SLD), a subset of XML.
Please see the section on Styling [http://docs.geoserver.org/stable/en/user/styling/index.html#styling] for more information on working with styles.

On the Styles page, you can add a new style, view or edit an existing style, or remove a style.

[image: ../../_images/data_style.png]
Styles page

Edit a Style

To view or edit a style, click the style name. A Style Editor page will be diplayed.
The page presents options for configuring a style’s name, code, and other attributes. Style names are specified at the top in the name field.
The style’s workspace can be chosen using workspace selector. Styles are edited using a plain text editor with some basic utilities.

[image: ../../_images/data_style_editor.png]
Style editor

The style editor supports line numbering, automatic indentation, and real-time syntax highlighting. You can also increase or decrease the font size of the editor.

	Button

	Description

	[image: ../../_images/data_style_editor_undo.png]

	undo

	[image: ../../_images/data_style_editor_redo.png]

	redo

	[image: ../../_images/data_style_editor_goto.png]

	go to line

	[image: ../../_images/data_style_editor_reformat.png]

	auto-format the editor contents

	[image: ../../_images/data_style_editor_fontsize.png]

	change the font size of the editor

To confirm that the SLD code is fully compliant with the SLD schema, click the Validate button. A message box will confirm whether the style contains validation errors.

Note

GeoServer will sometimes render styles that fail validation, but this is not recommended.

[image: ../../_images/data_style_editor_noerrors.png]
No validation errors

[image: ../../_images/data_style_editor_error.png]
Validation error message

To view the generated legend entry [http://docs.geoserver.org/stable/en/user/advanced/wmsdecoration.html#decoration-types] for the style, click the Preview Legend button.

Add a Style

The buttons for adding and removing a style can be found at the top of the Styles page.

[image: ../../_images/data_style_add_delete.png]
Adding or removing a style

To add a new style, select the Add a new style button. You will be redirected to an editor page. Enter a name for the style.
You can also select the style format. In a default GeoServer installation only SLD is supported, but other extensions (such as css [http://docs.geoserver.org/stable/en/user/extensions/css/index.html#extensions-css]) add support for
additional formats. The editor page provides several options for submitting a new style. You can paste the style directly into the editor contents. You can generate a new default style based on an internal template:

[image: ../../_images/data_style_editor_generate.png]
Generating a new default style.

You can copy the contents of an existing style into the editor:

[image: ../../_images/data_style_editor_copy.png]
Copying an existing Style from GeoServer

You can select and upload a local file that contains the SLD:

[image: ../../_images/data_style_upload.png]
Uploading an SLD file from your local computer

Once a style is successfully submitted, you will be redirected to the main Styles page where the new style will be listed.

Remove a Style

To remove a style, select it by clicking the checkbox next to the style. Multiple styles can be selected, or all can be selected by clicking the checkbox in the header.
Click the Remove selected style(s) link at the top of the page. You will be asked to confirm or cancel the removal. Clicking OK removes the selected style(s).

[image: ../../_images/data_style_delete.png]
Confirmation prompt for removing styles

How GeoNode Automatically Configures Style

Whe uploading a new Layer to GeoNode, it creates by default an SLD on GeoServer with the same native name of the Layer and assigns it to the Layer ad Default Style.

In the previous sections you already modified the default style of the Layer san_andres_y_providencia_coastline automatically generated by GeoNode.

GeoServer Data Dir Structure

This section gives an overview of the structure and contents of the GeoServer data directory.

This is not intended to be a complete reference to the GeoServer configuration information,
since generally the data directory configuration files should not be accessed directly.
Instead, the Web Administration Interface [http://docs.geoserver.org/stable/en/user/webadmin/index.html#web-admin] can be used to view and modify the configuration manually,
and for programmatic access and manipulation
the REST configuration [http://docs.geoserver.org/stable/en/user/rest/index.html#rest] API should be used.

The directories that do contain user-modifiable content are:
logs, palettes, templates, user-projection, and www.

The following figure shows the structure of the GeoServer data directory:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

	 <data_directory>/

 global.xml
 logging.xml
 wms.xml
 wfs.xml
 wcs.xml

 data/
 demo/
 geosearch/
 gwc/
 layergroups/
 logs/
 palettes/
 plugIns/
 security/
 styles/
 templates/
 user_projections/
 workspaces/
 |
 +- workspace dirs...
 |
 +- datastore dirs...
 |
 +- layer dirs...
 www/

The .xml files

The top-level .xml files contain information about the services and various global options for the server instance.

	File

	Description

	global.xml

	Contains settings common to all services, such as contact information, JAI settings, character sets and verbosity.

	logging.xml

	Specifies logging parameters, such as logging level, logfile location, and whether to log to stdout.

	wcs.xml

	Contains the service metadata and various settings for the WCS service.

	wfs.xml

	Contains the service metadata and various settings for the WFS service.

	wms.xml

	Contains the service metadata and various settings for the WMS service.

workspaces

The workspaces directory contain metadata about the layers published by GeoServer.
It contains a directory for each defined workspace.
Each workspace directory contains directories for the datastores defined in it.
Each datastore directory contains directories for the layers defined for the datastore.
Each layer directory contains a layer.xml file, and
either a coverage.xml or a featuretype.xml file
depending on whether the layer represents a raster or vector dataset.

data

The data directory can be used to store file-based geospatial datasets being served as layers.
(This should not be confused with the main “GeoServer data directory”.)
This directory is commonly used to store shapefiles and raster files,
but can be used for any data that is file-based.

The main benefit of storing data files under the data directory is portability.
Consider a shapefile stored external to the data directory at a location C:\gis_data\foo.shp.
The datastore entry in catalog.xml for this shapefile would look like the following:

	1
2
3
4
5

	 <datastore id="foo_shapefile">
 <connectionParams>
 <parameter name="url" value="file://C:/gis_data/foo.shp" />
 </connectionParams>
 </datastore>

Now consider trying to port this data directory to another host running GeoServer.
The location C:\gis_data\foo.shp probably does not exist on the second host.
So either the file must be copied to this location on the new host,
or catalog.xml must be changed to reflect a new location.

This problem can be avoided by storing foo.shp in the data directory.
In this case the datastore entry in catalog.xml becomes:

	1
2
3
4
5

	 <datastore id="foo_shapefile">
 <connectionParams>
 <parameter name="url" value="file:data/foo.shp"/>
 </connectionParams>
 </datastore>

The value attribute is rewritten to be relative to the data directory.
This location independence allows the entire data directory to be copied to a new host
and used directly with no additional changes.

demo

The demo directory contains files which define the sample requests available in the Sample Request Tool (http://localhost/geoserver/demoRequest.do).
See the Demos [http://docs.geoserver.org/stable/en/user/webadmin/demos/index.html#webadmin-demos] page for more information.

geosearch

The geosearch directory contains information for regionation of KML files.

gwc

The gwc directory holds the cache created by the embedded GeoWebCache service.

layergroups

The layergroups directory contains configuration information for the defined layergroups.

logs

The logs directory contains configuration information for logging profiles,
and the default geoserver.log log file.
See also Advanced log configuration [http://docs.geoserver.org/stable/en/user/advanced/logging.html#logging].

palettes

The palettes directory is used to store pre-computed Image Palettes.
Image palettes are used by the GeoServer WMS as way to reduce the size of produced images while maintaining image quality.
See also Paletted Images [http://docs.geoserver.org/stable/en/user/tutorials/palettedimage/palettedimage.html#tutorials-palettedimages].

security

The security directory contains the files used to configure the GeoServer security subsystem. This includes a set of property files which define access roles, along with the services and data each role is authorized to access. See the Security [http://docs.geoserver.org/stable/en/user/security/index.html#security] section for more information.

styles

The styles directory contains Styled Layer Descriptor (SLD) files which contain styling information used by the GeoServer WMS. For each file in this directory there is a corresponding entry in catalog.xml:

	1

	 <style id="point_style" file="default_point.sld"/>

See the Styling [http://docs.geoserver.org/stable/en/user/styling/index.html#styling] section for more information about styling and SLD .

templates

The templates directory contains files used by the GeoServer templating subsystem.
Templates are used to customize the output of various GeoServer operations.
See also Freemarker Templates [http://docs.geoserver.org/stable/en/user/tutorials/freemarker.html#tutorial-freemarkertemplate].

user_projections

The user_projections directory contains a file called epsg.properties which is used to define custom spatial reference systems that are not part of the official EPSG database [http://www.epsg.org/CurrentDB.html].
See also Custom CRS Definitions [http://docs.geoserver.org/stable/en/user/advanced/crshandling/customcrs.html#crs-custom].

www

The www directory is used to allow GeoServer to serve files like a regular web server.
The contents of this directory are served at http:/<host:port>/geoserver/www.
While not a replacement for a full blown web server,
this can be useful for serving client-side mapping applications.
See also Serving Static Files [http://docs.geoserver.org/stable/en/user/tutorials/staticfiles.html#tutorials-staticfiles].

Excercise

Navigate the GeoServer Data Directory

	Log inot GeoNode as Administrator. Then click on the user button on the top right.

[image: ../../_images/layer_styles_008.jpg]
GeoNode Admin

	From the menu, click on the GeoServer voice.

[image: ../../_images/layer_styles_009.jpg]
GeoNode Admin GeoServer

	You will be redirected to the GeoServer admin interface.

[image: ../../_images/layer_styles_010.jpg]
GeoServer Admin Gui

	Select the Server Status topic from the left menu. On the status page note the Data Directory.

[image: ../../_images/layer_gs_datadir_001.jpg]
GeoServer Admin Server Status Page

	Open a Terminal window and go to the GeoServer Data Directory folder. Navigate the folders and examine the files.

	Enter the styles directory and confirm it is present the file san_andres_y_providencia_coastline.sld

	1

	$ cat san_andres_y_providencia_coastline.sld

Steps To Manually Migrate A Layer

In this section we are going to save on the mass storage all the information from a GeoNode Layer needed to restore it back later on another GeoNode instance.

Here below a quick summary of the actions to do in order to export manually a GeoNode Layer:

	First of all it is necessary to store the Layer data in a portable format. Since we can’t assume any specific configuration on the target GeoNode (we don’t know if it has been attached to a Database or not, and the connection parameters neither), we need to save the Layer source data in a format feasable to be imported back on any GeoNode. The solution is to export the Layer as an ESRI Shapefile.

	We may need to export also the SLD defined for the Layer. We must store back also the Layer Styles on the storage.

	Once we got all the source data, the final step is to save the Layer Metadata. All the information defined for that Layer must be replicated back on the target instance.

The exercise we are going to execute in 4 steps, consists in:

	Download a Layer as ESRI Shapefile: We will download the Layer san_andres_y_providencia_coastline, already configured in GeoNode, as an ESRI ShapeFile. This allows us to store the data in a portable format.

	Save and exrpot the Layer SLDs: We will check what are the Styles associated to the san_andres_y_providencia_coastline Layer, retrieve the corresponding SLD files on the GeoServer Data Dir and save them for a later import.

	Save and exrpot the Layer Metadata: We will save the san_andres_y_providencia_coastline Layer metadata as an ISOTC211/19115 XML file for a later import.

	Import back the Layer: We will cleanup the GeoNode instance, being sure that also GeoServer will be cleaned, and then we will restore back the san_andres_y_providencia_coastline Layer using the fiels saved during the previous steps.

1. Download a Layer as ESRI Shapefile

Note

In order to execute this exercise, we assume that you have read all the previous sections and your source GeoNode has a Layer already configured as specified on the preliminary notes.

Excercise

Export A Layer As A SHAPEFILE

Warning

You must be GeoNode Administrator in order to successfully execute this exercise.

	Identify the real Layer name.

Connect to your local GeoNode instance and explore the available Layers.

[image: ../../_images/migrate_mode1_001.jpg]
GeoNode Explore Layers

Select the Layer San Andreas Coastlines and click on Metadata Edit.

[image: ../../_images/migrate_mode1_002.jpg]
GeoNode Edit Metadata

You will find the real Layer name as subtitle of the Edit Metadada page. Note it somewhere.

[image: ../../_images/migrate_mode1_003.jpg]
GeoNode Layer Real Name

	Identify the GeoServer Endpoint.

Identify the GeoServer endpoint. Click on admin and the on GeoServer menù link.

[image: ../../_images/migrate_mode1_004.jpg]
GeoServer Endpoint

In our case the GeoServer Endpoint is http://localhost/geoserver.

[image: ../../_images/migrate_mode1_005.jpg]
GeoServer Web Page

	Export the Layer as an ESRI ShapeFile file format.

Open a Terminal window and go to /home/geo/Desktop/.

$> cd /home/geo/Desktop/

[image: ../../_images/migrate_mode1_006.jpg]
Terminal: Desktop Folder

Create a new folder backup and enter it.

$> mkdir backup
$> cd backup

[image: ../../_images/migrate_mode1_007.jpg]
Terminal: Backup Folder

Finally export the geonode:san_andres_y_providencia_coastline as ShapeFile from GeoServer using the WGET utility command.

$> wget --user=admin --password=admin -O san_andres_y_providencia_coastline.zip "http://localhost/geoserver/geonode/ows?service=WFS&version=1.0.0&request=GetFeature&typeName=geonode:san_andres_y_providencia_coastline&outputFormat=SHAPE-ZIP"

[image: ../../_images/migrate_mode1_008.jpg]
Terminal: Save san_andres_y_providencia_coastline.zip

Note

Lets examine the command we just executed:

This is the executable
wget

Those are the GeoNode credentials for the ``admin`` user. Yours maybe different.
--user=admin --password=admin

This is the name of the output file we want to create. It's not important, you can choose anyone.
-O san_andres_y_providencia_coastline.zip

This is the full URL to let GeoServer save the source data as ShapeFile ZIP.
"http://localhost/geoserver/geonode/ows?service=WFS&version=1.0.0&request=GetFeature&typeName=geonode:san_andres_y_providencia_coastline&outputFormat=SHAPE-ZIP"

1. It must be quoted ""
2. The first part is the GeoServer Endpoint "http://localhost/geoserver"
3. The "typename" is the real GeoNode Layer name "typeName=geonode:san_andres_y_providencia_coastline"
4. With "outputFormat" we say to GeoServer how to download data "outputFormat=SHAPE-ZIP"

Unzip the file into the backup folder.

$> unzip san_andres_y_providencia_coastline.zip

[image: ../../_images/migrate_mode1_009.jpg]
Terminal: Unzip san_andres_y_providencia_coastline.zip

Check that the ShapeFile has been correctly downloaded. You must see the 4 .dbf, .prj, .shp, .shx files on the backup folder.

$> ls -la

[image: ../../_images/migrate_mode1_010.jpg]
Terminal: Check san_andres_y_providencia_coastline.zip

Note

You can also delete the san_andres_y_providencia_coastline.zip file now. It won’t be useful anymore in the future.

2. Save and exrpot the Layer SLDs

Note

In order to execute this exercise, we assume that you have read all the previous sections and your source GeoNode has a Layer already configured as specified on the preliminary notes.

Excercise

Export The Layer Default SLD

Warning

By default GeoNode creates an SLD on GeoServer with the same name of the imported Layer and use it as default style. In this exercise we will assume that the Layer uses only the default GeoNode SLD.

	Identify the full path of the GeoServer Data Dir

Click on the GeoServer link of the GeoNode admin menu.

[image: ../../_images/migrate_mode1_011.jpg]
GeoServer Admin Page

Click on the Server Status link of the GeoServer admin page.

[image: ../../_images/migrate_mode1_012.jpg]
GeoServer Admin Page Server Status

Copy the full path of the GeoServer Data Dir from the Server Status page.

[image: ../../_images/migrate_mode1_013.jpg]
GeoServer Admin Page GeoServer Data Dir

From the Terminal window, copy the san_andres_y_providencia_coastline.sld into the backup folder.

$> cd /home/geo/Desktop/backup/
$> cp /var/lib/tomcat7/webapps/geoserver/data/styles/san_andres_y_providencia_coastline.sld .

[image: ../../_images/migrate_mode1_014.jpg]
Terminal: Copy san_andres_y_providencia_coastline.sld

Note

Lets examine the command we just executed:

This is the executable
cp

This is the full path of the ``san_andres_y_providencia_coastline.sld`` file
/var/lib/tomcat7/webapps/geoserver/data/styles/san_andres_y_providencia_coastline.sld

1. Notice that the first part ``/var/lib/tomcat7/webapps/geoserver/data`` is the path of the GeoServer Data Dir
2. You must add the path ``/styles/`` to the path of the GeoServer Data Dir
3. The SLD file has the same prefix of the original Layer ``san_andres_y_providencia_coastline.sld``

Check that the SLD has been correctly downloaded. You must see the .sld file on the backup folder.

$> ls -la

[image: ../../_images/migrate_mode1_015.jpg]
Terminal: Check san_andres_y_providencia_coastline.sld

3. Save and exrpot the Layer Metadata

Note

In order to execute this exercise, we assume that you have read all the previous sections and your source GeoNode has a Layer already configured as specified on the preliminary notes.

Excercise

Export A Layer Metadata As An ISOTC211/19115 XML

Warning

You must be GeoNode Administrator in order to successfully execute this exercise.

	Get the ISOTC211/19115 XML URL.

Connect to your local GeoNode instance and explore the available Layers.

[image: ../../_images/migrate_mode1_001.jpg]
GeoNode Explore Layers

Select the Layer San Andreas Coastlines and click on Download Metadata.

[image: ../../_images/migrate_mode1_016.jpg]
GeoNode Download Metadata

Click with the right mouse button over the ISO link and then on Copy Link Location.

[image: ../../_images/migrate_mode1_017.jpg]
Copy Link Location Of ISOTC211/19115 XML

	Store the ISOTC211/19115 XML through the WGET command.

From the Terminal window, goto the backup folder of the san_andres_y_providencia_coastline file we created before.

$> cd /home/geo/Desktop/backup/

Finally export the san_andres_y_providencia_coastline.xml as ISOTC211/19115 XML from GeoNode using the WGET utility command.

$> wget --user=admin --password=admin -O san_andres_y_providencia_coastline.xml "http://localhost/catalogue/csw?outputschema=http%3A%2F%2Fwww.isotc211.org%2F2005%2Fgmd&service=CSW&request=GetRecordById&version=2.0.2&elementsetname=full&id=3236a2e0-f023-11e5-86e3-08002779b53d"

[image: ../../_images/migrate_mode1_018.jpg]
Terminal: Save san_andres_y_providencia_coastline.xml

Note

Lets examine the command we just executed:

This is the executable
wget

Those are the GeoNode credentials for the ``admin`` user. Yours maybe different.
--user=admin --password=admin

This is the name of the output file we want to create. **It's important** that the file has the same prefix of the ``san_andres_y_providencia_coastline`` Layer name.
-O san_andres_y_providencia_coastline.xml

This is the full URL of the ISOTC211/19115 XML.
"http://localhost/catalogue/csw?outputschema=http%3A%2F%2Fwww.isotc211.org%2F2005%2Fgmd&service=CSW&request=GetRecordById&version=2.0.2&elementsetname=full&id=3236a2e0-f023-11e5-86e3-08002779b53d"

1. It must be quoted ""
2. The first part is the GeoNode Catalogue Endpoint "http://localhost/catalogue"
3. With "outputschema" we say to GeoNode how to download metadata "outputschema=http%3A%2F%2Fwww.isotc211.org%2F2005%2Fgmd"
4. Notice that any Layer in GeoNode is identified by a unique ID "id=3236a2e0-f023-11e5-86e3-08002779b53d", which can be retrieved from the Layer Metadata panel.

Check that the XML has been correctly downloaded. You must see the .xml file on the backup folder.

$> ls -la

[image: ../../_images/migrate_mode1_019.jpg]
Terminal: Check san_andres_y_providencia_coastline.xml

4. Import back the Layer through the “importlayers” GeoNode Management Command

At this point we have everything we need to restore the Layer saved into the /home/geo/Desktop/backup/ folder.

What we are going to do now is:

	Cleanup GeoNode and GeoServer, being sure that the san_andres_y_providencia_coastline has been completely removed from all instances.

	Restore the san_andres_y_providencia_coastline and its Metadata

	Restore the san_andres_y_providencia_coastline SLD Style

Exercise

Cleanup The san_andres_y_providencia_coastline Layer

	Delete The san_andres_y_providencia_coastline Layer.

Connect to your local GeoNode instance and explore the available Layers.

[image: ../../_images/migrate_mode1_001.jpg]
GeoNode Explore Layers

Select the Layer San Andreas Coastlines and click on Layer Remove.

[image: ../../_images/migrate_mode1_002.jpg]
GeoNode Layer Remove

Confirm that you want to remove the san_andres_y_providencia_coastline Layer.

[image: ../../_images/migrate_mode1_020.jpg]
GeoNode Layer Remove Confirm

	Double check that the Layer has been removed from GeoServer also.

Connect to your local GeoServer instance Admin GUI, from GeoNode admin menu.

[image: ../../_images/migrate_mode1_021.jpg]
GeoServer Admin GUI

Double check that the Layer san_andres_y_providencia_coastline is no more present on GeoServer Layer list. If so delete it manually.

[image: ../../_images/migrate_mode1_022.jpg]
GeoServer Admin GUI: Layers

Double check that the Style san_andres_y_providencia_coastline is no more present on GeoServer Style list. If so delete it manually.

[image: ../../_images/migrate_mode1_023.jpg]
GeoServer Admin GUI: Styles

	Once GeoNode and GeoServer are cleared, import back the san_andres_y_providencia_coastline Layer through the “importlayers” GeoNode Management Command

From the Terminal window, goto the backup folder of the san_andres_y_providencia_coastline file we created before.

$> cd /home/geonode/geonode/

Finally import the san_andres_y_providencia_coastline Layer using the “importlayers” GeoNode Management Command.

$> python manage.py importlayers /home/geo/Desktop/backup/

[image: ../../_images/migrate_mode1_024.jpg]
Terminal: Import san_andres_y_providencia_coastline

Note

Notice that

	The “importlayers” GeoNode Management Command automatically imports all the ShapeFiles available into the backup folder

	The “importlayers” GeoNode Management Command automatically restores the Layer metadata if the ISOTC211/19115 XML is available on the same folder and has the same layer previx

	The “importlayers” GeoNode Management Command automatically restores the Layer styles if the SLD is available on the same folder and has the same layer previx

	Double check that the san_andres_y_providencia_coastline Layer has been correctly restored into GeoNode.

Loading OSM Data into GeoNode

In this section, we will walk through the steps necessary to load OSM data into your GeoNode project. As discussed in previous sections, your GeoNode already uses OSM tiles from MapQuest and the main OSM servers as some of the available base layers. This session is specifically about extracting actual data from OSM and converting it for use in your project and potentially for Geoprocessing tasks.

The first step in this process is to get the data from OSM. We will be using the OSM Overpass API since it lets us do more complex queries than the OSM API itself. You should refer to the OSM Overpass API documentation to learn about all of its features. It is an extremely powerful API that lets you extract data from OSM using a very sophisticated API.

	http://wiki.openstreetmap.org/wiki/Overpass_API

	http://wiki.openstreetmap.org/wiki/Overpass_API/Language_Guide

In this example, we will see a couple of examples extracting:

	Southwest Platte River Road footprint, which runs through Denver

	Building footprint data around Kampala, Uganda.

To do this we will use an interactive tool that makes it easy construct a Query against the Overpass API.

Exporting OSM data to shapefile using QGIS

	First go to openstreetmap.org [http://openstreetmap.org], and search for “South Platte River, Denver”

[image: Search on OpenStreetMap]
Search on OpenStreetMap

	Zoom in, until you see the features appearing

[image: Features on OpenStreetMap]
Features on OpenStreetMap

	Select a feature. In this example we selected Way: Southwest Platte River Road (17082695)

[image: Southwest Platte River Road]
Southwest Platte River Road

	Identify the tags and values of the features you’re after by

	Zooming all the way into the map

	Click on the layers icon on the right (the three sheets of paper)

	Click on the last menu entry (Map data or something similar in your language)

	The features on the map turn blue (make sure you’re zoomed in far enough to see

	Click on the feature you’re after

	The Tags and Values appear on left side of the screen, and you can proceed below…

[image: Southwest Platte River Road - Details]
Southwest Platte River Road - Details

	Point your browser at overpass-turbo.eu [http://overpass-turbo.eu/], and use the search box to zoom to the area of interest, in this case Colorado

[image: Colorado]
Colorado

	Click on the Wizard button, and enter the search text accordingly to the information retrieved from OpenStreetMap

[image: Southwest Platte River Road]
Southwest Platte River Road

name="Southwest Platte River Road" and highway=tertiary and railway=abandoned

	Click on the button Build and Run Query, the map shows the selected data

[image: Southwest Platte River Road Data]
Southwest Platte River Road Data

	Click on the button Export, and download data as GeoJSON

[image: Southwest Platte River Road Export]
Southwest Platte River Road Export

	Save it and confirm. The file export.geojson will be created into the Downloads folder

[image: export.geojson]
export.geojson

	Rename the file to south_platte_river_road.geojson

[image: south_platte_river_road.geojson]
south_platte_river_road.geojson

	Open QGis Client and import the layer into it

[image: QGis Client]
QGis Client

	Click with the right button over the layer and then click on Save As

[image: QGis Client - Save As]
QGis Client - Save As

	Select ESRI Shapefile and click on Browse

[image: QGis Client - Save As SHP]
QGis Client - Save As SHP

	Select the Downloads folder and name the file south_platte_river_road

[image: QGis Client - Save As SHP]
QGis Client - Save As SHP

	This will save the layer as a Shapefile, which can be easily imported into GeoNode

[image: South Platte River Road into GeoNode]
South Platte River Road into GeoNode

Let’s see another example of export through the OverPass APIs.

	Point your browser at overpass-turbo.eu [http://overpass-turbo.eu/], and use the search box to zoom to the area of interest, in this case Kampala

[image: Kampala]
Kampala

	Zoom around Nakasero area

[image: Nakasero]
Nakasero

	Select the desired Bounding Box around the area to export

[image: Nakasero BBOX]
[image: Nakasero BBOX]
Nakasero BBOX

	Run the Wizard and write building=* or highway=* in bbox on the text box.

[image: Nakasero Query Builder]
Nakasero Query Builder

This will result in a query like the following one

/*
This has been generated by the overpass-turbo wizard.
The original search was:
“building=* or highway=* in bbox”
*/
[out:json][timeout:25];
// gather results
(
 // query part for: “building=*”
 node["building"]({{bbox}});
 way["building"]({{bbox}});
 relation["building"]({{bbox}});
 // query part for: “highway=*”
 node["highway"]({{bbox}});
 way["highway"]({{bbox}});
 relation["highway"]({{bbox}});
);
// print results
out body;
>;
out skel qt;

	Export data as GeoJSON like before, rename it and use QGis to export as a Shapefile

[image: Nakasero Query Builder]
Nakasero Query Builder

	This will allow you to save all the layers as a Shapefiles, which can be easily imported into GeoNode

[image: Nakasero into GeoNode]
Nakasero into GeoNode

Note

You can also rename the file in your Operating Systems File management tool (Windows Explorer, Finder etc).

Note

You may want to switch to an imagery layer in order to more easily see the buildings on the OSM background.

Exporting OSM data to shapefile using GDAL

An alternative way to export the .osm or .geojson file to a shapefile is to use ogr2ogr [http://www.gdal.org/ogr2ogr.html] combined with the GDAL osm driver [http://www.gdal.org/ogr/drv_osm.html], available from GDAL version 1.10.

As a first step, inspect how the GDAL osm driver sees the .osm file using the ogrinfo command:

$ ogrinfo -al -so nakasero.geojson -where "OGR_GEOMETRY='Point'"

INFO: Open of `nakasero.geojson'
 using driver `GeoJSON' successful.

Layer name: OGRGeoJSON
Geometry: Unknown (any)
Feature Count: 142
Extent: (32.573864, 0.312602) - (32.593496, 0.331627)
Layer SRS WKT:
GEOGCS["WGS 84",
 DATUM["WGS_1984",
 SPHEROID["WGS 84",6378137,298.257223563,
 AUTHORITY["EPSG","7030"]],
 AUTHORITY["EPSG","6326"]],
 PRIMEM["Greenwich",0,
 AUTHORITY["EPSG","8901"]],
 UNIT["degree",0.0174532925199433,
 AUTHORITY["EPSG","9122"]],
 AUTHORITY["EPSG","4326"]]
id: String (0.0)
...

$ ogrinfo -al -so nakasero.geojson -where "OGR_GEOMETRY='LineString'"

INFO: Open of `nakasero.geojson'
 using driver `GeoJSON' successful.

Layer name: OGRGeoJSON
Geometry: Unknown (any)
Feature Count: 928
Extent: (32.571923, 0.306984) - (32.597590, 0.338549)
Layer SRS WKT:
GEOGCS["WGS 84",
 DATUM["WGS_1984",
 SPHEROID["WGS 84",6378137,298.257223563,
 AUTHORITY["EPSG","7030"]],
 AUTHORITY["EPSG","6326"]],
 PRIMEM["Greenwich",0,
 AUTHORITY["EPSG","8901"]],
 UNIT["degree",0.0174532925199433,
 AUTHORITY["EPSG","9122"]],
 AUTHORITY["EPSG","4326"]]
id: String (0.0)
...

$ ogrinfo -al -so nakasero.geojson -where "OGR_GEOMETRY='Polygon'"

INFO: Open of `nakasero.geojson'
 using driver `GeoJSON' successful.

Layer name: OGRGeoJSON
Geometry: Unknown (any)
Feature Count: 2596
Extent: (32.572918, 0.311164) - (32.594049, 0.333597)
Layer SRS WKT:
GEOGCS["WGS 84",
 DATUM["WGS_1984",
 SPHEROID["WGS 84",6378137,298.257223563,
 AUTHORITY["EPSG","7030"]],
 AUTHORITY["EPSG","6326"]],
 PRIMEM["Greenwich",0,
 AUTHORITY["EPSG","8901"]],
 UNIT["degree",0.0174532925199433,
 AUTHORITY["EPSG","9122"]],
 AUTHORITY["EPSG","4326"]]
id: String (0.0)
...

$ ogrinfo -al -so nakasero.geojson -where "OGR_GEOMETRY='MultiPolygon'"

INFO: Open of `nakasero.geojson'
 using driver `GeoJSON' successful.

Layer name: OGRGeoJSON
Geometry: Unknown (any)
Feature Count: 3
Extent: (32.576421, 0.315224) - (32.590876, 0.330137)
Layer SRS WKT:
GEOGCS["WGS 84",
 DATUM["WGS_1984",
 SPHEROID["WGS 84",6378137,298.257223563,
 AUTHORITY["EPSG","7030"]],
 AUTHORITY["EPSG","6326"]],
 PRIMEM["Greenwich",0,
 AUTHORITY["EPSG","8901"]],
 UNIT["degree",0.0174532925199433,
 AUTHORITY["EPSG","9122"]],
 AUTHORITY["EPSG","4326"]]
id: String (0.0)
...

ogrinfo has detected 4 different geometric layers inside the osm data source. As we are just interested in the buildings, you will just export to a new shapefile the polygons and multipolygons layer using the GDAL ogr2ogr command utility:

$ ogr2ogr nakasero_buildings nakasero.geojson -where "OGR_GEOMETRY='Polygon' or OGR_GEOMETRY='MultiPolygon'" -nln nakasero_buildings

Now you can upload the shapefile to GeoNode using the GeoNode Upload form in the same manner as you did in the previous section.

 Python Module Index

 _ |
 g

 		 	

 		
 _	

 	
 	
 _geoserver_adv_config	
 Learn how to set the advanced GeoServer configuration.

 		 	

 		
 g	

 	[image: -]
 	
 geoserver	

 	
 	
 geoserver.add_geotiff	
 Learn how to adding a GeoTiff.

 	
 	
 geoserver.add_shp	
 Learn how to adding a Shapefile.

 	
 	
 geoserver.add_sqllayers	
 Learn how to add a SQL Parametric View based Layer.

 	
 	
 geoserver.add_style	

 	
 	
 geoserver.add_wfscascade	
 Learn how to add a WFS Cascade Layer.

 	
 	
 geoserver.add_wmscascade	
 Learn how to add a WMS Cascade Layer.

 	
 	
 geoserver.adding_base_types	
 Learn how to adding base types.

 	
 	
 geoserver.adding_data	
 Learn how to add data to GeoServer.

 	
 	
 geoserver.advanced_gdal	
 Learn how to delivery Raster Data.

 	
 	
 geoserver.creating_setting	
 Learn how to creating and setting a new GeoServer data directory.

 	
 	
 geoserver.crs_handling	

 	
 	
 geoserver.data_format	

 	
 	
 geoserver.db_pooling	

 	
 	
 geoserver.example1	

 	
 	
 geoserver.example2	

 	
 	
 geoserver.example3	

 	
 	
 geoserver.gs_data_dir	
 Learn how to managing GeoServer data directory.

 	
 	
 geoserver.gsproduction	

 	
 	
 geoserver.imagemosaic_footprint	

 	
 	
 geoserver.introducing_rest	
 Learn how to use the GeoServer REST module.

 	
 	
 geoserver.jmeter	
 Learn how to set the advanced GeoServer configuration.

 	
 	
 geoserver.mosaic_pyramid	

 	
 	
 geoserver.parameters	

 	
 	
 geoserver.postgis_lay	
 Learn how to adding a Postgis layer.

 	
 	
 geoserver.pretty_maps	
 Styling in real world units

 	
 	
 geoserver.processing	

 	
 	
 geoserver.raster_data	
 Learn advanced tecquinques for the delivery of Raster Data with GeoServer.

 	
 	
 geoserver.rest	
 Learn how to use GeoServer REST interface.

 	
 	
 geoserver.shp_postgis	
 Learn how to loading a Shapefile into Postgis.

 	
 	
 geoserver.structure	
 Learn the structure of the GeoServer Data Directory.

 	
 	
 geoserver.using_rest	
 Learn how to use the GeoServer REST module.

 	
 	
 geoserver.vector_data	
 Learn advanced tecquinques for the delivery of Vectorial Data with GeoServer.

Index

 _
 | C
 | G

_

 	
 	_geoserver_adv_config (module)

C

 	
 	Creative Commons

G

 	
 	geoserver.add_geotiff (module)

 	geoserver.add_shp (module)

 	geoserver.add_sqllayers (module)

 	geoserver.add_style (module)

 	geoserver.add_wfscascade (module)

 	geoserver.add_wmscascade (module)

 	geoserver.adding_base_types (module)

 	geoserver.adding_data (module)

 	geoserver.advanced_gdal (module)

 	geoserver.creating_setting (module)

 	geoserver.crs_handling (module)

 	geoserver.data_format (module)

 	geoserver.db_pooling (module)

 	geoserver.example1 (module)

 	geoserver.example2 (module)

 	geoserver.example3 (module)

 	
 	geoserver.gs_data_dir (module)

 	geoserver.gsproduction (module)

 	geoserver.imagemosaic_footprint (module)

 	geoserver.introducing_rest (module)

 	geoserver.jmeter (module)

 	geoserver.mosaic_pyramid (module)

 	geoserver.parameters (module)

 	geoserver.postgis_lay (module)

 	geoserver.pretty_maps (module), [1], [2], [3]

 	geoserver.processing (module)

 	geoserver.raster_data (module)

 	geoserver.rest (module)

 	geoserver.shp_postgis (module)

 	geoserver.structure (module)

 	geoserver.using_rest (module)

 	geoserver.vector_data (module)

 This section of the guide cover the installation process and basic usage of the tools
needed in order to make changes to the documentation.

You are going to need the following tools:

	Git [http://en.wikipedia.org/wiki/Git_(software)]

	Python [https://www.python.org/] and pip [https://en.wikipedia.org/wiki/Pip_(package_manager)] (recent versions of Python come bundled with pip)

	Sphinx [http://sphinx-doc.org/index.html]

Install Git

To install Git on your machine refer to this [https://git-scm.com/book/en/v2/Getting-Started-Installing-Git]
guide.

For a brief introduction to Git usage refer to this [https://git-scm.com/book/en/v2/Getting-Started-Git-Basics] guide

Install Python

Python installation is pretty straight forward, refer to the official download page [https://www.python.org/downloads/]
and follow the instruction for your Operating System. As stated above from Python 2.7.9 onward pip
comes bundled with Python.

Open the terminal on your machine and type python, the output should resemble the following::

> python
Python 2.7.6 (default, Jun 22 2015, 17:58:13)
[GCC 4.8.2] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>>

Type exit() to exit the Python interpreter

If you get and error back make sure the Python executable is in your PATH.

If you are on Windows follow theese instructions [https://docs.python.org/2/using/windows.html#excursus-setting-environment-variables]

If you are on Linux locate the Python binary and add it to your PATH, edit your ~/.bashrc
and add the following at the end of the file::

export PATH=$PATH:/path/to/the/python-binary

restart your terminal to make the change effective

Now check that you can invoke pip typing pip –version. The output should resemble the following::

pip 1.5.4 from /usr/lib/python2.7/dist-packages (python 2.7)

If you get and error back make sure the pip executable is in your PATH.

Install Sphinx

To install Sphinx on your machine, type the following in your terminal::

pip install Sphinx

Note

If you are on Linux you may need to prefix the command with sudo

Now test your installation::

> sphinx-build --version
Sphinx (sphinx-build) 1.3.1

For a more detailed installation guide refer to this document [http://docs.geoserver.org/latest/en/docguide/install.html]

Check out documentation source

Since write acecss to the main documentation repository is restricted you may want
to work on your personal fork [https://help.github.com/articles/fork-a-repo/].
Login on Github with your account, navigate to the documentation reposiroty [https://github.com/geosolutions-it/doc-geonode]
and click on fork. You will be redirected to your own fork of the documentation.

Make sure you already configured your Git username and email address [https://help.github.com/articles/set-up-git/#setting-up-git]

Now clone your repository locally::

git clone https://github.com/your-user/doc-geonode.git

where your-user is your username on GitHub.

Now make the changes you want to the documentation.

Build the documentation

To build the documentation locally on your machine, open the terminal and move to
the project root directory, then run the following::

make html

The html version of the documentation will be build under the build subfolder.
Use your favorite web browser to open the index file called index.html.

When you make changes to the documentation re-build it periodically to make sure
the end result matches what you expect.

Edit the documentation

The documentation is kept in reStructuredText format.
For a quick reference refer to this [http://docs.geoserver.org/latest/en/docguide/sphinx.html]
document. For a more in-depth document refer to the official documentation [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html].

Submit your changes to the main repository

You are done making changes to the documentation and you are ready to submit your
changes.
If you are new to Git make sure you grasped the basics of it before moving on. There
are many sources of information online, you can Google for it or read this [https://git-scm.com/book/en/v2/Getting-Started-Git-Basics]
introduction.

Run git status and git diff to review the changes you made and re-build the documentation
locally as explained above.

Add the files with the changes you want to submit to the staging area:

git add path/to/file

And commit the changes:

git commit

Then push them to your personal GitHub repository:

git push origin master

Open your favorite browser and navigate to your GitHub repository. You will be
able to see your latest commit along with a message stating that your branch is
ahead of the main repository. Click on the ‘pull request’ button to make a pull
request against the official documentation repository.

Create a pull request with a brief description of what you did. The pull request
will be reviewed and eventually merged into the official documentation repository.

System Preparation & Prerequisites

VM configuration

Reccomended VM parameters

Listed below you will find the recommended parameters for the GeoNode Virtual Machine
for both development and production environments.

	
	Recommended
minimal config

	Prod
(recommended config)

	CPU

	4 CPU / core

	4-8 CPU / core

	RAM

	6 GB

	16 GB

	Hard disk

	30GB

	100GB - 1TB

For testing purposes:
- 1 CPU with 2 cores
- RAM: 4GB
- Disk space: 30GB

This configuration is not enough for a minimal production environment,
adding more CPUs or cores is required.

Install GDAL for Development

In order to install GDAL (1.10.0+) in developing mode, in a virtual environment, on Ubuntu 12.04 the following steps may be required. If you have already tried any of the approaches suggested elsewhere, it is recommended that, unless you know that this may affect other software, you do a full purge of any existing GDAL-related packages.

	Install GDAL in your host environment

$ pip install psycopg2 owslib --upgrade
$ sudo add-apt-repository ppa:ubuntugis/ubuntugis-unstable
$ sudo apt-get update
$ sudo apt-get install -y libgdal-dev libevent-dev python-dev build-essential
$ sudo apt-get install -y libgdal1h libgdal-dev python-gdal

	Test that GDAL is installed in your host environment

$ deactivate geonode
$ python -c "from osgeo import gdal; print gdal.__version__"

Warning

Take note of the GDAL Version

	Assuming that your geonode directory is installed directly off of your home directory, download and configure GDAL

$ workon geonode
$ cd /home/geonode/dev
$ export CPLUS_INCLUDE_PATH=/usr/include/gdal
$ export C_INCLUDE_PATH=/usr/include/gdal

$ pip install GDAL==1.11.2 # select the right version

	Test that GDAL is installed in your virtual environment

$ workon geonode
$ python -c "from osgeo import gdal; print gdal.__version__"

Install GeoNode for Development (Windows)

In order to install Geonode 2.0 in developing mode on Windows 2008r2 the following steps are required:

	install dependencies (Python and Java) and supporting tools

	set up a virtual environment (virtualenv)

	clone geonode from github and install it in the virtual environment

	run paver to get install geoserver and start the development servers

Note

The following steps have to be executed in your terminal where there is a “>”. The path will differ depending on installation.

	Install Dependencies. All should be found in binary. Only 32 bit versions have been tested.

	Latest Python 2.7.x Windows build https://www.python.org/download/releases/2.7.7/

	Setuptools http://www.lfd.uci.edu/~gohlke/pythonlibs/#setuptools

	Install core components of GDAL http://www.gisinternals.com/sdk/PackageList.aspx?file=release-1600-gdal-1-11-mapserver-6-4.zip gdal-111-1600-core.msi

> easy_install virtualenv

	Install Java for Geoserver. If you already have java installed 32 or 64 bit versions work.

	http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html

	Ant and Maven are optional for custom builds of Geoserver

	Install Supporting tools

	Git http://git-scm.com/downloads

	GetText (not tested yet)

	Install node and tools for static development (not tested yet)

	http://nodejs.org/download/

	In the command prompt do the following: Will we need to be admins?

> npm install -y -g bower

> npm install -y -g grunt-cli

	
	Get the GeoNode Code using Git.

	Open the Git bash or use your command prompt depending on how git was installed
This command will download the latest version of GeoNode. For the most recent stable version type number 2.

git clone https://github.com/GeoNode/geonode.git

git clone -b 2.0.x https://github.com/GeoNode/geonode.git

	
	Install all Dependencies in a new virtual environment

	In the command prompt, navigate to where you want your python to be installed.

virtualenv geonode

Note

Command not found? Try adding your python scripts folder to the path environment variable. In most cases it is C:Python27Scripts. You will need to start a fresh command prompt to register the variables. See next common error message to add the C:Python27 path

Note

Errors about no package found and running python from the command prompt gives command not found, then add C:Python27 to your path environment variable.

Initialize the virtual environment by navigating to your-virtualenv-directory/Scripts/activate

After you activate the virtual environment, run the following:

> pip install paver

Navigate to your geonode code install and run

> paver win_install_deps

Back to the parent directory

> cd ..

pip install -e geonode -–use-mirrors

cd geonode

	Set up the Geoserver with command

> paver setup

	Now we can start our geonode instance

> paver start -–java_path="C:\path\to\java\java.exe"

Visit the geonode site by typing http://localhost:8000 into your browser window.

Warning

If the start fails because of an import error related to osgeo, then ensure that the GDAL_LIBRARY_PATH is set in the Windows path.

Warning

If you get GEOSversion function not found, then need to need to change line 71 in geonodeLibsite-packagesShapely-1.3.0-py2.7-win32.eggshapelygeos.py from _lgeos = CDLL(“geos.dll”) to _lgeos = CDLL(“geos_c.dll”). See issue https://github.com/Toblerity/Shapely/issues/136

	To stop the server

type hold Ctrl c on your keyboard to stop the server

> paver stop # to stop all django, geoserver services

	Next create a superuser for your django geonode

Create a superuser so you can log on to your local geonode installation at http://localhost:8000

> python manage.py createsuperuser

Create and Prepare the nyc Example DataBase

This small section contains a step-by-step guide for the creation and population of an database containing few geospatial tables of New York City:

	giant_polygon

	poi

	poly_landmarks

	tiger_roads

	Log as postgres system user

$ su - postgres

	Create the role bob with password postgres

$ psql -c "CREATE ROLE bob LOGIN ENCRYPTED PASSWORD 'md565170a859842ceb2930dc2fa1454af9d' CREATEDB VALID UNTIL 'infinity';"

	Create the database nyc with the geospatial extensions

$ createdb nyc
$ psql -d nyc -c 'CREATE EXTENSION postgis;'
$ psql -d nyc -c 'GRANT ALL ON geometry_columns TO PUBLIC;'
$ psql -d nyc -c 'GRANT ALL ON spatial_ref_sys TO PUBLIC;'

	Restore the tables into the database from the dump

$ psql -d nyc < /tmp/nyc.dump

	Test that everything is ok by connecting to the database and listing the tables

$ psql nyc
\dt

Roadmap Process

The GeoNode Roadmap Process is designed to complement the more technical GeoNode Improvement Proposals and strives to make it easier for the various organizations invested in GeoNode to collaborate on features of common interest.

It is based on the “roadmap items [https://spreadsheets.google.com/a/opengeo.org/spreadsheet/ccc?key=0AklXlBUnMqOrdDNackdvX3ZRS0Fha0xCeGhjSjZ1dEE]” developed at the GeoNode Roadmapping Summit [http://geonode.org/2011/05/roadmapping-summit/] held in May 2011.

Overall, the process for adding items to the collective roadmap is as follows:

	Organizational partner has an intent to add a feature to the roadmap.

	Organizational partner communicates with the organizational partners list [https://groups.google.com/a/opengeo.org/group/geonode-org/] about the change to gauge interest and determine who else is committed to making it happen.

	Organizational partner creates a feature specification on the wiki to further flesh out the idea.

	Organizational partner finds a committer on the developer list [https://groups.google.com/a/opengeo.org/group/geonode-dev/] to shepherd the roadmap item through the GeoNode Improvement Proposals.

Each roadmap item will go through four stages:

	Descriptive Stage (under discussion/”Active”)

	Technical Stage

	Development Stage

	Released

After communicating on the organizational partners list [https://groups.google.com/a/opengeo.org/group/geonode-org/] the roadmap items enters the Descriptive Stage and must have a wiki page that lays out the description, user stories, and other interested parties. Optionally, the roadmap item will also include an idea of the difficulty and goals as well as any wireframes, technical diagrams, or prior art.

A roadmap item enters the Technical Stage once a committer has been found to shepherd the roadmap item through the GeoNode Improvement Proposals process, then the wiki page must contain a clear sense of the technical assumptions, requirements or dependencies, and suggested implementation. Some roadmap items may need to be divided into multiple independent GNIP proposals.

Once it passes through the GeoNode Improvement Proposals process, a roadmap item enters the Development Stage on its way to Release.

 _images/sld_create6.png
Edit Layer

Edt ayer data and pubishing

geosolutions:Wetlands_regulatory_area

Configure the resource and publishing information for the current layer

Data | Publishing |

Edit Layer
tlame
Wetlands_regulatory_area

P Enabled
P advertised
HTTP Settings

I Response Cache Headers

Cache Time (seconds)

WFS Settings
Per-Request Feature Limit
0
Maximum number of decimals
0

WMS Settings
P Queryable

Toefault style
o —

_images/sld_create7a.png
plus times

_images/sld_create7.png
Scale =1 : 301K 3076008.36186, 1261693.30010
Click on the map to get feature info

_images/sld_create8a.png

_images/sld_create8.png
Styles

Manage the Styles publshed by GeoServer
© Add 3 new style
© Removed selected styie(s)

<)@z -~ | Restlts 26 to 33 (out of 33 ftems)
Style Name

states_population

r
r

I streets
I~ streets inner
o

streets_outer

T trais2

I~ wetiands
I~ wetiands_dyn

<«<(<1 Results 26 to 33 (out of 33 items)

_images/sld_create8e.png
Scale =1 : 67K 3066676.01511, 1271517.47177
Click on the map to get feature info

_images/sld_create8b.png
Results 1to 2 (out of 2 matches from 43 tems) i

™ Style Name Workspace
I tais

Results 110 2 (out of 2matches from 43 tems)

_images/sld_transform1.png

_images/sld_create9.png
<sld:TextSymbolizer>”
<sld:Label>
<oge:PropertyNase-LABEL_NAVE</ogc PropertyNase>
yoAriale/sid: Csspar

312.06/51d: CsParans
yLe>normale/s1d: CssPar

<s1d:CsParaneter nane="f111">6000000</514: CosParaneter>
</sldFUs

ority>
ollowLine->true</s1d: Vendorptions

_images/sld_transform2.png
wnsversion: (123 v e (SIRGIEE] ¥] vransionerct: (None |)

e (1) (L)

3063766.77812, 1252

1:a6K

Click on the map to get feature info

Scale =

_static/up-pressed.png

_static/up.png

_images/signin_quickstart.png
9,
:;:GeoNode Data v Maps About v

Welcome

GeoNode is an open source platform for sharing geospatial data and maps.

If you have any questions about the software or service, join our mailing list.
Need help? Getting Started

Search for Data.

Advanced Search

_images/signin.png
Signin or Register | @

_images/signup1.png
';sGeoNode Data v Maps About v

Signup

Signup

Username

johnsmith

Password

Password (again)

Email

‘ john@smith.com|

_images/signup.png
SIGN UP

Username

Password

Password (again)

Email

johnsmith

john@smith.com

_images/sld_create1.png
Styles

Manage the Styls published by GeoServer
Q@ Add anewstie
© Removed siected sty(s)

2> |(>> |Results 1to 25 (outof 43items)

Style Hame.

arealandmarks

arealandmarks_pt

a0 g

buidings

T cemetery_mark

[ctyimits

_images/sld_create0.png
WMS Settings
' Quenvabie
Defaule Seyle
srmznimie
[detaut e
 park

i nationalpark

W cometars

Additional Styles
Available Styles Selected Styles

arealandmatks cemetey_mark
arealandmarcs pt cemetery _graphics
buidngs

ctyimits
Gontours
ourtres
courty
dem
Gem2
gem3

_images/sld_create2.png

_images/sld_create1b.png
Styles

Manage the Styes publshed by GeoServer
© Addanew sty
© Ramoed seleted sfs)

[(0[] o Resis 11025 st o

I aresizncmarks
I aresizncmarks gt
I buidings

I cemeter

_images/sld_create5.png
Styles

Manage the Styles published by GeoServer
© Add anew style
© Removed selected styie(s)

<!(11[2)[]| >> | Results 26 to 33 (out of 33 ftems)
Style Name

A
A

states_population
streets
streets_inner
streets_outer
trals

trails2

nfim follm fnl = ulm =

wetlands_dyn

N
A

<1z -~ | Results 26 to 33 (out of 33 tems)

_images/sld_create2b.png
-
&
&
-
&
-
-
&
-

TEEEEEEEE
T EEEREEE P
TEEFTEFEFEEEF

_images/sqlviews_plainsql_refresh.png
SQL view parameters
Guess parameters from SQL Add new parameter Remove selected

geometry type and srid

obs._year Double
storm_num Integer
storm name String
storm start Timestamp.
storm_end Timestamp.
mas_wind BigDecimal

the_route LineString - [

O oooooao

_images/sqlviews_plainsql_params.png
Create new SQL view

Define 3 new SQL view and configure ts identfied and geometry columns

View Name

[storm track

SQU statement

SELECT st.obs_yesz,
st scomm num,
=t scomm nane,
min(st.obs_datecine)
A5 stomm start, max(st.obs_datetime)
25 stomm_end, max(st.wind)
35 max_wind, =t _makeline (zt.geom)
25 the xoute
ssomm mum,
e e |
=corm obs.wing,
Stomm_oba.press,
storm obs.obs_astevine,
date_part(*year':itext,

FROM (SELECT storm ob:

storm_obs.obs_datetine)
25 obs_year, stomm_obs.geom

FROM storm_obs
ORDER BY date_part ('year’

text, storm_obs.obs_datetime),
storm_obs.stomm num,
storm_obs.obs_datetime) st

GROUP BY st.obs_year, st.storm num, st.storm name

ORDER BY st.obs_year, st.storm_num

_images/layercomment.png
N R SR

©info

Aftributes @ Share % Ratings ~ # Comments

COMMENTS (0 total)

Add Comment

results 00010 | page 1of1

_images/sqlviews_addlayer.png
o GeoServer

Layers

 toos e et 02 s ey o
om0 e wonapce store o Enableds mative sns.
[Epe— 00w owa v =
Do v omm s s v oscan
OV okt crimen s v e
e riaad 0N pmton Ut comnse ot comoe ¥ o
. B e o = v e
e 0 i s .t v e
o OV o oot anon v s
[EI R, s v e
s R f— P
& Cecure 0 M oo o v o
B e .

_images/sqlserver_start.png
New data source
Choose the type of data source you wish to configure

Vector Data Sources

offes and exposes I 2 3 data store

3 Mirosoft SQL Server - Marosoft SQU Server
3 Mcrosoft SQL Server (NDI) - Mcrosoft SQL Server (ND1)

3 PoStBIS (NDI) - PostGlS Database (NOT)
3 Properties - Allows access to Java Property fles contaiing Feature nformstion
@ Shapefie - ESRI(tm) Shapefies (*shp)

_images/layerlist_select.png
Last Updated

[be_shapefiles Select Al |None |Ready
Importing into new store be_shapefiles
W Layer Status

intersection © Readyforimport. Advanced.
be_hospitals @ Readyforimport. Advanced.
be_2m_lakes © Readyforimport. Advanced.
bc_2m_rivers @ Readyforimport. Advanced.
be_elections_1996 © Readyforimport. Advanced.
be_parks_2001 @ Readyforimport. Advanced.
be_roads © Readyforimport. Advanced.
bc_municipality @ Readyforimport. Advanced.
be_pubs. © Readyforimport. Advanced.
be_elections_nad83. @ Readyforimport. Advanced.
bc_2m_border © Readyforimport. Advanced.
bc_2m_rivwide @ Readyforimport. Advanced.

OO0 resuts 110 12 vt 12 tems)

_images/sqlviews_parametricsql_guess_params.png
SQL view parameters.
Guess parameters from SQL

Add new parameter

Remove selected

O Name Default value Validation regular expression
[|MAX_OBS_YEAR 2020 ~Ww\d\s]+$
[|MIN_OBS_YEAR 0 ~IWw\d\s]+$

_images/layerlist_crs.png
Layer. Status

be_2m_border Projection could not be determined. Find... | EPSGINADS3. > Api

_images/sqlviews_addsqllayer.png
New Layer

Add a new layer

nsistorms

Add layer from [geosolut
You can create a new feature type by manually configuring the attribute names and types. Create new feature type.

On databases you can also create a new feature type by configuring a native SQL statement]

Here is a list of resources contained in the store 'storms". Click on the layer you wish to configure

|-~ Results 0t0 0 (out of O items) . Search]

v ‘storm_obs Publish again

_images/layermetadata.png
Si¢ GeoNode

EDITING DETAILS FOR GEONODE:SAN_ANDRES_Y_PROVIDENCIA_ADMINISTRATIVE

Owner | johnsmith ~

Title san_andres_y_providencia_adm

name by which the cited resource is known

Date 5013-1227 &
18:54:30 .
Date type | Publication =

identification of when a given event occurred

Edition

version of the cited resource

Abstract No abstract provided

_images/sqlviews_parametricsql_preview.png
Scale = 1 70M “5.27343, 26.89453
Click on the map to get feature info

_images/layerlist_success.png
Last Updated

[be_shapefiles Select Al | None |Ready
Importing into new store bc_shapefiles
W Laver status

intersection @ Import successful view in [Layer Preview [+ Go

Layer Preview
be_hospitals Import successful pLp
-_hospi © Impor viewin e |50
be_2m_lakes © Import successful. Viewin Layer Preview [+]Go
be_2m_rivers @ Import successful. viewin| Layer Preview [+ Go

be_elections_1996. © Importsuccesstul Viewin Layer Preview[~] Go

_images/sqlviews_parametricsql_params.png
Edit SQL view
Update the definition of the SQL view and its metadata

View Name

[storm_track_intenval

SQU statement

SELECT date_part ('vear'::texs,
©1.cbs_datetime) AS obs_year, tl.storm_num,
t1.storm neme, ti.wind, t2.wind AS wind_end,
tl.press, t2.press AS press_end,
t1.0bs_datetine, t2.0bs_datetime AS
obs_datetime_end, st_mekeline (tl.geom,
t2.geom) AS geom
FROM storm_obs tl
JOIN (SELECT storm_obs.id,
storm_cbs.storm num, storm_obs.storm_name,
stomm_obs.wind, storm_obs.press,
storm_cbs.obs_datetime, storm_obs.geem

FROM storm_obs) t2 ON
(t1.0bs_datetime + '06:00:00"::interval)
©£2.0bs_datetime AND t1.storm name::text
£2.5t0mm_name: :text
WHERE

_images/layerrating.png
ASNR POuHesy of MapQosstLals o

@ info

Aftributes @ Share % Ratings ~ ® Comments

Rate this layer

CR 88 8 & ¢
Average Rating

_images/sqlviews_plainsql_bbox.png
Coordinate Reference Systems

Native SRS

EPSG:4326 EPSG:WGS 84...

Declared SRS

EPSG:4326 Find... | EPSG:WGsS 84...

SRS handling
Force declared i |

Bounding Boxes
Native Bounding Box
Min X Min Y Max X Max Y

-180 [-o0 180 o0
Compute from data

Lat/Lon Bounding Box
Min X Min Y Max X Max Y

-180 -90 180 oo
Compute from native bounds

_images/layerpreview.png
i GeoNode

HOME LAYERS MAPS DOCUMENTS

PEOPLE

LERER-]

SAN_ANDRES_Y_PROV | [T/ (=

uw@hﬁ@r- tx==HEQ
Tocos

[J70)
(G

pusrio Lempira
= »

§ ol oFustto Cabozas
o

0
Jinatéoa

{50 Pedro Dol Norie
© Watagaipa
olaasan

nagua |
i Gsen Tonds

oo T < £ st

@ info

Aftributes @ Share % Ratings

Title: san_andres_y_providencia_administrative

Abstract:
No abstract provided

Publication Date: Dec. 27, 2013, 654 pm
Type: Vector Data

0]

g

©

® Comments

EL 1:4367832 ¥

MAPS USING THIS LAYER

This layer is not currently used in any maps

CREATE AMAP USING THIS
1 AVER

_images/sqlviews_parametricsql_publishing.png
& wms

Settings

(@ Global
@ GeowebCache
A

I coverage Access

security

8 users

$ Data security
B service security
[3 catalog security

Demos

Cache Time (seconds)

Edit Layer
Per-Request Feature Limi
o

Maximum number of decimals
0

WMS Settings
Queryable

[Default sty

storm_track interval]|

. Trapical Storm (24-63 knots)

Hurricane Cat 1 (64-82 knots)

/ Hurricane Cat 2 (83-95 knots)

/ Hurricane Cat 3 (96-112 knots)

" Hurricane Cat 4 (113-135 knots)|
Hurricane Cat 5 (>135 knots)

Additional Styles
Available Styles

burg
capitals

_images/layers1.png
Si¢ GeoNode

EE o .- 2 e

2 GIEOAWNGIEE UPLOAD LAYERS

EXPLORE LAYERS

MostRecent | LessRecent | A-Z | Z-A | MostPopular | Relevance

Your selections

Clearall Total: 10

All Categories

Biota

Boundaries

Climatology Meteorology Atmosphere

Economy

Elevation

Environment

Farming

bar

viewsy HEcia

O San Andres Y Providencia Water
Layerfrom adrmin, 1day, 21 hours ago.
Noabstractprovided

o

views | Average rating Ovotes)

Layer from admin, 1.day, 21 hours ago.
Noabstractprovided

4

views | Average rating Ovotes)

O San Andres Y Providencia Coastline
Layerfrom adrmin, 1day, 21 hours ago.
Noabstractprovided

o

views | Average rating Ovotes)

< San Andres Y Providencia Location
Layerfrom adrmin, 1day, 21 hours ago.
No abstractprovided

_images/layers.png
Explore Layers

Cart

Add resources through the "Add to
cart” buttons

Createamap

Fiters Clear
Search by text n
Vector @

> CATEGORIES
> ke S

> DATE

> REGIONS

> EXTENT

Av
z
”
mab_es21_25000_etrs89_3
No abstract provided
& admin P117Jun2017 @107 A0 %0 9 CreateaMap
”
mab_es21_25000_etrs89_2
No abstract provided
. &edmin P117Jun2017 @18 0 kO 9 CreateaMap
no 1image
”

mab_es21_25000_etrs89_1
No abstract provided

& sdmin [117Jun2017 @9 A0 %0 @ CrestzaMap

no image

_images/sqlviews_plainsql_featuretype.png
Feature Type Details

Property
obs_year
storm_num
storm_name
storm_start
storm_end
‘max_wind

the_route

Edit sql view

Type
Double
Integer
String
Timestamp
Timestamp.
Bigbecimal

Linestring

ble
true
false
false
true
true
true

true

Min/Max Occurences
o/1
/1
11
o/1
o/1
o/1
o/1

_images/layersadded.png
HOME LAYERS ~MAPS ~ DOCUMENTS ~ PEOPLE SEARCH
| [Esp~ Syprint | @ entity g8 = Messure + gt + Viaps I This map is currently unsaved
S48 s ==50

oo Lamaira

Puerto Cabezss
Rosita o'
o

. o)

Lsonpetra et vt

Base Maps an Andres

g?

© buemarble

© Bing Aerial it Labels

oBetilas

=
fapQuest magery et Morrto

© MapQuest Openstreetitap 1\

© openstreetitap s Cr
m EL] 1:4367832 Y
. e Courtesy ST T2). jonnamith, admin

_images/sqlserver_conf.png
New Vector Data Source

Add new vector data source

Mirosoft QL Sever (DI)
Mirosoft SQL Server (DY)
Basic Stare Info
Worlcpace *

tost v

Data Source Name *

st

@ Enstled

Connection Parameters

ndiReferenceName *
Jove conplenvidctsciserver

_images/sources_choosesourcefiles.png
Import Data

1. Choose a data source to import from

I3 SpatialFiles - Files from a directory or archive
T PostGIs - Tables ffom PostGIS database
(5 Oracle -Tables from Oracle database.
(3:SQL Server - Tables ffom Microsoft SQL Server database

_images/socialmedia.png
& markiie ~ | £ @

_images/sources_newworkspace.png
3. Specify the target for the import
Workspace.

Create new [+][bd

Store.

Create new |+

_images/sources_filechooser.png
Choose a file or directory

Home directory OpenGeo/ Desktop/ be_shapefiles’

Aug 16, 2012 1 N

PM |

be_2m_border.ax May 1, 2007 12:51 PM

be_2m_border.pg

be_2m_border.shp. Oct 31, 2006 3:30 PM
be_2m_border.shx Oct 31, 2006 3:30 PM
be_2m_border.zp Jun 22, 2012 11:57 AM
be_2m_akes.dbf Jun's, 2006 5:40 PM
be_2m _lakes.fix Apr 3, 2007 6:39 AM

Aug 16, 2012 1
oM

be_2m_akes.pg

be_2m_iakes.ax Apr 3, 2007 6:39 AM
be_2m_akes.shp Jun 5, 2006 5:40 PM

_images/sources_postgis.png
2. Configure the data source

Connection type *
Default[+.
Host* Port*
localhost 54321
Database * Schema
OpenGeo public
Username * Password

» Connection pooling
» Advanced

_images/sources_oracle.png
2. Configure the data source

Connection type *

Default[+.

Host*

localhost

Database *

Username *

» Connection pooling
» Advanced

Password

_images/sources_spatialfiles.png
2. Configure the data source

[E—
[owse

_images/sources_recentimports.png
Recent Imports. © Remove

COMPLETE moments ago

@QQD@RSM o (outot 1 tems)

_images/sources_target.png
3. Specify the target for the import
Workspace

opengeo [+

Store.

posgis [+

_images/sources_sqlserver.png
2. Configure the data source

Connection type *
Default[+.
Host* Port*
localhost 4866
Database * Schema
Username * Password

» Connection pooling
» Advanced

_images/searching_page1.png
m

Search:

Vourselections Clesrallfiters TOWE0 Mostrecent Lessrecent A-Z Z-A Mostpopular

by sysadmin

Dominica_Daily_TDCF (ODS)

No abstract provided

Dominica_Daily_TDCF (XLS)

_images/serverurltype.png
| [Emap~ Syprint | @ identty &8 Cuery = Measure +

Layers » Avaiable Layers » Add new server..

Type: Web Map Service (WHS)

URL: [itp:/e-atias.org augeoserverfwm:

_images/secondary-line-uom.png
Additional Styles
Available Styles Selected Styles

hillshade
lakes

line

mainrd
mainrd_buffer
mainrd_transform
parcels

point
point_landmark
point_landmark_ds

line4om

_images/shape1.png
O B geosolutions hilshade Hilkhade v EpsGanzs
O @ geosoiutions boulder b boulder_bg v EpsG26013

pointiands EPsGia269

T Rosults 1 0 25 (out o1 25 tems)

_images/services_start.png
Terminal B «) 16:55 ¥ GeoNode Trai

@ Problem loading page x
) | localhost e ¥ &0

geo@geonode: ~

:~$ sudo service apache2 restart
$ sudo service tomcat8 restart

_images/shp_postgis1.png
ol

v @) T vedten s St i
R ——— e
© Postres. p0_ctaos) N @668 W]F| 2 [remnm:]
Sy e |
o piic 1 et ches i) ety
e 0 f st LS00 OO DO O0T561
B cotarnin1s) st DD OO EDXTOCOOOTE
| P stitor xS0 EO0DTONT 0000
B pasrrrs) OHCRDOCOOD1 OO0 2COTTF G50
D meddirrs0) anst O30SO00E00D10000C012000OT200000430.
@ rudenian) Baselne Rd 01050000009100000901020000000200090964CE7
ER i e
S8 e
D ko) s s RO CRIERE
S s Vo Jrtassausysestonietsmsnia)
O e o oy R OO
S Far s o oy DD O DRDAEEDT
e Voot v DD OO DCTOAE
W s () P
temploke_sostgis 010S00000001000000010200000006C00000BESF1
072 Tt 1 ohs om0 aODCrS?
Rkarago(® |
5 s) 7

| Femcamerto do dotogh Tabote.. Fato =

N

_images/shape2.png
Scae -1 aTK 105 15115, 40.05286.
Cllek on the map to gat featuro nfo

_images/shpchanging2.png
a
a

o>

_images/shp_table.png
Hame. Shape_Leng Shape_Area F DI

o] ortho_i-1_tn_s Ja087_2010_1 | 577885.23793900001 112 -200,00000000000
1 |ortho_22_tn_s Ja075 20101 | 25% EX 1]

2| ortho_i-1_tn s Jat03_2010_1 3903136893

3 ortho_t-1_tn_s Ja071 20101 | 224 i1 i

4 |otho_1-2_tn_s Ja075 20101 | 444 -

5 orthe_1-1_in_s a1 17 20101 19.55861 277366088

_images/sign_up_test_user.png
SIGN UP
Username

test_user

Password | sveussuees

Password (38ain) | sasssues

Email

nav.xhtml

 Table of Contents

 		
 GeoNode Training Documentation

_images/GeoServer-JAI-Settings.png
GeoServer

Server

G Server Status
GeoServer logs

23 Contact Information

Global Semnis

B2 Coverage Access Setings.
© About GeoServer

Services

® owc
& wes
& wrs
& wms

Data

Workspaces

Stores

Layers

@ Layer Groups
D styles

Security
& users

Data security
B Service security
3 catalog security

Demos

Layer Preview

JAI Settings

Administer settings related to Java Advanced Imaging.

Memory Capacity (0-1)
05

Memory Threshold (0-1)
075

Tile Threads

O 1mage 1/0 Caching

Mosaic Native Acceleration

Submit Cancel

Logged in as admin. |] Legout

_images/8080login.png
Samin

m_.m...D-

_images/GeoServer-Web-Map-Service.png
GeoServer

Server
G Server Status

GeoServer logs
23 Contact Information
Global Settings
I JAI Settings
B Coverage Access Settings.
© About GeoServer

Services

® owe

& wes
5 WS

Data

Workspaces
Stores
9 Layers

@ Layer Groups
D Styles

Security
& users

Data security
B Service security
3 catalog security

Demos

Layer Preview

Web Map Service

Manage map publishing

Service Metadata
& Enable wis

U strict CITE compliance

http://jira.codehaus.org/secure/BrowseProject jsp:

Online resource

http://geoserver.org
Title

My GeoServer WM.
Abstract

This is a description of your Web Map Server.

Submit Cancel

Logged in as admin.

!

Logout

_images/before_crosslayer.png
Memory issues
Geometry merging logic

Get reference geometries

Client GeoServer

Large request with

unioned geometries

The response finally!

e

Extra requests
Large network transfers
Issues with GET requests size

_images/batemans_tif.png
Search. M O admin -

HOME LAYERS MAPS DOCUMENTS PEOPLE SEARCH [fRE] -]

BATEMANS ELE
. ©

@ QRl0OF- t s ==nES |
= i

@iD| P
o Neliigen b
El

) L) 1:272088 |

TiesCourtesyf 25 (5 adin 1

@ Info ttributes @ Share J Ratings ® Comments MAPS USING THIS LAYER

Title batemans.cle This layer is not currently used in any maps.

Abstract:
No abstract provided

_images/bootswatch1.png
Bootswatch SANDSTONE +

Sandstone o
A touch of warmth VARIABLES LESS

BOOTSWATCHLESS

Navbar _VARIABLES SCSS

_BOOTSWATCH.SCSS

Buttons.

Typography

Tables

Forms

Navs

_images/bootswatch.png
Bootswatch SANDSTONE +

Sandstone o
A touch of warmth VARIABLES LESS

BOOTSWATCHLESS

Navbar _VARIABLES SCSS

_BOOTSWATCH.SCSS

Buttons.

Typography

Tables

Forms

Navs

_images/bootswatch_geonode1.png
UWI GEOGRAPHICAL
SocieTy

UWI's GeoNode is setup for students and faculty to collaboratively create and share maps for their class projects. It is
maintained by the UWI Geographical Society.

For more information about the UWI Geographical society, visit our website

VaN o~ -

_images/bootswatch_geonode.png
UWI GEOGRAPHICAL
SocieTy

UWI's GeoNode is setup for students and faculty to collaboratively create and share maps for their class projects. It is
maintained by the UWI Geographical Society.

For more information about the UWI Geographical society, visit our website

VaN o~ -

_images/branching1.png
‘master’ branch

Create “feature’ branch from ‘master’ Merge ‘feature’ branchinto ‘master’

Commit changes Submit Pull Request Discuss proposed changes

_images/branching.png
‘master’ branch

Create “feature’ branch from ‘master’ Merge ‘feature’ branchinto ‘master’

Commit changes Submit Pull Request Discuss proposed changes

_images/buildings_parks.png

_images/buildings_inside_park.png
BPL Mai Branch

_images/batch_import.png
URL User. Passiord Layer to mport

http: focalhost:8080/geoserver rest adnin geoserver D:\gsdataatural_Earth._quick_start\110m,_culural\t10m_ad)
http:/focalhost:5080/geoserverrest admin geoserver D:\gisdataatural_Farth._quick_start\110m_culural\t10m_ad)
http:/focalhost:8080/geoserverrest admin geoserver D:\gisdataatural_Farth._quick_start\110m_culural\t10m_ad)
http:/focalhost:8080/geoserverrest admin geoserver D:\gisdataatural_Farth._quick_start\110m_culural\t10m_ad)
http:/focalhost:8080/geoserverrest admin geoserver D:\gisdataatural_Farth._quick_start\110m_culural\t10m_ad)
http:/focalhost:8080/geoserverrest D:\gsdataatural_Earth._quick_start\110m_culural\t10m_po]

geoserver

] 0%
o] [addrow] [oecieron] [] [conel

_images/backup005.png
Select backup to change

<2016 september 19

EIED) Name
a2 Test Backup

1 backup

Date

Sept. 19, 2016, 8:29 a.m.

Location

(Hone)

Add backup_+

_images/backup007.png
= Location

(Hone)

_images/backup006.png
Select backup to change

<2016

Action,

September 19

Delete selocted Backups
un i up

1 backup

g0l 101 selected

_images/backup009.png
Home » Base » Backups

© Executed Backup: Test Backup

Select backup to change

<2016 september 19

setion: [] [co] 0 of L selected

» Name Date ~ Location

2 Test Backup Sept. 19, 2016, 8:29 a.m. /opt/backups/2016-09-19_083614.2ip

1 backup

_images/backup008.png
Home » Confirm run of Backups:
Confirm run of Backups:

Are you sure you want to run the selected Backups?
Test Backup

cancel Yes, I'm sure

_images/backup011.png
Select backup to change

<2016 september 19

o

3 Backups.

Name
Test Backup

Test Backup 2
Test Backup N

Date
Sept. 19, 2016, 8:29 a.m.

Sept. 19, 2016, 8140 a.m.

Sept. 19, 2016, 8141 a.m.

Location
/opt/backups/2016-09-19_083614.2ip

Joptybackups/2016-09-19_084041.2ip
/opt/backups/2016-09-19_084140.2ip

_images/backup010.png
. Location

/opt/backups/2016-09-19_083614.2ip

_images/batch.png
http:/focalhost:8080/geoserverrest

e R - S I~ S|

http:/focalhost:8080/geoserverrest

_images/backup012.png
Select backup to change

<2016 september 19

so 1ot

0 Delete selected Backups
[2 | Runthe Backup

@3 "ost Backul

@« Test Backup N

3 Backups.

_images/backup004.png
Add backup

Description:

Base folder:

Location:

This is my backup for taday

(Hone)

_images/backup003.png
Add backup_+

_images/correct_branch.png
geo@geonode: /home /geonode/geonode_custom$ git branch

master
lgeo@geonode : /home/geonode/geonode_custons

_images/confirm_Install.png
~ Training

Terminal

ONDEDIDOM

© ™ geo@geonode: ~
python-html51ib-whl python-numpy python-openid python-paste
python-pastedeploy python-pastedeploy-tpl python-pastescript python-pip
python-pip-whl python-psycopg2 python-pycurl python-requests-whl python-scgi
python-setuptools python-setuptools-whl python-six-whl python-tempita
python-urlgrabber python-urllib3-whl python-virtualenv python-wheel
python2.7-dev ssh-import-id tomcat? tomcat7-common tzdata-java zlibig-dev

The following packages will be upgraded:

libcomerr2 libexpatl openssh-client tzdata

4 upgraded, 142 newly installed, © to remove and 95 not upgraded.
Need to get 6 B/105 MB of archives.

After this operation, 254 MB of additional disk space will be used.
Do you want to continue? [Y/n]

WARNING: The following packages cannot be authenticated!

Llibcomerr2 libgssrpca libkadmsclnt-mit9 libkdbs-7 libkadmssrv-mit9 libapri
Llibexpat1 libaprutill ca-certificates-java tzdata tzdata-java java-common
openjdk-7-jre-headless libgifa openjdk-7-jre libatk-wrapper
Libatk-wrapper-java-jni_libbonobo2-common libidl-common libidle liborbit-2-6
Lliborbit2 libbonobo2-6 libck-connectore libdapil libdapclient3 libepsiloni
Llibfreexl1 libgfortran3 libgnomevfs2-common libgnomevfs2-6 libgnome2-common
Llibgnome2-bin libgnome2-6 1ibhdf5-7 mysql-common libmysqlclient1s Llibodbcl
Llibexpati-dev libpython2.7-dev libgeos-3.4.2 libgeos-c1 proj-data libproje
libspatialite5 libxerces-c3.1 odbcinst odbcinstidebian2 ncurses-term
openssh-client libaprutili-dbd-sqlite3 libaprutili-ldap apache2-bin
apache2-data apache2 authbind fonts-dejavu-extra libblas3 liblapack3
Llibarpack2 libarmadillo4 libhdf4-6-alt liburiparser1 libkmle libnetcdfc7
libogdi3.2 libpgs libgdalih gdal-bin git-core comerr-dev krbs-multidev
Llibapache2-mod-wsgi libcommons-collections3-java libcommons-pool-java
Libconmons-dbcp-java libecj-java Llibgconf2-4 libgeos-dev
Llibgeronimo-jta-1.1-spec-java libjpeg-turbos-dev libjpegs-dev libjpeg-dev
Lliblugeon-2.1.2 libossp-uuidi6 zlibig-dev libpng12-dev libssl-dev libpg-dev
Llibproj-dev libpython-dev libservlet3.e-java libssl-doc libtomcat7-java
libxml2-dev libxslti-dev openssh-sftp-server openssh-server postgis
postgresql-client-common postgresql-client-9.3 postgresql-common
postgresql-9.3 postgresql postgresql-9.3-postgis-scripts
postgresql-9.3-postgis-2.1 postgresql-contrib-9.3 postgresql-contrib
proj-bin python-chardet-whl python-colorama python-colorama-whly
python2.7-dev python-dev python-distlib python-distlib-whl python-dns
python-egenix-mxtools python-egenix-mxdatetime python-formencode
python-numpy python-gdal python-htmlslib python-html5lib-whl python-openid
python-tempita python-paste python-pastedeploy-tpl python-pastedeploy
python-setuptools python-pastescript python-six-whl python-urllib3-whl
python-requests-whl python-setuptools-whl python-pip-whl python-pip
python-psycopg2 python-pycurl python-scgi python-urlgrabber
python-virtualenv python-wheel tomcat7-common tomcat7? ssh-import-id

Install these packages without verification? [y/N] y

&)

1 B o) 1600

_images/court_buildings.png

_images/correct_branch1.png
geo@geonode: /home /geonode/geonode_custom$ git branch

master
lgeo@geonode : /home/geonode/geonode_custons

_images/cql-filter-url.png
D6typeName=geosolutions:WorldCountries&outputFormat=GML26CQL_FITER=NAME="Monaco]

_images/court_close_buildings.png
ider Court

_images/create-pr.png
Choose two branches to see what's changed or to start a new pull request. If you need to, you can also compare across forks.

1 | base master~ compare: add_logo~ | ¥ Able to merge. These branches can be automatically merged.
(PPN Discuss and review the changes in this comparison with others.
o 1 commit 2files changed

B Commits on Dec 17. 2015

_images/cql_filter_result.png
- <wfs:FeatureCollection xsi:schemaLocation="http://www.geo-solutions.it/workshop
httpi/flocalhost:8080/geoserver/wis?service=WFS&version=1.0.0&request=DescribeFeature Type&
typeName=geosolutions%3AWorldCountries http://wwi.opengis.net/wfs httpi/localhost:8080/geoserver
Ischemas/wis/1.0.0/WFS-basic.xsd">
- <gml:boundedBy>

<gml:null>unknown</gmi:null>
</gml:boundedBy>
- <gml:featureMember>
~ <geosolutions:WorldCountries fid="WorldCountries.137">
- <geosolutions:the_geom>
— <gml:MultiPolygon srsName="http://www.opengis. net/gmi/srs/epsg xml#4326">
- <gml:polygonMember>
—<gml:Polygon>
—<gml:outerBoundaryls>
- <gml:LinearRing>
- <gml:coordinates decimal=""
7.43860876,43.75045645 7.37772057,43.73174958 7.38000769,43.75324698
7.3949805,43.76333926 7.41441084,43.77002032 7.43694177,43.76146353
7.43869876,43.75045645
</gml:coordinates>
</gm:LinearRing>
</gm:outerBoundaryls>
</gml:Polygon>
</gml:polygonMember>
</gml:MultiPolygon>
<geosolutions:the_geom>
<geosolutions:ScaleRank>6</geosolutions:ScaleRank>
<geosolutions: LabelRank>6</geosolutions: Label Rank>
<geosolutions: FeatureCla>Admin-0 countries</geosolutions:FeatureCla>
<geosolutions:SOVEREIGNT>Monaco</geosolutions:SOVEREIGNT>
<geosolutions:SOV_A3>MCO</geosolutions:SOV_A3>
<geosolutions:ADMO_DIF>0.0</geosolutions:ADMO_DIF>
LEVEL>2.0</geosolutions: LEVEL>
<geosolutions: TYPE>Sovereign country</geosolutions: TYPE>

_images/create_repo.jpg
® o secioyeaconmad © @ Explore Gist Blog Help BBiommson X % B

i Repository name
wuse L] 8 tonnson /| my_geonode v
Great repository names are short and memorable. Need inspiration? How about north-american-octo-cyril.
Description (optional)
My GeoNode Project
@ [Public
= Anyone can see this repository. You choose who can commit.

© -\ prvate
You choose who can see and committo this epository.

1 Initalize this repository with a README
“This wil llow you o git clone the reposiory immediatey

Add gitignore: None ~

[— D

_images/create-pr1.png
Choose two branches to see what's changed or to start a new pull request. If you need to, you can also compare across forks.

1 | base master~ compare: add_logo~ | ¥ Able to merge. These branches can be automatically merged.
(PPN Discuss and review the changes in this comparison with others.
o 1 commit 2files changed

B Commits on Dec 17. 2015

_images/centroids.png
Inputlayer

[t.geosolutions:Trauma_Areasd [EPs6:2230]

Outputlayer

[tsave to temporary fie]

%) Open output fil after running agorithm

x =] o

_images/checkout.png
geo@geonode: /home/geonode/geonode_custom$ sudo git branch add_logo
geo@geonode: /home/geonode/geonode_custom$ sudo git checkout add_logo
Switched to branch 'add_logo'
geo@geonode : /home /geonode /geonode_custons |

_images/change_map_permissions.png
PERMISSIONS

Specify which users can view or modify this
map

_images/coastline.png
3¢ GeoNode L

mab_es21_25000_etrs89_3

-8+ O0F-QQA - KMo

E]

®Info SAttributss Share JkRatings

mab_es21_25000_etrs89_3
No abstract provided

June17,2017, 659 am.
Vector Data
admin

© Comments

Download Metadata

Maps u:

\g this layer
List of maps using this layer:

GEOPORTAL URDAIBAI {DEMO)

Create a map using this layer

Click the button below to generate s new map based
on this layer.

About
Ouner, Point of Contact, Metadata Author

admin
No Group

_images/checkout1.png
geo@geonode: /home/geonode/geonode_custom$ sudo git branch add_logo
geo@geonode: /home/geonode/geonode_custom$ sudo git checkout add_logo
Switched to branch 'add_logo'
geo@geonode : /home /geonode /geonode_custons |

_images/commentadded.png
COMMENTS (1 total)

Boy would | like to visit this place!
on Dec 28, 2012

results 11011 | page 1of1

_images/commentadd.png
Add a Comment

Comment:

Boy would ke to visit this.
place!

_images/commit_logo1.png
geo@geonode: /home/geonode/geonode_custom$ git status
on branch add_logo
Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

modified: geonode_custom/static/css/site_base.css
new file: geonode_custom/static/img/UI-logo.IPG

geo@geonode: /home /geonode /geonode customs I

_images/commit_logo.png
geo@geonode: /home/geonode/geonode_custom$ git status
on branch add_logo
Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

modified: geonode_custom/static/css/site_base.css
new file: geonode_custom/static/img/UI-logo.IPG

geo@geonode: /home /geonode /geonode customs I

_images/confirm.png
e =

:$ GeoNode ® johnsmith

HOME LAYERS MAPS DOCUMENTS PEOPLE SEARCH | fREN-1]

CONFIRM EMAIL

Confirm email address?

_images/gh_pr_select_branch.png
pod
Compare and review just about anything

Branches, tags, commit ranges, and time ranges. In the same repository and across forks.

EXAMPLE COMPARISONS
add_logo 7 minutes ago

® master@{1day)...master 24 hours ago

_images/gh_pr_compare1.png
BIN NEEEE geonode_custon/static/ ing/Uil-10go. TG

+.navbar-brand {
+ widtn: 373px;

+ heignt: 79px;

+ background: transparent url("../ing/Uil-logo.
B3

_images/adminactivities.png
:$ GeoNode

HOME

LAYERS

MAPS

Activity Feed for admin

uploaded layer
uploaded layer
uploaded layer
uploaded layer

DOCUMENTS

PEOPLE SEARCH

7 hours, 28 minutes ago
7 hours, 29 minutes ago

7 hours, 29 minutes ago

7 hours, 29 minutes ago

[fHEN.]

_images/gh_pullrequest.gif
<> Code

2 contributors.

@ Issues
11 Pull Requests
commit b13774eesf E e
todeysem | puge

aday ago

14 days ago

_images/admin_interface.png
Site administration

Account deletions. Aeadd
Accounts Aradd
Signup codes Add p Change
Actions Aeadd
Follows 4eadd

Announcements

Dismissals

Groups.

users

Avatars

Contact roles Aeadd

Links Aradd

Metadata Regions $hdd

_images/gh_pr_select_branch1.png
pod
Compare and review just about anything

Branches, tags, commit ranges, and time ranges. In the same repository and across forks.

EXAMPLE COMPARISONS
add_logo 7 minutes ago

® master@{1day)...master 24 hours ago

_images/advanced.png
Advanced Import Settings

Reprojection
Enatled

From

EPSG4269 Find.. | EPSGNADS3.

T

EPSG3005 Find.. | EPSGNADS3 /BC Albers

Attribute Remapping

BORDER_D [+] | |Double[+] [iD = Apply © Cancel
© Aqa

(o] (eomet]

_images/github_home.jpg
@ o secioeaconmand O @ Explore Gist Blog Help B lionnson [F

X ®
I Jiohnson - ProTip™ You can submit your own service hooks by forking github-services. N News Feed
News Feed Pul Requests Issues stars
[L e
\genleroariel commented on issue GeoNode/geonode#461 Y
our Repositories (45) [Lagual)
' Not critical, since the new uploader will replace this. L 5

Find a Reposory.

g 2 Al Ropostories Publc Private Sources Forks

" Ingenieroariel commented on issue GeoNode/geonode#759

' Downgrading from critical [iohnson/geonode

B johnson/mapstory

_images/adminlayers.png
3¢ GeoNode

HOME LAYERS MAPS DOCUMENTS PEOPLE SEARCH oE
Type Title Date admin
Layer San Andres Y Providencia Water 20121227 =) - -
Activities | Follow
Layer San Andres Y Providencia Natural 20121227 =] FO"OWIIIQ
Layer San Andres Y Providencia Coastline 20121227 =)
Layer San Andres Y Providencia Highway 2012-12-27 B Followers
Layer San Andres Y Providencia Location 20121227 =)

_images/gh_pullrequest1.gif
<> Code

2 contributors.

@ Issues
11 Pull Requests
commit b13774eesf E e
todeysem | puge

aday ago

14 days ago

_images/arc_add_wms.png
(HIHHEL T ATLIVIdY o
Bookmarks Insert Selection Geoprocessing Customize Windows Help

BB x|
A
s #x /]
| itp:/funw, myserver.com/arcgis/services|mymap/MapServer MIMSServer?
— http: /fwww.example. com/serviet/com. esri.wms. Esrimap?ServiceName =Name&:
Defatverson v
GetLayers
Jgjelen < > <

522,613 956,449 Unknown Units

_images/github_project.png
@ ¢ sevropeaconmand © | @ Explore Gist Blog Help BB ionnson B X B

jiohnsOn / my_geonode emmmmczs I Pull Request ~GSUnwatch - % Star 0 J} Fork o
Code Network PulRequests 0 lssues 0 wid Graphs. Settings

My GeoNode Project — Read more —

@ CloneinMac > ZIP | HTTP | SSH | GitRead-Only | gitegithub. con: jjohnson/my_geonode.git 22 | ReadsWits access

P branch: master - Files Commits Branches 1 Tags
my_geonode / & ® 1 commit
Initial add project structure
B8 formson autnored ustnow latest comit 2248813021 3
i my_geonode just now Initial add project structure [jjohnsOn]
2 README.rst just now Initial add project structure [jjohnsOn]
[manage.py just now Initial add project structure [jjohnsOn]

B setup.py just now Initial add project structure [jOhns0n]

_images/afterupload.png
Your layer was successfully uploaded

_images/github_home1.jpg
@ o seciopeacommad O @ Explore Gist Blog Help Egiommson B % B

I Jiohnson - ProTip™ You can submit your own service hooks by forking github-services. 3 Nows Food
News Feed Pull Requests ssues Stars

8% | geniercarie ted on issue GeoNod de#a61

=" ingenieroariel commented on issue GeoNode/geano Your Repositories (46) (LIl

' Not critical, since the new uploader will replace this.

Finda Roposiory.

@ 12minves ago Al Roposiories Puc Private Sources Forks
P ingenleroariel commented on issue GeoNode/geonode#759
' Downgrading from critical [jiohnson/geonode

O johnsOn/mapstory

_images/admin-roles-add.png
GeoNode administration

Home » Base > Contact roles > Add contact role.

Add contact role

Resource: Resource name. #
Contact: Type some text to search
Role: -

function performed by the responsile party

Save and acd antver | | Save and contie e | [E)

_images/get6.png
- <xsd:schema elementFormDefault="qualified" targetNamespace="http://www.geo-solutions.it
Iworkshop">
<xsd:import namespace:
Igeoserver/schemas/gml/2.
- <xsd:complexType name=
- <xsd:complexContent>
- <xsd:extension base="gml:AbstractFeatureType">
- <xsd:sequence>
<xsd:element maxOccurs="1" minOccurs="0" name="the_geom" nillable="true"
type="gml:MultiPolygonPropertyType'/>
<xsd:element maxOccurs="1" minOccurs="0" name="STATEFP10" nillable="true"

ttp://wwwopengis net/gml” schemaLocation="http:/localhost:8080
2/feature xsd'/>
‘CountiesType">

type="xsd:string"/>
<xsd:element maxOccurs="1" minOccurs="0" name="COUNTYFP10" nillable="true"
type="xsd:string"/>

<xsd:element maxOccurs="1" minOccurs="0" name="COUNTYNS10" nillable="true"
type="xsd:string"/>

<xsd:element maxOccurs="1" minOccurs="0" name="GEOID10" nillable="true"
type="xsd:string"/>

<xsd:element maxOccurs="1" minOccurs="0" name="NAME10" nillable="true"
type="xsd:string"/>

<xsd:element maxOccurs="1" minOccurs="0" name="NAMELSAD10" nillable="true"
type="xsd:string"/>

‘name="LSAD10" nillable="true"

lement maxOccurs="1" minOccurs:
type="xsd:string"/>
<xsd:element maxOccurs="1" minOccurs:
type="xsd:string"/>
<xsd:element maxOccurs="1" minOccurs:
type="xsd:string’/>

‘name="CLASSFP10" nillable="true"

name="MTFCC10" nillable='

_images/admin-profiles-contactroles.png
Contact roles
Role Delete?

Resource
m‘ m‘
m‘ m‘
m‘ m‘

4k Add another Contact Role

_images/get5.png
<Keywords/> SRS
<SRS>EPSG:4269</SRS> <——
<LatLongBoundingBox minx="-109.06" miny="36.992" maxx="-102.041"

maxy="41.003"/>
<IFeat|lm'lyl)e>/ \ Bounding box
- <FeatureType>
<Name>geosolutions:blakes</Name>
<Title>Lakes and other polygonal water entities</Title>
<Abstract/>
<Keywords/>
<SRS>EPSG:4269</SRS>
<LatLongBoundingBox minx="-105.692" miny="39.915" maxx:
maxy="40.262"/>
<[FeatureType>

-105.055"

_images/admin-users-new-2.png
Home > Auth > Users > bob.
© The user "bob" was added successfully. You may edit it again below.

Change user
Username: |bob

Requied. 30 characlers orfewer. Letter, digis and @1./+4_only.
|gorithm: pbidf2_sha256 iterations: 10000 salt: WIMOFL*+++++ hash: 76eKsA*H++Hsrssssssssrsrsrsrersrersrereresss

Password:
Raw passwords are not sored, so here s N0 way {0 see this user's password, but you can change the password using thi form.

First name:

Last name:

Email address:

Active
Designates whether hs user shoukd be treated as actve. Unselect hs instead of deletng accours.

(0 Staff status
Designates whetherhe user can kg nto tis admin ste.

O Superuser status
Designates that this user has al permissions wihout expicity assigning them.

The groups s user elongsto. A user wi et i pemissions rantc 1o ach ofhshergroup. Hod down “Contoror“Command” o a Mac, 1 selectmore than one.
— "

Available groups ©

Qe
i

Groups:

_images/admin-users-list.png
onardo.

Home > Auth > Users
© The user "admin" was changed successfully.

Select user to change [Add user |
af Search
By staff status
Action: [7] o] 0ors selectea Al
[Usemame = | Email address First name Last name. Stat status. :‘ES
O admin leonardo@exampl.com Leonardo daVinci °
By superuser status
O colombo coombo@example.com Grstotoro Golombo ° Al
O galieo galieo@exampie.com Gaieo Gatiel ° h
No
O mageliano magelano@exampie.com Fermando Magelano °
By active
O piagora piagora@example.con Pragora ° Al

Yes
5 users No

_images/gh_pr_compare.png
BIN NEEEE geonode_custon/static/ ing/Uil-10go. TG

+.navbar-brand {
+ widtn: 373px;

+ heignt: 79px;

+ background: transparent url("../ing/Uil-logo.
B3

_images/admin-users-new.png
Add user

First, enter a username and password. Then, you'll be able to edit more user options.

Required. 30 characters or fewer. Letters, digits and @/./+/-/_ only.
Password:

Password confirmation:

Enter the same password as above, for verification.

Save and add another | Save and continue editing | m

_images/geoserver_srs.png
| Add Keyword |

Metadata links

No metadata links so far
["Add link | Note only FGDC and TC211 metadata links show up in WMS 1.1.1 capabillies

Coordinate Reference Systems

Native SRS

Declared SRS
EPSG:3978

SRS handling

EPSG:NADS3 / Canada Atlas Lambert...

Force declared

Native Bounding Box

MinX MinY Maxx Maxy
1362,796.5 |-323,704.125 |1,751462.75 | 63,159.9765625
Compute from data

Lat/Lon Bounding Box
MinX MinY Maxx Maxy
78.0029900468|43.4629255550¢| -71.8184077161] 47.79032394627

Compute from native bounds

Feature Type Details

Property Type Nillable Min/Max Occurences
gid Integer false 17

area ‘BigDecimal true 0/1

perimeter Bigbecimal true o1

oncart_ ‘BigDecimal true 01

_images/admin-documents.png
Documents Add o Change

_images/geotiff_sources.png
Raster Data Sources

8 ArcGrid - Arc Grid Coverage Format
@ DTED - DTED Coverage Format

8 EHdr - EHdr Coverage Format

8 ERDASImG - Erdas Imagine Coverage Format

@ GeoTIFF - Tagged Image File Format with Geographic information

@ Gtopo30 - Gtopo30 Coverage Format.
@ ImageMosaic - Image mosaicking plugin

@ ImagePyramid - Image pyramidal plugin

@ JP2K (Direct) - JP2K (Direct) Coverage Format

@ JP2MrSID - JP2K (MrSID) Coverage Format

8 MrSID - MrSID Coverage Format

@ NITF - NITF Coverage Format

@ Worldimage - A raster file accompanied by a spatial data file

_images/geotiff_addstores.png
This GeoServer belongs to GeoSolutions.

21 Layers © Add layers
21 Stores © Add stores

1 Workspaces © Create workspaces

_images/admin-login.png
& Upload Layers.

&Profile

 Announcements
@ Remote Services

@ Invite User

9 GeoServer
———> ©Admin

©Help

® Logout

_images/get2.png
[<< [<)[2][> [>~ Resuits1to18 (outof 18 tems)

geosolutions:srtm

=

geosolutions:states.

© geosolutions:bptiancmarks

Y guosoutionsietrests
M geosoutonsicounties

M geosoutionsiparcas

M geosoutonsisoudercryLimes
"

ceosolutionsTrails.

states

point landmarks:

Boulder strests

Counties of Colorado

BoulderciyLimits

Trails

|4 search

Opentayers KitL
OpenLayers KL GML

Opentayers KiL ML

OpenLayers KHL GML

Select one =
seione
Select one =
Select one =

OpenLayers KHL GML

Opentayers KiL GML

OpenLavers KML GML

Select one]
Select one |
Select one o

_images/admin-layers.png
Upload sessions. 4Add Change

_images/get1.png
@ Service security
[3 catalog security

Demos

_images/admin-people.png
Users. Add o Change

_images/get4.png
- <WFS_Capabilities version="1.0.0" xsi:schemaLocation="http://www.opengis net/fs
httpi/fiocalhost:8080/geoserver/schemas/wfs/1.0.0/WFS capabilities xsd">
- <Service>
<Name>My GeoServer WES</Name>
<Title>GeoSolutions GeoServer workshop WFS</Title>
- <Abstract>
‘This is the reference implementation of WFS 1.0.0 and WFS 1.1.0, supports all WFS operations
including transactions.
</Abstract>
<Keywords>WFS, WMS, GEOSERVER</Keywords>
<OnlineResource>http:/localhost:8080/geoserverfwis</OnlineResource>
<Fees>NONE</Fees>
<AccessConstraints>NONE</AccessConstraints>
</Service>
- <Capability>
- <Request>
- <GetCapabilities>
—<DCPType>
~ <HTTP>
<Get onlineResource="http:/localhost:8080/geoserver/wfs?request=GetCapabilities"/>
</HTTP>
</DCPType>
- <DCPType>
- <HTTP>
<Post onlineResource="http:/localhost:8080/geoserver/iis'/>
</HTTP>
</DCPType>
</GotCapabilities>
~ <DescribeFeatureType>
- <SchemaDescriptionLanguage>
<XMLSCHEMA/>
</SchemaDescriptionLanguage>
- <DCPType>
- <HTTP>
<Gt onlineResource=

‘hitpi/flocalhost:8080/geoserver/wfs?request=DescribeFeatureType"/>

_images/admin-maps.png
Map layers #A%0 o Change
Map snapshots #A%0 o Change
Maps #A%0 o Change

_images/get3.png
-105.038697 ¢ -), s .40.
1105.01027440349257 105 040417,40.340257 10504083240 340258 105.042632.40.340261
-105.042023,40.349262 -105.044341 4034926 -105.045742,40.349208 -105.047122,40.349267
£105.048501/4031927 -105.040967,0.319274 105.05170310:340273 105,052030,40319273
105.052679,40.349272 -105.052942,40.340272 -105.054221,40.349271 105.036557,40.34928
£105.056528,40.34928 -105.05672,40.349281

<Jgml:coordinates>
</gml:LinearRing>
<Jgml:outerBoundaryls>

<tgml:Polygon>
<Jgml:polygonMember>

</gml:MultiPolygon>
<Igeosolutions:the,goom>

(ATEFP10>08</geosolutions:STATEFP10>

JUNTYNS10>00108150</geosolutions:COUNTYNS 10>
JEOID10>08060<geosolutions:GEOID10>

<geosolutions:ALAND10>6723613486 </geosolutions: ALANDI0>
<goosolutions:AWATER10>06205250</geosolutions:AWATER 10>
NTPTLAT10>+10.6630012</geosolutions: INTPTLAT10>.

geosolutions:INTPTLON10>-105.4821 309</geosolutions:INTPTLON 10>
<lgeosolutions:Counties>
<JgmlfeatureMomber>
- ZgmlfeatureMember>
- <geosolutions:Counties fid="Countios.
~<geosolutionsithe geom>
= <gml:MultiPolygon srsName="htp:/hvwopengis net/gmilsrsiepsg xml#4269">
- <gml:polygonMember>
L gmpotygons
L gmt:outerBoundaryts>

_images/admin-base-region-list.png
Home » Base > Metadata Regions

Select region to change
Qll Search|

Action: [e ¥ [Go| 0 of 100 selected

0 code Name =
o A Afghanistan

I Aland siands

O as Albania

[pza Algeria

O asm American Samoa

O A Andorra

0 aco Angola

S Anguilla

o A Antigua and Barbuda

[Are Argentina

]

_images/geoserver_postgis_params.png
GeoServer

About & Status

(2L Server Status

=/ GeoServer Logs

23/ Contact Information
© About GeoServer

Data
Layer Preview
Import Data
5 Workspaces
@ stores

9 Layers

@ Loyer Groups

Services
& wps.

Settings
8 Global

o

B Coverage Access

Security
2 setings

@ authenticaton

3 passwords

2 Users,Groups, Roles
(3 Data

B services

Demos

Loggedinasaamin. | osout

New Vector Data Source

Add 2 new vector data source

PoSIGIS
POSIGIS Database

Basic Store Info

Workspace *
(asonode 1)

 Enabled

Connection Parameters
host *

localhost

port*

5432

database

workshop

schema

public

workshop

_images/osm_river7.png
e

10

1

12

13
13
15
16
17

Settings

-
This has been generated by the overpass-turbo wizard.
The original search was:
outhuest Platte River Road” and highuay=tertiary and
railuay=abandoned”
o
[out json] [timeout :25];
I/ gather results
(
11 query part for:
and railuay=abandoned”
nodel’ ‘Southuest Platte River Road"]["highuay
["rail ndoned”] ({{bboix)});
way[! outhuest Platte River Road”
“rai *abandoned”] ({ (bbox)}) ;
‘Southuest Platte River Road"]["highua

71 print results
out body;

>;

out skel qt;

Flattr this!

Loaded ~nodes: 80, ways: 1, felations: 0
Displayed — pois: 0, lines: 1, polygons: 0

_images/admin-auth.png
Groups. Add o Change

_images/geoserver_new_store.png
GeoServer

About & Status
(2L Server Status

=] GeoServer Logs
Contact Information
© About GeoServer

[Laver Preview
Import Data
[5 Workspaces
@ stores

9 Layers

Loyer Groups

Services
& wes

Settings
8 Global

Ewn

B Coverage Access

Security

2 setings

@ authenticaton

3 Pesoworts

2 Users,Groups, Roles
5 o

B sevices

Demos

New data source

Choose the type of data source you wish to configure
Vector Data Sources

24 CSV - Comma delimited text file
I Directory of spatial iles (shapefiles) - Takes a directory of shapefiles and exposes it as a data store
[PoStGIS - PostGIS Database
i PoStGIS (INDI) - PostGIS Database (INDD)
I3 Properties - Allows access to Java Property files containing Feature information
{3 Shapefile - ESRI(tm) Shapefiles (*.shp)
(54 Web Feature Server - The WFSDataStore represents a connection to Web Feature Server. This connection provides access to the
Features published by the server, and the bty to perform transactions on the server (when supported / allowed).

Raster Data Sources

8 AcGrid - Arc Grid Coverage Format
8 GeofTIFF - Tagged Image File Format with Geographic information
8 Gtopo30 - Gtopo30 Coverage Format

8 ImageMosac - Image mosaicking plugin

8 WorldImage - A raster file accompanied by 2 spatial data file

Other Data Sources

80 WM - Cascades 2 remote Web Map Service

_images/osm_river6.png
Query Wizard

name="Southwest Platte River Road" and highway=tertiary and railway=abandoned|

The wizard assists you with creating Overpass queries. Here are some usage examples:

« Drinking Water
« highway=" and type:way
« tourism=museum in Vienna

build query | build an%un query | cancel

_images/admin-base-spatialrepresentation-list.png
nardo

Home » Base » Metadata Spatial Representation Types

Select spatial representation type to change

Action: [

v](Go| 0ors seiectea

Identifier
grid
stereoModel
textTable
tin

vector

video

C0o0oEoE

o
rid data s used to represent geographic data

three-dimensional view formed by the intersecting homologous rays of an overlapping pai of mages
textual or tabular data s used 1o represent geographic data

riangueted imeguiar network

vector data s used to represent geographic data

Scene from a video recording

6 Metadata Spatial Representation Types

GeoNode description
rid data s used to represent geographic data

three-dimensional view formed by the intersecting homologous rays of an overlapping pai of mages
textual or tabular data s used 1o represent geographic data

riangueted imeguiar network

vector data s used to represent geographic data

Scene from a video recording

eeco0o0aos

choice

_images/geoserver_publish_layers.png
GeoServer

New Layer

Cmsnns Add 2 new layer
(2, server Status
Geoserver Logs
Contact Information

© About GeoServer

You can create 2 new feature type by manually configuring the attribute names and types. Create new feature type...
On databases you can also create 2 new feature type by configuring a native SQL statement. Configure new SQL view...
Here s a it of resources contained in the store “workshop'. Clck on the layer you wish to configure

Data Results 1 to 5 (out of 5 items)
Layer Preview
Import Data
Workspaces
@ stores ontdrainage Publish
a R
@ Layer Groups

qedrainage Publish
e = = N
& wes

Results 1o 5 (out of 5 items)

Settings
(& Global

B

I Coverage Access

Security
& settings

U Authentication
B bocoworde

_images/admin-base-restriction-list.png
Leonardo,

Home » Base » Metadata Restriction Code Types

Select restriction code type to change

Action: [7] (Go] 0 of 8 selected
0| identifier ~ Description ‘GeoNode descrption s choice
O copyright exclusive right o the publication, producton,or sae of th rights to a ferary, dramaic, musical or atstc work, orto. exclusive igh o the publcation, production, r sale of the righis to a erary, ramic, musical, o artstc work,orfo @
the use of a commercial pint or label, granted by law for a specifid period offme to an author, composer, atst, the use of a commercialprint o label,granted by law for a specified period of me to an author, composer, arist,
disriutor disriutor
) intellectualPropertyRights | rights to financial benefi from and conirol f distriution of non-tangide property that i a result of creaiviy ights to financil beneft rom and conirl f distriution of non-tangibe property that i a resul of creativiy °
O ticense formal permission to do someting formal permission to do someting °
@ limitation not isted otherRestrictons otherRestrictons °
O patent Government has granted exciusive rght to make, sel, use or icense an invention or discovery Government has granted exciusive rght to make, sel, use or icense an invention or discovery °
@ patentPending produced or sod nformaton awaiting a atent produced or sod nformaton awaiting a atent °
O restricted withheld rom general circulaton o disclosure withheld rom general circulaton o disclosure °
[trademark aname, symbol, o other device identiying a roduct, ofcialy registered and egaly restrcted o the use ofthe owner & name, symbl,or ofher device Kentiying a poduct, offcal regitered and legaly restricted fo the use of the owner | @
or manufacturer or manufacturer

8 Metadata Restriction Code Types

_images/geoserver_proxy_url.png
Global Settings

Settings that 2pply to the entire server.

Verbose Messages
() Verbose Exception Reporting

' Enable Global Services

Number of Decimals.
8

Character Set
-8 g

Proxy Base URL
http:/ /example.com/geoserver/

Logging Profile
'DEFAULT_LOGGING. properties
GEOSERVER_DEVELOPER_LOGGING.properties.

_images/admin-base.png
Metadata Topic Categories #Change
Resource bases 4Add Change

_images/admin-base-topiccategories-list.png
nardo. ¢

Home » Base » Metadata Topic Categories

Select topic category to change

Action: [eems v] 60| 00r 20 setectea

) | ientiter + Descrption GeaNode description | 1s choice

O biota lora andlor fauna i natural environment, Examples: wadife, vegetaon, boogica sciences, ecology, widerness, sealfe, wetnds, habtat Boa °

@ boundaries legalnd descritons. Exampes: poica and adminstative boundaries Boundaries °

] climatologyMeteorologyAtmosphere.processes and phenomen of he atmosphere. Exampes:coud Cover, westher, cimat, tmospheric condtons, cmate change, preciptaton Cimatoogy °

et

@ economy economi acties,condions and empoyment. EXaTES: productn, bour,FEvenue, COMmerce,industy, ourSm and ecctoursm, foesty,fsherkes, commercialor subsistence hunting, Economy °
explraton and explotaton of resources such as mineras, ol and gas

@ elevation height above or below sea evel. Exampies: altuce, bthymetr, el cevaton models, slope, deried products Eevaton °

@ environment nonnetresouces, prtecon and conseran. EXampes: VRGNS o st Srage G Ueamer, TN TctSSeSSmen, edorg TNl sk, rare | Eneonment °
reserves, andscape

O farming rearng of animats ancor utivation ofpans. Exampes: agricuture, gaton, aquaculure, pantatons, hercding, pests and dseases afecting cops and estock Farming °

@ | foo e par °

_images/group5.png
Layers
© addLayer
© Add Layer Group,

Layer Default Style Style Remove
1 ‘geosolutions:Mainrd r mainrd]

[} ‘geosolutions:BouiderCityLimits r citylimits o

i ‘geosolutions:bplandmarks r arealandmarks C

Resuits 0 to 0 (out of 0 tems)

_images/group4.png
Find.

Generate Bounds

© addLayer...
Layers

Choose new layer
s [— Jr——
BoudsCityLmits bovider_shapefies Geosolutior

ey bk st P
bptiandmarks bovider_shapsfies oeosolutr

> /[Resuts 000 (@

Authority URLS for this WMS Lal bxtndraks 2276 bouider_shapefies ceosouter [
No authorty URLs 50 far brvors o srapeties ososcuter
A R UL [e— o shapefies ceoscutir
bouider_shapefies soltr

Layer Identifiers e =

No by centiers <0 far o e CIIHE
[Epa— ceoscuter
Adreleger Kentier bouider_shapefies ceosoutr
Wetlans_egistory_srea cuie_shapefies ososcutir
i i stm dem ‘geosalutior

PR [——— = mﬂzl

_images/arcmap_wms_layer_drag.png
File Edit View Bookmerks Inset Selection Geoprocessing Customize Windows Help
DRES L BB x| 9 | b-([126023 BP4l=1-1o]LalE
QA kil E» | HE-TIN@FEFIZINBRT

’ -
Table Of Contents *x ~ Catalog R
ELELAE] C->eB @ E-lalkld |§
B £ Layers Location: | < San Anres Y Providenda Natural V|5

Boxes With Year Field2 ~
haiti_administrative

irigated_areas
Provincial Boundaries of Soutr
Relief San Andres

San Andres Y Providencia Adr
San Andres Y Providencia Coa:
San Andres Y Providencia High
San Andres Y Providencia Locz

San Andres Y Providencia Wat;
SANGISFAULT_ALQPRI
Sanitation Districts
School_Districts_Elementary
School_Districts_High
School_Districts_Unified
Single Point
State_Licensed_Child_Care
State_Licensed_Group_Homes.
State_With_County_Boundarie.

PO OO OOOOOOOOOOOOOOOOOOOOOOOOOOO

Street Light
SupenisorDistricts
TestGrid
o Trafic Signal
Traffic Signal .
J@elen < > I >

7969 12,58 Decimal Degrees.

_images/group8.png
&3 Decoraton

_images/arcmap_wfs_transformations.png
Q Untitled - ArcMap
Fle Edt View Bookmarks Insert Selection Geoprocessing Customize Windows Help
DRE& L AR x |9 b3 ME4l=11=] ko)
RANQ:I«= E-TIK@/BIENABRDT

Table Of Contents 2x

koo 8

@ 5 Layers

My GeoServer WMS

Jge| e n <

The foloning data sources use a geographic coordinate system that s different from
the one used by the data frame you are adding the data nto:

Geograptic Coordnate System
GCS North_American_1383

Data Source:
Ar_Runways

‘Alignment and accuracy problems may arise unless there is a correct transformation
between geographic coordinate systems.

You can use this button to specify or modify the
ransformation(s) used by this data frame:

The Transformations dialog can also be accessed from the Data Frame Properties.
dilog's Coordnate Systems tab after you have added the data.

Transformations....

[JDon't warn me again in this session
[Jon't warn me again ever

About the qeoaraphic coordinate.
Systems warning

Done indexing Connection (1) - My GeoServer WFS WFS.fdl

Home - DocumentAreGiS
Folder Connections
Toalbores

Database Servrs
Database Connections

615 Servers

8 Add rcissenver

L My GeoServer WM on sipha dev.geonode.o
My Hosted Services

Interopersbilty Connections

<t Add Interoperabilty Connection

2 Connection (1) - My GeoServer WFS WFS.fdl
i Rumways

i_Safety_Zones CN

_81.271 13.427 Decimal Degrees

Ty |

_images/group7.png
Layer Groups

Define and manage layer groupings

© add new layer group
© Remove seiacted laver aroup(s)

Resits 1 to 2 (out of 2 items)

I bouider

T test

Resits 1 to 2 (out of 2 items)

_images/arcmap_wms_layers.png
Q Untitled - ArcMap -
Fle Edt View Bookmarks Insert Selection Geoprocessing Customize Windows Help

D2E& L a8 x|
(@ Q@RI e
Table Of Contents 2 x itp/jalpha. dev geonode orglgeoserverfoms? S
koo 8 It/ myserver.com|acgisfsericesmymap MepServer WMSServer? z
= it . xample, com/Serviet/com, e wms. Esmap?ServceName -Named. S
Name:
WS
Version:
130
sbstract:
Thisis o desrpto of your Web Map Server.
J@el e < 5 |l 5

522,613 956.449 Unknown Units.

_images/group_not.gif

_images/arcmap_wms_layer_map.png
File Edt View Bookmarks Inset Selection Geoprocessing Customize Windows Help
D@ OB X0 | &[22 Ve EREED

ORI W E-F il i

Table Of Contents 2 x ~ Catalog 2 x
klee8 2 “«-2e @ E-|akE

= £ layers Location: | € San Andres Y Providencia Coastine. v

TR

Boxes With Year Field2 ~
haiti_administrative

irigated_areas
Provincial Boundaries of Soutr
Relief San Andres

San Andres Y Providencia Adrr

B Creste Loyer..

Create Layer

Create a new layer based on the
selected geographic data.

Sanitation Districts
School_Districts_Elementary
School_Districts_High
School_Districts_Unified
Single Point
State_Licensed_Child_Care
State_Licensed_Group_Homes.
State_With_County_Boundarie.

PO OOOOOOOOOOOOOOOOOOOOOOOOOOO

Street Light
SupenisorDistricts
TestGrid
o Trafic Signal
Traffic Signal .
J@elen < > I >

79.503 13.01 Decimal Degrees

_images/group9.png
FOSS4G 2011 stylng examples
bauicer
Bauider buidings

B SouierCityLinits

0 countes

1 Lakes and other polygonal water entites

-/ Mainrd

Parces

test

Teaile

_images/ascii_merged.png
T 2711813.43750, 4290763.75000

]
Click on the map to get feature info

_images/homepage.png
EEER - o

HOME LAYERS MAPS DOCUMENTS PEOPLE SEARCH | fHEN-1]

UWI's GeoNode is setup for students and faculty to collaboratively create and
sshare maps for their class projects. It is maintained by the UWI Geographical
Society.

For more information about the UWI Geographical society, visit our website

_images/arcmap_wms_styles.png
Q Untitled - ArcMap
Fle Edt View Bookmarks Insert Selection Geoprocessing Customize Windows Help
DBd& BB X9 |- ME4l=11=] ko)
RQQUQE € (B-O RO B MSS O R

Toeas ol

Ble e8I
5 5 Layers
[; Runways ool Souroe | Ses
& B My GeoServer WS Selectlayer syie:
B san_andres_y_providendia_administrative
A Abstract:
Height: 20
My GeoServer WMS Vidth: 20
Legend

UL
hitp://alpha. dev.geonode. org:80/geoserverjows?.
service =WMSarequest=GetlegendGraphiciformat=image

4

/

< >|jgjelen <

-117.223 32.727 Decimal Degrees.

_images/group_yes.gif

_images/backup002.png
Avatars

Backups
Contact roles
Hierarchical keywords
Licenses

Links

Metadata Regions
Metadata Res

n Code Types
Metadata Spatial Representat
Metadata Topic Categories

#add o Change
#add o Change
#add o Change
#add o Change
#add o Change
#add o Change
#add o Change

2 Change

2 Change

2 Change

_images/html_embed1.png
e
® gedit

A Applications

Text Editor

_images/backup001.png
Menu

& Upload Layers

& Profile
Recent Activity
@ Inbox
¢ Announcements
@ Remote Services

@ Invite User

& GeoServer
4 Admin

@ Help

_images/homepage1.png
EEER - o

HOME LAYERS MAPS DOCUMENTS PEOPLE SEARCH | fHEN-1]

UWI's GeoNode is setup for students and faculty to collaboratively create and
sshare maps for their class projects. It is maintained by the UWI Geographical
Society.

For more information about the UWI Geographical society, visit our website

_images/arcmap_wfs_params.png
Untitled - ArcMap

Fle Gt View Bookmais et Seecon Geoprocessing Customize Windows Help
2 EEEET
Z2ME80

Deda !
EICR ")
Table Of Contents

kee8

- RIS
*

2 x

1191357

-0 80

@

= £ layers
My GeoServer WMS

Jge| e n <

Unused>
HITP Authentication: [<Unused>
T Use Proxy Server
Proxy Address: [<Unused>
Proxy port: [<Unused>
Proxy Username: [<Unused>
Proxy Password:
Proxy Authentication: [<Unused>
-Schema Attrbutes
‘Additonal Atrbutes to Expose: [[i tems selected.
-Constraints:

[-Aepication chema

v | _oetis -

[oc] com |

_images/arcmap_wfs_layers.png
Q Untitled - ArcMap - g
Fle Edt View Bookmarks Insert Selection Geoprocessing Customize Windows Help .

DBES L OB x| 0 | b [e EEEerC P WFS (Web Feature Service) Parameters
RlaA®M@ e M- -Tx@FE 2NRE2T [[147 Comnection =
Table Of Contents 2x URL: Fha.dev.geonode orglgeoserver s

EEEY e
= £ layers

WS Version: [1.1.0 -

I Use HITP Authentication

HITP Username: [<Unused>

My GeoServer WMS

] Aquifers {Aquifers}
0] Bike Plan D {Bike Plan 5D}
 provincial 250k {Provincial Bou...
0] boxes.with_date (Boxes With Date}
] boxes_with_date.iso_date {Boxes Wit..
0] boxes.with_dates_bc {Boxes With Dat.
0 boresvith_end_dte (Bowes With En.. |

Fiter: [Search... [V Selectal
o o ||

Jge| e n <

_images/group3-2.png

_images/arcmap_wfs_style.png
Q Untitled - ArcMap -
Fle Edt View Bookmarks Insert Selection Geoprocessing Customize Windows Help

DBd& BB X9 |- ME4l=11=] ko)

RQQUQE € (B0 RO B MSS ORI

B
BEEECIE E
= £ layers s
= o [
)

5 B My GeoServer WMS
£ San Andres ¥ Pro

.

i Transparency.
My GeoServer WMS - Symbol Leves

Label appearing next to the symbol n table of contents:

‘Addtonal description appearing next to the symbol n your map's legend

-117.228 32.734 Decimal Degrees

_images/gn_up_0003.png
' /home /geosolutions/geonode/geonode/uploaded "

_explicit_settings set([' CASCADE_WORKSPACE', 'AWS_S3_BUCKET_DOMAT
E', 'UPLOADER', 'LANGUAGE_CODE', 'LICENSES', 'MANAGERS', 'DOWNLOAD_FORMATS_METADATA', 'BR
ALIZER', 'DEFAULT_MAP_CENTER', 'REGISTRATION_OPEN', 'ALLOWED_HOSTS', 'OGC_SERVER', 'DOWNL
NDERS', 'NOTIFICATION_QUEUE_ALL', 'S3_MEDIA_ENABLED', 'CELERY_IMPORTS', 'SOCIAL_BUTTONS',
ME', 'DATABASES', '_DEFAULT_STATICFILES_DIRS', 'ACCOUNT_APPROVAL_REQUIRED', 'DEBUG_STATIC
GUAGES', 'MEDIA_ROOT', 'STAMEN_BASEMAPS®, 'GEOSERVER_LOCATION', "CACHES', 'CKAN_ORIGINS',
_OSM_BASEMAPS', 'ROOT_URLCONF', 'CATALOGUE', 'LOCKDOWN_GEONODE', 'MISSING_THUMBNAIL', 'MI
[ATION_FALLBACK_LANGUAGES', 'DEFAULT_MAP_CRS', 'THESAURI', ' DEFAULT_LANGUAGES', 'TASTYPI
LT_ANONYMOUS_DOWNLOAD_PERMISSION', 'CELERY_DEFAULT_EXCHANGE', 'OAUTH2_PROVIDER', 'CELERY_
_EAGER', 'MODIFY_TOPICCATEGORY', 'NLP_ENABLED', 'GUARDIAN_GET_INIT_ANONYMOUS_USER', 'PYCS
HE_TIME', 'SITEURL', 'STATIC_ROOT', 'GEONODE_APPS', 'LEAFLET_CONFIG', 'DOWNLOAD_FORMATS_V
_ACCESS_KEY', 'ACCOUNT_EMATL_CONFIRMATION_EMAIL', 'AWS_QUERYSTRING_AUTH', 'LOGIN_URL', 'S
GATES_EXCEPTIONS', 'CELERY_IGNORE_RESULT', 'AUTH_USER_MODEL', 'HAYSTACK_SEARCH', 'AUTHENT
LT_SECRET_KEY', 'SERVICE_UPDATE_INTERVAL', 'CELERY_RESULT_BACKEND', 'API_INCLUDE_REGIONS_
T', 'LOGGING', 'CELERY_SEND_EVENTS', 'EXIF_ENABLED', 'NOSE_ARGS', 'NLP_MODEL_PATH', 'INTE
EMAPS', 'SOCTAL_ORIGINS', 'MAP_BASELAYERS', 'USE_L10N', 'GEONODE_CONTRIB_APPS', 'NLP_LOCA

PASSWORD_CHANGE', 'DEFAULT_ANONYMOUS_VIEW_PERMISSION', 'AGON_RATINGS_CATEGORY_CHOICES',
T TUDES! O MATYETAATTAN TANCIAFE MAMIT ET IDECAIDAE DRI TCHTNA! I BDAYY bl T leTTE +n

MEDIA_ROOT

_images/arcmap_interop_wfs.png
Q Untitled - ArcMap
Fle Edt View Bookmarks Insert Selection Geoprocessing Customize Windows Help

DSES L E@ x| 9 b [95 Vi EEEEE
RIAQANQ@III e FH-TIN@7FIZMBR

Table Of Contents 2 x

kee8

Jge| e n <

-
x
o]

(& Home - Documents\ArcGIS
Folder Connections.
& Toolboxes

] Dstabase Servers

3 Dstabase Connections

taset: [http://alpha.dev.geonode. org/geoserver/nfs

LI

III

-81.271 13.427 Decimal Degrees.

_images/google_earth.png
Google

v Search = = [= sign in

P Hispaniola Plain
b Guantaname,,

ex: pizza near NYC

v Places 5
v /& My Places Greater Antilles Ridge
> Vi >
Make sure 3D Buildings
layer is checked
v /& Temporary Places %
» Vi it.geosolutions:haiti_a...

+| v @ Centre
vla ’ Earth Gall N Saapoan
ayers arth Gallery
=2 P San Juan'de la Maguana o
~& Primary Database CanaiZaistia i %
Borders and Labels
& Places Port-augPrince
= Photos T
== Roads . 1 Bdoruco
3 3D Buildings Independencia . 8% T
Ocean » 7 g - e Y
¥ Weather ? SUd-Eot L
% Gallery
© Clobal Awareness § ©2013 €nes/Spot Image A &
[More ©2013 Google =
US Dept of State Geographer ~ L
Data SIO, NOAA, U.S. Navy, NGA, GEBCO (1003[(earth
»

Tour Guide 19°30'28.93" N 73°13'12.79"W elev -2100 ft eye alt 243.80 mi

_images/gn_up_0004.png
<« c @ geonode.org, - O search I
Index of /geoserver/latest geoserver 2.12.xwar N
T et — 239 o 1438 .0 M/sc0)
[1CO] Name Last modified Size Des¢

Show All Downloads

[PARENTDIR] Parent Directory -
[1 data-2.9.x-oauth2.zij 2017-06-09 09:34 120K

[1 data-2.9. Ip 2017-09-28 15:23 101K
[1 data-2.10.x.zip 2017-10-02 10:18 118K
[1 data-2.12.x.7ip 2018-03-21 15:03 154K
[1 data.zip 2017-06-09 09:34 101K
[1 geonode-geoserver-ext-2.7.4-geoserver-plugin.zip 2017-06-09 09:34 166K
[1 geonode-geoserver-ext-2.9.x-geoserver-plugin.zip 2017-09-28 15:23 164K
[1 geonode-geoserver-ext-2.9.x-oauth2-geoserver-plugin.zip 2017-06-09 09:34 165K
[1 geonode-geoserver-ext-2.10.x-geoserver-plugin.zip 2017-10-02 10:18 165K
[1 geonode-geoserver-ext-2.12 x-geoserver-plugin.zip 2018-03-21 15:03 165K
[1 geoserver-2.9.x-oauth2.war 2017-06-09 09:34 133M
[1 geoserver-2.9.x.war 2017-09-28 15:23 123M
[1 geoserver-2.10.x.war 2017-10-02 10:18 135M
[1 geoserver-2.12 x.war 2018-03-21 15:03 148M
[1 geoserver.war 2017-06-09 09:34 103M

Apache/2.4.7 (Ubuntu) Server at build.geonode.org Port 80

_images/arcmap_layer_properties.png
Q Untitled - ArcMap -0
Fle Edt View Bookmarks Insert Selection Geoprocessing Customize Windows Help

DBESI-EB X0 b M=l L=l S
QQE@ 1« E- T K0 RN B
Table Of Contents 2 x

E3o8

Z Layers

el

Boxes With Year Field2
haiti_administrative

hitps//alpha.dev.geonode. org/geoserver fums?.

Neme: ~ irigated_areas
t.geosolutions:san_andres_y providendia_admiistr Provincial Boundaries of Soutr
atve. Relief San Andres
Abstract: San Andres Y Providencia Adr
Noabstract provided San Andres Y Providencia Coa:
- San Andres Y Providencia High
51.908727, 12.118997, -79.933332, 15502775 San Andres ¥ Providencia Locs
San Andres Y Providencia Natt
San Andres Y Providencia Poi
San Andres Y Providencia Wat;

SANGISFAULT_ALQPRI
Sanitation Districts
School_Districts_Elementary
School_Districts_High
School_Districts_Unified
Single Point

'EPSG:4326, CRS:84, AUTO:42001, AUTO:42002,
AUTO:42003, ALTO:42004, EPSG:WGSSATD),

StateL
State_With_County_Boundarie.
Street Light
SupenvisorDistricts

Test Grid

Traffic_Signal

TrfficSignal

Jge| e n < > ¢ >

634,841 324958 Unknown Units

PO OO OOOOOOOOOOOOOOOOOOOOOOOOOOQ

_images/group10.png
Bounds.
HinX Hiny. Haxx Maxy
2.943.771.9805851] 1,170,043, 152052 3,140,453 387552 1,352, 572.813349

‘Coordinate Reference System
EPSG2276 Find.. | epsea0s3,

Generate Bounds

@ Add Layer Group,

_images/arcmap_interoperability.png
File Edt View Bookmarks Insert Selection Geoprocessing Customize Windows Help

NP IR AEN - R RN A
RAQNQ@III e« E-TIx

11917 2 BEEED

[T o el

Table Of Contents 2 x

klee8 2

[EEIER

v ol @| EIRNE]
Locaton: [Add Interoperabity Connecton v
Fome - Documenta ArcGIS

Folder Connections.

& Toolboxes

] Dstabase Servers

3 Dstabase Connections

& oIS Servers
8 Add ArcGis Server

2]
el

3 My Hosted Services
© £ Interoperabily Connections
P A Ini onn

<
-81.271 13.427 Decimal Degrees.

_images/group1.png
GeoServer
Server Status

‘Summary of server configuration and s
Server Status

Contact Information
[AT Settings

© About GeoServer Locks ‘
Services Connections 1
@ ewc Memory Usage E
@& wes

@ ws VM Version ‘
Smwes avesar t
Data Native JAT Imagel0

3 Workspaces IAT Maximum Memory L
9 stores

o~
v

Number of JAI Tile Threads 7

Security
2 s IAL Tile Thread Priority F
2 Data security Resource Cache
1B senvice security
3 catalog security Update Sequence: 60
pemos GeoServer e

E— =

GeoServer

_images/arcmap_wfs_identify.png
Fle Gt View Bookmais et Seecon Geoproceng Customize Windows Help
S CERY TR T V2 EEEEO
RANO LI« K- U k@] BlME S TIE

Table Of Contents 2 x
klae8
o 2 g Mty ox
= @ [ety fom: [<Topmostlayes __=]ji Home - DocumentlArcGiS
. Fons o
o
v
A Database Servers
D s
s
& Add ArcGIS Server
] S s o
Location: 117.207958 32.707695 Decimal N Add Server
" — Deyees ‘Add WMS Server
P T potifceid
1 Lo [My GeoServer W on alpha.dev.geonode.o
<o b s
Polygon Interoperability Connections.
| e A pumere. 12 &% Add Interoperability Connection
[% mj"' 2 7 B Connection (1) - My GeoServer WFS WFS.fdl
i B e o
\g r_Safety 7 5 ¢
| e b 2
e
< ;
Eee
| EENRERTRS > T >

-117.208 32.708 Decimal Degrees

el

_images/group12.png
08546 2011 stying examples
B bouder
Boulder buidings
01 Lakes and other polygonal water entites
BouderCityLimits
Boulder polygonalancmarks
pointin
Boulder streets
Parcels

/ Rivers and other inear water entites
e
“ Trals
Vietands reguistory_area
0 countes
Ween

. poi

_images/arcmap_layers_catalog.png
File Edt View Bookmarks Insert Selection Geoprocessing Customize Windows Help
DBES BB X0 (S RE4l=1-1=1 -l o)
RAQIkII = E-TIx@ / RBR TR

T orComents 2 x Tlwea axg
BEERTE] - oB @ E-letela |8
S Layers Locaton: | Gl Servers MIE
[58 Moosnaws A
A Runways

Air_Safety Zones CN.
Ambulance_Exclusive_Operatit
Ambulance_Staging_Location:
Aquifers

Bike_Plan_SD

Boxes With Date

Boxes With Date Iso Date
Boxes With Dates Bc

Boxes With End Date

Boxes With Year Field

Boxes With Year Field2

irtigated_areas
Provincial Boundaries of Soutt
Relief San Andres

San Andres Y Providencia Adr
San Andres Y Providencia Coa:
San Andres Y Providencia High
San Andres Y Providencia Locz
San Andres Y Providencia Natt
San Andres Y Providencia Poi
San Andres Y Providencia Wat:
SANGISFAULT_ALQPRI

PO OO OOOOOOOOOOOOOOOOOOOOOOOOOO

Jge| e n < > < >
634.841 324,958 Unknown Units

_images/group11.png
& pesorsoon
JFossec 01 rrpwRSY—
=] FOS54G 201]
& Addto Curentivep

boulder
Bouder Reset

B BouiderCi ¢ pemnue

0 conies
0 Loes 3 T7POCE

/ Mavd | A Exportn

Parcels

test
 Tralls

_images/arcmap_wfs_layer_view.png
File Edt View Bookmarks Insert Selection Geoprocessing Customize Windows Help

M=l-1- L=l 8

D2Eds 6B x|9 b

QRU@ Il e K-T k@ B @ MBI TR
Table Of Contents 2 x

Hee8

& < Layers

My GeoServer WMS
My GeoServer WMS

Jge| e n <

TR

Folder Connections.
& Toolboxes
£ Database Servers
3 Database Connections
& oIS Servers
8 Add ArcGis Server
8 Add ArcM Server
2 Add WS Server
8 Add WM Server
2 Add WMITS Server
i My GeoServer WMS on slpha.devgeonode.
My Hosted Services
) 3 Interoperability Connections
& Add Interoperabity Connection
& 2 Connection (1) - My GeoServer WFS WFS.fdl
Air Runways
Air Ssfety Zones CN

-117.18 32.724 Decimal Degrees.

_images/group3-1.png
New Layer Group
Add 2 e layer grouing

Tide

Abstract

_images/arcmap_wfs_import.png
Q Untitled - ArcMap -0
Fle Edt View Bookmarks Insert Selection Geoprocessing Customize Windows Help

DBES L 5B x| 9 b [usm Vi EEREE e

RANQ:I«= E-TIK@/BIENABRDT

Table Of Contents B x &
koo 8 g
& 5 Layers H

My GeoServer WMS Home - Documents\ArcGIS
Folder Connections
& Toolboxes
] Dstabase Servers
3 Dstabase Connections
& 3 6iS Servers
4] Add ArcGiS Server
‘Add ArciMS Server
AddWCS Server
Add WS Server
AddWMITS Server
i My GeoServer WS on sipha dev.geonode.o
5 My Hosted Services
) 3 Interoperability Connections
4 Add Interoperabilty Connection
& 2 Connection (1) - My GeoServer WFS WFS.fdl
Runviays
Air Ssfety Zones CN

Indeing features in Connection (1) - My GeoServer WFS
WFSHd

Features: 400

Jge| e n < >

Indexing Connection (1) - My GeoServer WFS WFS.fdl _81.271 13.427 Decimal Degrees

_images/group2.png
Layer Groups

Define and manage layer groupings

© add new layer group
© Remove seiacted laver aroup(s)

Resuits 1 to 1 (out of 1 items)

I bouider

Resuits 1 to 1 (out of 1 items)

_images/arccatalog.png
File Edt View Bookmarks Insert Selection Geoprocessing Customize Windows Help

Deda

L BB X0 b

RAQIkII = E-TIx@ /

BFAl=l-1-1lalk 2
Y A=l

Table Of Contents % X

klee8 2
= Layers

Jge| e n <

Ty |

Folder Connections.
 Toolboes
£ Database Servers
3 Database Connections
& oIS Servers
8 Add ArcGis Server
& Ada A Server

4] AddWMITS Server
My Hosted Services
& B3 Interoperability Connections

4 Add Interoperabilty Connection

522,613 956.449 Unknown Units

_images/gn_up_0002.png
Logged in a

GeoServer

Server Status

Summary of server configuration and status

About & Status.

Server Status
[=) Geoserver Logs
=) Contact Information

Acti
© About Geoserver - .
£ Process status Data directory Jhome/geosolutions/geonode/geoserver/data

Locks 0 Fre

Dpata

_images/arc_enter_wms_url.png
Untitled - ArcMap

File Edit View Bookmarks Insert Selection Geoprocessing Customize Windows Help

S=3" =)

Table Of Contents % X

8e83
= Layers

AR X0
HECYNI IR)

https//aoha.dev.geonode. org/geoserver ms|

itp: v myserver.com/arcgiservices|mymap/MapServer MWMSServer?
it/ example.com/servietjcom. i wms Esrinap7ServiceNiame =Names.

Defautverson v

Jge| e n < >

522,613 956.449 Unknown Units.

el

_images/gn_up_0001.png
© ™ geosolutions@geonode-2: ~/geonode

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://waw.gnu.org/licenses/>.

#
A

inport os

PROJECT_ROOT = os.path.abspath(os.path.dirnane(__file_))

SITEURL =

"http://localhost:8000/"

DATABASES = {
‘default': {
'ENGINE': 'django.db.backends.postgresql_psycopg2',

'NAME': 'geonode’,
'USER': 'geonode’,
'PASSHORD' : 'geonode’,
1,
vector datastore for uploads
'datastore’ : {
'ENGINE': 'django.contrib.gis.db.backends.postgis’
'ENGINE': '', # Empty ENGINE name disables
'NAME': 'geonode_data’
'USER' : 'geonode’,
'PASSWORD' : 'geonode’
'HOST' : 'localhost’,

'PORT' : '5432',

_images/arcmap_interop_add.png
File Edt View Bookmarks Insert Selection Geoprocessing Customize Windows Help

eS8 L 98 x| 0 o - ms

i EEEEO

RAN @I« E-T 5@

S ABSTE,

Table Of Contents 2 x

kee8
= £ layers

Jge| e n <

'~ |catalog

¢-Pe@@

2 x

MR

TR

& Toolboxes
] Dstabase Servers
3 Dstabase Connections

parameters... | Coord. System: [unknown =

b |

Lo] o |

-81.271 13.427 Decimal Degrees

_images/arcmap_empty.png
File Edit View Bookmarks Insert Selection Geoprocessing Customize Windows Help
BEHG BB X0 (D] E4l=1ml=1olalr)

Q@I (H-EIN@ 7 HIERBES DR o
AF

TableOf Contents %
888
& Layers

Jge| e n <
984,925 1.675 Unknown Units

_images/navigation-highlight1.png
<> Code

Q@ lIssues

S Pull B

_images/navigation-highlight.png
<> Code

Q@ lIssues

S Pull B

_images/ge_geoexplorer.png
GeoNode
HOME LAYERS MAPS

]

Layers.

0~ @ &
4 Overlays

nait_administrative

4 Baso Maps
Oing Aerial with Labols
fapQuest Imagery
MapQuest Openstrootiap
Oopensirestiap

ONo background

DOCUMENTS

PEOPLE

Senin 1 ©

SEARCH

Data,SIO, NOAA, Us#Navy, NGA, GEBCO
©2013:Cnes/Spot Image

Google-earth
<

n

_images/new_repo1.jpg
@ o secrorpeaconmans © @ Explore Gist Blog Help BB ionnson B X B

jiOhnsOn / my_geonode emmmc=m G unwatch - % Star 0

Code Network Pull Requests 0 Issues 0 wiki Graphs. Settings.

Quick setup — if you've done this kind of thing before

®SetupinMac or [HTTP | ssH | hetps://github. com/jjehnsen/my_geonode. git

We recommend every repository include a README, LICENSE, and .gitignore.

Create a new repository on the command line

touch README.md
git init

git add README.md

git comnit -m "first commit"

git remote add origin https://github.con/jj0hns0n/my_geonode.git

git push -u origin master

Push an existing repository from the command line

git remote add origin https://github.com/jj0hns0n/my_geonode.git

_images/ge_feature_info.png
31 GeoNode s 1 ©

HOME LAYERS MAPS DOCUMENTS PEOPLE SEARCH

HAITI_ADMINISTRAT |V HE=em s

@ BHor-2s==la @

]
haiti_administrative.1160

haiti_administrative
ADMIN_LEVE: 4

Atributes ~ @*Share % Ratings ~ ® Comments

_images/new_repo.jpg
¢ ©|® Explore Gist Blog Help Biomnsn B %X B

® o s
L. | johnsOn / my_geonode e GUnwatch - % Star 0

Code Network Pull Requests 0 lssues 0 wiki Graphs. Settings.

Quick setup — if you've done this kind of thing before

@SetupinMac or [HTTP | ssH | hetps://github. con/jjehnsen/my_geonode. git

We recommend every repository include a README, LICENSE, and .gitignore.

Create a new repository on the command line

touch README.md
git init

git add README.md
git comnit -m "first commit"
git remote add origin http:

/github.con/§30hns0n/my_geonode.git

git push -u origin master

Push an existing repository from the command line

git remote add origin https://github.con/330hns0n/my_geonode.git
o P e e

_images/geonode_component_architecture.png

_images/nofts.png

_images/ge_layer.png
3K GeoNode soin | ©

HOME LAYERS MAPS DOCUMENTS PEOPLE SEARCH

HAITI_ADMINISTRATIVH

@ B@OF- +s--naN

©

13 Ches/Spot.Image
2013 TerraMetrics
Image UsS. Geological Survey

@info MAPS USING THIS LAYER

_images/no_marlin.png
Lavel | #Samples|_Average Max | std.Dev. | Eror% |Througnpul KBisec | Avg Btes
0 00| o 5 278 4116 0.00%| 1o7isec 85089 826605
2 00| 0] 5 233 4276 000% 170kec 1587.18 9sdeasl
0 200 6] 56 458 8137 0.00% 230kec 241647 1075404]
g 200 231 50 881 15049 000% 282sec 2590.41] _94206.5]
1 a0 57 55 o750 410.00 000%| 20.4isec 2689.13 935422
&2 384 169 76 8800 121031 000% 223sec 2126.48 076366
23 768 2560] 7716308 275493 000%| 21sisec 195111 67923
TOTAL 2152 1254 45 16308 2015.61 0.00% 221secl 204580 949531

_images/fw_warpedgdalinfo.png

_images/mosaic_publish.jpg
New Layer

add s rew lyer

addlayer from

Herw g atof

geosoluions bouider_b_opimized

resources contaned inthe stors boudsr_bg_optimead, ik on the ajer you wih to confiaure

- | Results 010 0 (out of 0 items) 4 s

optried e
> [>> |Resuts 0 to 0 (out of O items)

_images/fw_tiledovgdalinfo.png
Driver: GTiff/GeoTIFF
Files: 13tdeg15295_200803 0x6000m_cl.tif
Size is 2500, 2500

Orervievs; 150

©1250x125

oy e e e e g

_images/mosaic_pratopreview.jpg
] geosolutions:houlder_bg bouider_bg OpenLayers kML

_images/gdal_openlayer.jpg
Scale =1: 107K 799417.92188, 3333469.64063
Click on the map to get feature info

_images/mosaic_setname.jpg
Edit Layer

Edit layer data and publishing

geosolutions:optimized

Configure the resource and publishing information for the current layer
Data | publishing

Basic Resource Info
Name.
boulder_ba_optimized
Title

boulder_bg_optimized

_images/gdal_addraster.jpg
Add Raster Data Source

Description

MrSID.
MrSID Coverage Format

Basic Store Info

Workspace *

geosolutions [+

Data Source lame *

c3008957_nes_20
e

Enabled

Connection Parameters

URL*

Gataluser_data\c3008957_nes_201c3008957_nes_20.

_images/mosaic_retiledpreview.jpg
] gensolutions:houlder_bg_optimized bouider_bg_optimized OpenLayers kML

_images/gdal_publish.jpg
Edit Layer

Edit layer data and publshing

geosolutions:c3008957_nes_20

Configure the resource and publshing informaton for the current ayer
Data | publishing | Dimensions | Tile Caching |

Basic Resource Info

flame
[€3008957_nes_20
Title
[€3008957_nes_20
Abstract

Keywords

Current Keywords
wes N

s
-

c3008957_nes_20

Hew Keyword

Vocabulary

‘Add Keyword

Metadata finks

No metadata Inks so far

Note only FGDC and TC211 metadata links show up in WM 1.1.1 capabilties

Coordinate Reference Systems

Native SRS
'EPSG 26915 EPSG:NADS3 / UTM zone 15N,

_images/gdal_preview.jpg
B geosolutions:c3008957_nes_20 €3008957_nes_20 OpenLayers KL Select one

_images/mosaic_single_tiff.png
Add Raster Data Source

Description

ImageMosaic
Image mosaicking plugin

Basic Store Info
Workspace *

geosolutions ¥

Data Source Name *
mosaic_single_ti
Description
mosaic_single_ti

@) Enabled

Connection Parameters
uRL*
fle:DADEMO\ataluser_datatfootprint_dataimosaic_si Browse.

_images/gdal_sources.png
Raster Data Sources

8 ArcGrid - Arc Grid Coverage Format
@ DTED - DTED Coverage Format

8 EHdr - EHdr Coverage Format

@ ERDASImG - Erdas Imagine Coverage Format

@ GeoTIFF - Tagged Image File Format with Geographic information
8 Gtopo30 - Gtopo30 Coverage Format

@ ImageMosaic - Image mosaicking plugin

@ ImagePyramid - Image pyramidal plugin

@ JP2K (Direct) - JP2K (Direct) Coverage Format

8 |P2MISID - [P2K (MrSID) Coverage Format

B MrSID - MrsID Coverage Format.

@ NITF - NITF Coverage Format
@ Worldimage - A raster file accompanied by a spatial data file

_images/model_toolbox.png
) &5 Modeler [1 geoalgorithms]
SRy
- o8 Contour fiom
& it
‘Orfeo Toobox (inage anh{Contour from pors)
& QIS geoalgorithms [58 geoalgorithms]

_images/forbidden.png
Si¢ GeoNode

LOG IN TO AN EXISTING ACCOUNT

Username
Password

() Remember Me

Eee—— Login

_images/monitor1.png
OWS Request Summary

Categatted Ovepian o7 OWS Roquest

Overview | wis | wis | wes

OWS Request Summary

PV et

_images/modeler.png
SEXTANTE =1olx]|

=

i

_images/fw_tiledgdalinfo.png
Driver: GTiff/GeoTIFF

Files: retiled/13tde815295 200803 0x6000m cl.tif
Size is 2560, 2500

12x512| Type=Byte, ColorInterp=Red
12x512| Type=Byte, ColorInterp=Green
12x512| Type=Byte, ColorInterp=Blue

_images/mosaic_addraster.jpg
Add Raster Data Source

Description

ImageMosaic
Image mosaicking plugin

Basic Store Info
Workspace *

| geosolutions ~|
Data Source Name *

boulder_bg_optimized
Description

Enabled
Connection Parameters

URL*
file:/home/geosolutions/Desktop/workshop/data/user

_images/fw_basegdalinfo.png
Driver: GTiff/GeoTIFF

Files: 13tde815295 200803 0x6000m cl.tif

Size is 2560, 2500

500x16 Type=Byte, ColorInterp=Red
500x16 Type=Byte, ColorInterp=Green
Band 3 Block=2560x16 Type=Byte, ColorInterp=Blue

_images/monitorwebadmin.png
Monitor

s actiity
[Reports

_images/footprint_behav.png
Coverage Parameters
Accurate resolution computation
Talse

AllowMultithreading

Talse

Backgroundvalues

Filter

MaxdllowedTies

A
MergeBehavior

FLAT
OutputTransparentColor

SORTING

SUGGESTED_TILE_SIZE
512512

USE_JAI_IMAGEREAD
ftue

_images/migrate_mode1_022.jpg
Layers

Manage the layers being published by GeoServer
© Add a new resource
© Remove selected resources

[<1[11(>|[>> |Results 1 to 3 (out of 3 items)

Confirm object removal

[You are about to remove the following object(s):
san_andres_y_providencia_coastline

_images/ubuntu_vm_setup_16.png
Ubuntu Desktop. 21:17 { GeoNode Training

f@f

Terminal

_images/followconfirm.png
;¢ GeoNode

HOME LAYERS MAPS DOCUMENTS

Follow admin?

_images/migrate_mode1_021.jpg
€) (O localhost/geoserver/web/

GeoServer

Welcome

Welcome

About & Status

& server status
=| GeoServer Logs

27/ Contact Information
@ About GeoServer
& Process status

This Geoserver belongs to .

3 Layers © Add layers
pata 2 Stores © Add stores
[Layer Preview 1 Workspaces © Create workspaces

(8 mport Data

5 Workspaces

) Stores A\ Please read the file jvar/libftomcat7/webapps/geoserver/data/security

| Layers Jmasterpw.info and remove it afterwards. This file is a security risk.
@ Layer Groups
@ styles A\ The default user/group service should use digest password encoding.
Services A\ The administrator password for this server has not been changed from the
P default. It is highly recommended that you change it now. Change it

WS

& wms @ strong cryptography available

This Geoserver instance is running version 2.7-SNAPSHOT. For more information
Settings please contact the administrator.

_images/ubuntu_vm_setup_15.png
GeoNode Training

EE 48

Guest Session

ubuntu® 16.04 LTS

_images/footprint_cut_inset.png

_images/migrate_mode1_024.jpg
geo@geonode: /home/geonode/geonode

geo@geonode: ~/Desktop/backup$ cd /home/geonode/geonode

geo@geonode: /hone/geonode/geonode$ python manage.py importlayers /home/geo/Deskt
op/backup/

[created] Layer for '/home/geo/Desktop/backup/san_andres_y_providencia_coastline
.shp' (1/2)

Stopping process because --overwrite was not set and a layer with this name alre
ady exists.
[skipped] Layer for '/home/geo/Desktop/backup/san_andres_y_providencia_coastline
.zip' (2/2)

Finished processing 2 layers in 6.0 seconds.

Created layers

Updated layers

skipped layers

Failed layers

.000000 seconds per layer
geo@geonode:: /home /geonode /geonodes

Lol S e ol

_images/ubuntu_vm_setup_3.png
File Machine

@ @ |4

New Settings d

Ubuntu
© Powered Off

Help

2 .

Start.

Display the virtual machine settings window

Oracle VM VirtualBox Manager - @

{=3 Details

(D snapshots

E General B Preview

Name: Ubuntu

Operating System: Ubuntu (32-bit)

System Ubuntu

Base Memory: 4096 MB

Boot Order: Floppy, Optical, Hard Disk

Acceleration: VT-x/AMD-V, Nested Paging, PAE/NX,
KVM Paravirtualization

Display
Video Memory: 12M8
Remote Desktop Server: Disabled
Video Capture: Disabled
Storage
Controller: IDE
IDE Secondary Master: [Optical Drive] Empty

Controller: SATA

SATA Port O; Ubuntu.vdi (Normal, 30,00 GB)

B Audio

Host Driver:
Controller:

PulseAudio
ICH AC97

& Network
Adapter 1.
& uss

USB Controller:
Device Filters:

Intel PRO/1000 MT Desktop (NAT)

OHCI, EHCI
0 (0 active)

Shared folders
None
@ Description

None

_images/footprint_cut.png

_images/migrate_mode1_023.jpg
Styles

Manage the Styles published by GeoServer
© Add a new style
© Removed selected style(s)

[<1[1(=|[>> |Results 1 to 7 (out of 7 items)

Confirm object removal

[You are about to remove the following object(s):
san_andres_y_providencia_coastline

[san_andres_y_providencia_administrative

Results 1 to 7 (out of 7

_images/ubuntu_vm_setup_2.png
Create Virtual Machine

Hard disk

If you wish you can add a virtual hard disk to the new machine. You
can either create a new hard disk file or select one from the list o
from another location using the folder icon.

If you need a more complex storage set-up you can skip this step
and make the changes to the machine settings once the machine is
created.

The recommended size of the hard disk is 8,00 GB.

Do not add a virtual hard disk

© [Create a virtual hard disk now]

Use an existing virtual hard disk file

<Back Create Cancel

_images/footprint_mosaic_none.png
Scale = 1: 22M 22.58355, 31.54150

_images/model_dialog.png
Paints.

[t geosolutonsrafficSgnal [56:2230]

Interval

(100

Atirbute.

[siowD

x =] o

_images/footprint_mosaic.png
Seale = 1: 22 28.01486, 49.64588
Click on the map to get feature info

_images/model.png
SEXTANTE

- [Geoserver/PostGIS tools.
5 GeoServer management tods

&

Import vector into GeoServer

_images/footprint_normal.png

_images/footprint_mosaic_prop.png
Scale = 1: 22M 18.96267, 4387511
Click on the map to get feature info

_images/osm_river13.png
Save vector layer as.

Format ESRI Shapefile

Filename | Browse
Layer name

CRS Selected CRS (EPSG:: .
Encoding System .

» Select fields to export and their export options
& Add saved file to map

symbology export No symbology

Scale 1:50000

v Geometry

Geometry type Automatic

» [Extent (current: layer)

v Layer Options.
RESIZE [NO

Help

_images/osm_river12.png
DEBEBRBLR 08 2p 030D L
V- B Varo-Volz ixp 6 @& PE -

1 Zoom to Layer
r m s
S 27 showinoveniew

Browser Panel E (s
Duplicate
o D
RBRY*0 Set Layer Scale Visibility
> [Home Set Layer CRS
Favourites .
-y Set Project CRS from Layer
@ pB2 Styles 0
; :osstglls 5 Open Attribute Table
s
Q Y/ spatiaLite
e & ArcGisFeaturese Save As Layer Definition File.
@ ArcGisMapserve Filter...
@& - Layers Panel Show Feature Count

¢ @ w75 Droperties
Rename
south latkc HIVEL I UaU Ul...

_images/geoserver_admin.png
GeoNode - Tr:

ing [Running] - Oracle VM VirtualBox - 8 x

File

Machine

View Input Devices Help
Welcome - Mozilla Firefox

@ Geoserver: Welcome %

v | [Q search e 9 3 AS

€ @ localhost/geoserver/web

Welcome
About & Status Welcome.
L Server Status
Geoserver Logs
23 Contact Information ‘This GeoServer belongs to . Service Capabil
- 0 Layers © Add layers. 100
110
Data 0 Stores © Add stores 111
e e 1 Workspaces © create workspaces 11
. 201
[orkspaces wre
) stores /A Please read the file jvar/lib/tomcat7/webapps/geoserver/data/security
[Layers /masterpw.info and remove it afterwards. This file is a security risk. Loo
110
@ Layer Groups Toe
@ styles /i, The default user/group service should use digest password encoding. 0
i wns
Services /A, The administrator password for this server has not been changed from the 111
& wes default. It is highly recommended that you change it now. Change it 1.3.0
: wes
& wrs @ strong cryptography available 1.0.0
$ s
This GeoServer instance is running version 2.7-SNAPSHOT. For more information 1.0.0
Settings. please contact the administrator. WMs-C
111
@ Global WS
B 100
I Coverage Access
Tile Caching
Tile Layers
@ caching Defaults .
 Gridsets
= Disk Quota
GeoGig
@ GeoGig Repositories
@ Remotes Security
Security
F settings J

BO® &= @ @ @ @ Right Ctrl

_images/osm_river15.png
GeoNode oata v Maps v About v

=-8+0s/F-QQ--x®H °

' ¥ '

Feature Info =%

_ f Pike Natonal Forest
South_platte_river_road.1 -

Name a Value

highway tertiary

id Way/17082695

name Southwest P..

name_1 County Road. el

old_raiwa CB&Q

raitway abandoned

p
Peak i
287 m -

— 1:68247 -

B e ecis - bt

_images/geoserver.png
& Delete workspace

@ Importraster nto GeoServer
& Import vector into GeoServer

_images/osm_river14.png
Name: [south_platte_river_road| J

savein folder: | « | @geo | Downloads|

Create Folder

Places Name
Qsearch

@ Recently Used

geo

B Desktop

2 File System

+ size Modified

[Documents
Music

@ Pictures

i@ videos
Downloads

ESRI Shapefile [OGR] <

cnce | D

_images/addlayersselect.png
| [map- Syprint | @ wentity @ Query f=measure -+
Layers » Available Layers

View avalabie data from: '°S"

Title]

san_andres_y_provi... geonode:san_.
SanAndres Y Provid... geonodesan_..
SanAndres Y Provid... geonodesan_..
SanAndres Y Provid... geonodesan_..
SanAndres Y Provid... geonodesan_..
san_andres_y_provi.. geonodessan_.

San Andres Y Provid... geonodesan_

Water_Hydrant_SD geonode'water.

© Add lyers | Done

_images/geoserver_global_settings.png
GeoServer

About & Status.
(8 server status
[=) Geoserver Logs

23 Contact Information
© About GeoServer

Data
Layer Preview
Import Data
Workspaces
(@ stores

W Layers

@ Layer Groups
D styles

Services
& wms
(@ wes
(& wrs
(& wes

Settings
@ Global
B

I Coverage Access

Tile Caching

H Tile Layers
@ caching Defaults
_ M Gridsets

_images/osm_river3.png
) OpenStreetMap ‘ Edit | ~| History | Export ‘ GPS Traces User Diaries Copyright Help About Login Sign Up

Search Whare sm 17 ﬂ

Way: Southwest Platte River Road
(17082695)

Rermoved unnecessary tiger data

Version #8 - Changeset #49232391

Tags
highway tetiary
name Southwest Plate River
Road
name_1 Courty Road 95

old_taitway_operator CB&Q

vaitway abandaned
tigerefee st

tiger.caunty Jefferson, CO
tigername_base Plate River
figername_base_{ County Road 95

(e (TRe, -

) T g r————

_images/addlayerslink1.png
Wap + Bt @taentty Floer [Pmeasue
Lavers
©-0 £

©
© Finaiyers

No background

_images/geoserver_admin1.png
GeoServer

About & Status
(2L Server Status

=] GeoServer Logs
Contact Information
© About GeoServer

Data
[Laver Preview

& wes

Settings
8 Global

Ewn

B Coverage Access

Security

2 setings

@ authenticaton

3 Pesoworts

2 Users,Groups, Roles
5 o

B sevices

Demos

Welcome

Welcome

“This GeoServer belongs to .

10 Layers © Add layers
10 Stores © Add stores
3 Workspaces © Create workspaces

A\ Please read the file

1Users/ohnsony/projects/geonode/geoserver/dataj security/masterpw.info and remove it
afterwards. This file is 2 security risk.

/A, The default user/group service should use digest password encoding.

i\ The administrator password for this server has not been changed from the default. It s
highly recommended that you change it now. Change It

© strong cyptography avalable

“This GeoServer instance s unning version 2.2. For more information please contact the
administrator.

Service Capabilities
wes
100
111
wFs
100
110
200
wis.
111
130
wps.
100

_images/osm_river2.png

_images/addnewserver.png
| (EMap- (Sprint | @ identiy dB

Layers » Available Layers

View avaiable data from:
My GeoServer WMS

My GeoServer WMS
Openstrestitap Layers
MapQuest Layers
Bing Layers

MapBox Layers

Add a New Server.

0
by

_images/geoserver_layers.png
GeoServer

About & Status
(2, Server Status
] Geoserver Logs

| Contact Iformation
@ About GeoServer

Data

Layer Preview
(5 1mport Data
=) Workspaces
O stores

9 Layers

@ Layer Groups

p——
& ws

Settings
(8 Global

o

[Coverage Access

Security

& settings

O Authentication

Y passworcs

2 Users, Groups, Roles
@ Datn

Logged in as admin. | fi] Logout

Layers

Manage the loyers being published by GeoServer
© Add 2 new resource:
© Remove selected resources

11> >> Results 1 to 11 (out of 11 items) 4 search

O Type Workspace Store Layer Name Enabled? Jad"®

O @ geonode Adult Day_Care Adult_Day_Care v EPSG:2230
O o geonode casinos casinos v EPSG:2230
O 1 geonode san_andres_y_providencia_administrtive san_andres_y_providencia_administretive EPSG:4326
O W1 geonode san_andres_y_providencia_coastline ‘san_andres_y_providencia_coastiine v EPSG:4326
O I geonode san_andres y providencia_highway san_andres_y_providencia_highway EPSG:4326
O © geonode san_endres_y_providencia_location san_andres_y_providencia_location v EPSG:4326
O M geonode san_endres_y_providencio_naturel san_andres_y_providencia_naturel v EPSG:4326
O o geonode san_andres_y_providencia_pol san_andres_y_providencia_pol v EPSG:4326
O M geonode san_endres.y_providencia_water san_andres_y_providencia_water v EPSG:4326
O o genode single_point single_point v EPSG:4326
O @ geonode workshop ontdrainage v EPSG:3978

_images/osm_river5.png
1+ | [eoleraco
Colorado, Unitad States of America

Colorado Sprinds, Colorado Springs, El Paso County, Colorado,
United States of America

Colorado, Pococi, Limén, Costa Rica

Colorado, Microrregidn Astorga, Mesorregio Norte Central
Paranaense, Parand, South Region

Colorado, Abangares, Costa Rica
Barro Colorado Island, Panamé Oeste, Panama
Arvada, Calorado, United States of America
Westrminster, Colorado, United States of America
San Luis Rio Colorado, Sonora, Mexico
/] 520 duan Colorado, Oaxaca, Mesico
% s -

_images/addlayersselect_quickstart.png
Si¢GeoNode o

Wnap ~ EypPrint @ ldentiy [measure.

LAYERS » AVAILABLELAYERS

View avalale daa from: My GeoServer WMS ¥
Tile 1d

+ san_andres_y_provide... geonode:san_.

+ san_andres_y_provide... geonode:san_.

_images/geoserver_layer_params.png
Logged i s amin. |] toseut |

GeoServer

Edit Layer

Edit layer data and publishing

geonode:ontdrainage

Configure the resource and publishing information for the current layer

About & Status
(2L Server Status
=] GeoServer Logs

23 Contact Information

© About GeoServer

Data | Publishing || Dimensions
Basic Resource Info
Name
‘ontdrainage
Title
‘ontdrainage
Abstract
Settings
(@ Global
o)
[coverage Access
- Keywords
Security Current Keywords
& settings ‘ontdrainage
U Authentication features
& reore Remove selected
2 Users, Groups, Roles

3 pata New Keyword
o -

_images/osm_river4.png
Way: Southwest Platte River Road
(17082695)

Rermoved unnecessary tiger data

Version #8 - Changeset #49232391

Tags
highway tetiary
name Southwest Plate River
Road
name_1 Courty Road 95

old_taitway_operator CB&Q

vaitway abandaned
tigertee st
tiger.caunty Jefferson, CO
tigername_base Plate River
figername_base_{ County Road 95

tigername_direction_

_images/add_user.png
Django administration

Home » Auth

Select user to change

_images/geonode_stores_shapefile.jpg
Edit Vector Data Source

Edit an existing vector data source

Shapefile
ESRI(tm) Shapefiles (*.shp)

Basic Store Info
Workspace *
geonode +|
Data Source Name *

san_andres_y_providencia_coastline
Description

& Enabled

Connection Parameters
Shapefile location *

file:///home/geo/Desktop/gisdata/data/good/vector/s| Browse.
DBF charset

150-8859-1 -l

& Create spatial index if missing/outdated
) Use memory mapped buffers (Disable on Windows)

& Cache and reuse memory maps (Requires Use Memory mapped buffers to be enabled)

_images/osm_river10.png

_images/add_test_user.png
Home » Auth > Users > Add user

Add user

First, enter a username and password. Then, you'll be able to edit more user options.

Username: test_user

Requied. 30 characters o fewer.Lettrs,digs and @/.+/4_ only.

Password: p—

Password confirmation: | e

Enter the same password as above, for verfication

Save and acd antver | | Save and contie e | [E)

_images/geonode_stores_datastore_list2.jpg
Stores

Manage the stores providing data to Geoserver

© Add new Store
© Remove selected Stores

[11[> || >> | Results 1 to 2 (out of 2 items) -\ search

geonode san_andres_y_providencia_coastline Shapefile

_images/osm_river1.png
/- OpenStreetMap

South Platte River, Denver ﬂ

Search Results

Results from OpenStreethap Norminatim

River Narth Fork of the South Platte River, Jeflerson
County, Colorads, United States of America

Harnlet South Platte, Jefferson County, Colorado,
United States of America

Darn Platte Canyon Dam, Jefferson County, Colorado,
United States of America

Canal Platte Canyon Ditch, Jeferson Couny,
Colorado, United States of America

Stream Flatte Canyon Ditch, Jeferson County,
Colorado, United States of America

Track North Platie River Road, Douglas Caunty,
Colorado, United States of America

Pine junction-/
i/

2
< m

GPS Traces

User Diaries

Copyright Help About | Logn

1 @ OpenStresthan contributors .

Sign Up

+
P
S
i
g

_images/addgeotiff2.png
New Layer

Add a new layer

Here s 2 st of resources contained n the store '13tde815295_200803_0x6000m .
Cick on the ayer you wish to configure

1> Resuits 10 1 (out of 1 items) A Search
Published Layer name action
13106815295 _200803_0x6000m_c| Publsh

Resuits 140 1 (out of 1 items)

_images/geonode_workspace_geonode_list.jpg
Workspaces

Manage GeoServer workspaces

© Add new workspace
© Remove selected workspace(s)

[<< [<|[1][>][>> Results1to1 (out of 1 items) . search

~> | Results 1 to 1 (out of 1 items)

_images/addgeotiff1.png
-
Add Raster Data Source

Desapton
=

Tagged Imsge P Frmat vith Geagrahie iformaticn
Basic Store Info

Workspace * —

[l RV —r
Dotasource name
1 tie15265_ 200807 0:000m 1

14mag2012 1211
131770325 200803 0A6000M A 14mag2012 1210

131de770340_200803 0RE000M_GAF 144mag2012 1210

1314e815205_200603_0-6000m_l | | 15te7e5280 200803 0x6000m_ i 14mag2012 12,10
¥ Enbied 1316785295 200603 0A6000M A 14mag 2012 1231
parameters 1316785310 200803 0R6000M_GLAf 14map2012 1210

e 13100785325, 200603 OHEO0OM_GAF 144map2012 1211
ERm———r 131de785340_200603 046000M A 14mig 2012 1209
131e600280_200603_ 0RE000M_ctf 14map 2012 1211

131deB00295, 200803 046000M A 14mag2012 1211

1316G00310_200603_046000M LA 14mag 2012 1210

1310600325, 200603 CR6O00M_CLtf 14mag2012 1210

131deB15290_ 200803 0R6000M_GLAF 14mag2012 1211
Lat0e615295 200803 QOO LA 14map 2012 12.10
131deQ15310 200603 0A6000M LA 14mig 2012 1210

_images/geonode_workspace_geonode_edit.jpg
Edit Workspace

Edit existing workspace

Name
‘geonode

Namespace URI
http://www.geonode.org/
The namespace uri associated with this workspace

Default Workspace
[

Settings

Enabled
=]

_images/osm_river11.png
BR Oepp o HPD RS
& fRTI%0E "G Exsss% & 4l

» BB
Browser Panel ® Identify Results
27 %0 3 -1 a8
> [Home 2 Feature
Favourites v south_platte_river_road
riE/ ¥ name
DB2 » (Derived)
MSSQL > (Actions)
® postGis. ~ @id
/# SpatiaLite highway
& ArcGisFeatureServer name
@ ArcGisMapserver 2 name_1
* Layerspanel © old_railway_operat
railway
¢ @l ® TV & 8 & O tiger:cfcc
tiger:county

& — south_platte_ r_road OG...

tiger:name_base
tiger:name_base_1
tiger:name_directic
tiger:name._type

Mode | Current| 2| [] Aut

View

_images/addgeotiff4.png

_images/addgeotiff3.png
Coordinate Reference Systems

Native SRS
EPG26013 EPSGNADS | UTM z0ne 13W..
Declared SRS
EPG26013 Find | psG:NaDa3 / UTM zone 13M..
SRS handing
Reproject native to declared ¥
Bounding Boxes
Native Bounding Bow
Min Miny Max Maxy
481500 4420500 483000 4431000

Compute fiom data

Lat/Lon Bounding Bos
Minx MinY Maxx Max ¥
1052168216144 40,015499345512|-105,1992022820 | 40,02904546109€
Compute fiom native bounds

Coverage Parameters

InputTransparentColor

st

'SUGGESTED_TILE _SIZE
512512

_images/geonode_workspaces.jpg
Data

Layer Preview
mport Data
Workspaces
(3 stores
9 Layers

_images/addlayerslink.png
er®

© Addiayers
© Fraiyers

_images/osm_kampala1.png
+

Kampala

Kampala, Centry Region, Uganda

Kampala, South Sulawesi, Indonesia

Kampala, Nahouri, Central-South, Burkina Faso
Kampala, South Sulawesi, Indonesia

Kampala, Bakisi (chefferie), Shabunda, South Kivu, Congo-
Kinshasa

Kampala, Walikale, North Kivu, Congo-Kinshasa
Kampala, South Sulawesi, Indonesia
Kampala Vilage, Butaleja, Eastern Region, Uganda

Ober-Karnpala, Ober, Ojwina, Lira Muricipality, Lira, Northern
Region, Uganda

Old Karnpala, Kampala, Central Region, Uganda

_images/geonode_layers_styles.jpg
& Queryable

Opaque
Default style
san_andresy_providencia_coastline

/ External Border
Internal Border

Additional Styles

ble Styles Selected Styles
line
point
polygon a
puits_vovo_ambanja e
raster
<]

san_andres_y_providencia_
san_andres_y_providencia_

Default Rendering Buffer

_images/osm_kampala3.png
Ny SR - i

T A
g

B

_images/osm_kampala2.png
Kol i
pendence

Inde

Loaded ~nodes: 80, ways: 1, felations: 0

pois: 0, lines: 1, polygans: 0

_images/access_geoserver.png
GeoNode - Training [Running] - Oracle VM VirtualBox

File Machine View Input Devices Help
Firefox Web Browser

Welcome! - example.com - Mozilla Firefox

Welcome!-example.com %

€ localhost

Menu

& Upload Layers

& Profile
@ Recent Activity
Q Inbox
¢ Announcements
@ Remote Services

@ InviteUser

« GeoSerkver
£ Admin

@ Help

oOvRAEPD D JE e

localhost/geoserver/

'l

_images/geonode_stores.jpg
Virkspaces:
@ stores
[Layers
@ Layer Groups
D styles

_images/osm_kampala5.png
| Query Wizard

(@

The wizard assists you with creating Overpass
queries. Here are some usage examples:

« Drinking Water
« highway=" and type:way
« tourism=museum in Vienna,

ey o

_images/geonode_signin.png
GeoNode - Tr:

File Machine View Input Devices Help
Firefox Web Browser

é ‘Welcome! - example.com - Mozilla Firefox

Welcom ample.com x

€ @ localhost

B
3

=]
B

- -

«

4

¢

]

() Remember Me

il

O ¥

_images/osm_kampala4.png

_images/accountsettingslink.png
Actions

Edit profil information
Account Settings
Change password
Upload new layers

Create a new map

_images/geonode_stores_datastore_list.jpg
Stores

Manage the stores providing data to GeoServer
© Add new Store
Remove selected Stores

(<< |[<|[1][>|/>>Results1to1 (out of 1 items)

_images/osm_kampala7.png
Si{GeoNode oia v Maps v

Wnap - BPrint @tcentty fhQuery = Measure - (FEdt -

LAYERS

©-0 £V
4 Overlays
(@ nakasero_buildings
u
(@ nakasero_roads
*
(2 nakasero_streets.

/

Feature o

nakasero,_streets 277

Name s Value

highway secondary

id Way/244033527

name Nakasero Road

_images/accountpage.png
ACCOUNT

Email
john@smith.com
Timezone

Americallew_York

Language
Engiish

_images/geonode_stores_datastore.jpg
Edit Vector Data Source

Edit an existing vector data source

PoSIGIS
POStGIS Database

Basic Store Info
Workspace *

geonode +|
P——

datastore
Description

& Enabled

Connection Parameters
host *

localhost
port*

5432
database

geonode_data

R

_images/osm_kampala6.png
QGlIs 2.18.10

g B -«I B = AN

.

4 » B D
—_— v Browser Panel ®
= R 0
= o
) Favourites
b - =
- & B2
s .n v P MssQL
@ @ postcis
— Y/ spatiaLite
& ArcGisFeatureserver
A
= % @ ArcGisMapServer
— @ L @ ows Y
"" N Layers Panel ®
S ° ¢ @ TE 23 e
' @ © nakasero OGRGEOJSON ...
AVl & — nakasero OGRGeoJSON

(& [nakasero OGRGeoJSON ...

=
‘ Coordinate | 32.60257,0.32943 |9 Scale | 1:27.885 | v|@ Magnifier(100% @/ Rots

_images/geonode_layers_basic_data.jpg
Data | Publishing | Dimensions | Tile Caching

Basic Resource Info
Name

san_andres_y_providencia_coastline

& Enabled

& Advertised

Title

San Andreas Coastlines
Abstract

Inventaire des puits d'eau potable dans la Commune Urbaine dAmbanja, 2012.

Keywords

Current Keywords
Hydrauliaue E
GPS. 1=/| _Remove selected |

New Keyword

Vocabulary

Add Keyword

_images/open_terminal.png
GeoNode - Training [Running] - Oracle VM VirtualBox

Ubuntu Desktop ty B o) 1556

Terminal

”
B

N
%

oD

_images/geonode_dev_mode.png
{
2:{GeoNode noata v maps v avout v

Welcome

GeoNode is an open source platform for sharing geospatial data and maps.

If you have any questions about the software or service, join our mailing list.
Need help? Getting Started

Search for Data.

Advanced Search

Discover the available datasets.

_images/notification_settings.png
Notification Settings

Note: You do not have a verified email address to which notices can be sent. Add one now.

Notification Type Email

User following you @
another user has started following you

Request to download aresource @
Arequest for downloading a resource was sent

Layer Created @
Alayer was created

Layer Updated @
AlLayer was updated

Layer Deleted @
AlLayer was deleted

Comment on Layer @

Alayer was commented on

Rating for Layer @
Arating was given to a layer

_images/geonode_layers_list.jpg
Layers

Manage the layers being published by GeoServer

© Add a new resource
© Remove selected resources

< 1 -~ | Resuits 1 to 3 (out of 3 items) \ search
O Type Workspace Store Layer Name. Enabled? Native SRS
0 o geonode datastore puits_vovo_ambanja 2 EPSG:4326
ou geonode datastore san_andres_y_providencia_administrative v EPSG:4326
. geonode datastore san_andres_y_providencia_coastline 4 EPSG:4326

1 - | Results 1 to 3 (out of 3 items)

_images/oracle_start.png
New data source

Chaose the type af data source you wish to configure

Vector Data Sources

iDirectory of spatial les (shapefiles) - Takes a drectory of shapefies and expases it a5 a data stare

CAMierosoft SQL Server - Microsoft QL Server
CAMicrosoft SQL Server (JNDI) - Microsoft SQL Server (INDI)

_images/geonode_layers_crs.jpg
Coordinate Reference Systems
Native SRS

EPSG:4326
Declared SRS

EPSG4326
SRS handling

Force declared

Bounding Boxes
Native Bounding Box

EPSG:WGS 84.

Find... | EPSG:WGS 84.

Min X Min Y Max X Max Y
813962935 |13.3202891 813490249 |13.3859614.
Compute from data

Lat/Lon Bounding Box

Min X Min Y Max X Max Y
813962935 |13.3202891 813490249 |13.3859614

Compute from native bounds

_images/oracle_conf.png
New Vector Data Source

#dd a new vestor data saurce.

Oracle NG (D)
Oracle Database (NDI)

Basic Store Info

Workspace *

test i
Data Source Name *
e

Description

‘Shows haw ta retrieve & connection poal fram JNDI

) Enabled

Connection Parameters

indiReferenceName *
Javacomplenvidbcioraiocal
schema

DBUSER

_images/geonode_layers_metadata_links.jpg
Metadata links

Type

other

other

other

other

FGDC

other

[P P2 A P PR PR P

Format.

other

URL

other

hitps//localhost/catalogue/csw2outputschema=http33

other

hitp//localhost/catalogue/csw2outputschema=http33

other

http://localhost/catalogue/csw?outputschema=http%3

text/xml

hitps//localhost/catalogue/csw2outputschema=urn3)

‘other

http://localhost/catalogue/csw?outputschema=http%3

http://localhost/catalogue/csw?outputschema=http%3

Remove

Remove

Remove

Remove

Remove

Remove

_images/geonode_layers_menu.jpg
b Gigoryrnd
8] Layers

_images/styling_vector_add_style.png
WHS Settings

¥ Queryzble

Default style
point encmark =]
W shopping

A mountains.

[Wias

Mgovernement

A aimort

&seiool

+ cemetery

e

Additional styles

Available Styles

arealandmarks
arealandmarks_pt
buildings
cemetery_graphics
cemetery_mark
cityimits

contours

countries

county.

dem

Selected Styles

_images/styling_vector4.png
wns verson: [111] i

Format: [PNG 2061%] Stvles: [Tandmarka 7] width/veight: [2ato =] [Auto =]

[Singletle =] Tramsiton ffect: [None =] Antitas: [Full

]
- a
a a
& a
aa a
aa o
a
a
a
a a
a a
a a
a A &

Stale = 1: 122K
Click on the map to get feature info

~105.42535, 40.12108

|

Dx

_images/merge-button.png
This pull request can be automatically merged. "M - Merge pull request
You can also merge branches on the command line.

_images/test_geoserver.png
GeoNode - Tr:

ing [Running] - Oracle VM VirtualBox - 8 x

File Machine View Input Devices Help
Firefox Web Browser 1y B o) 1637 L&
Ubuntu Start Page - Mozilla ver.war /v

Ubuntu help> Ubuntu shop > Ubuntu community >

BO® P& @ S B Right Ctrl

_images/menu_admin.png
| & Profile 1
£ Admin
@ GeoServer

O Logout

_images/test_geonode2.png
g] - Oracle VM VirtualBox

File Machine View Input Dey

Firefox Web Browser 1 B o) 1636
© ™ welcome! - example.com - Mozilla Firefox

Welcome! - example.com x

€ @ localhost

Welcome

GeoNode is an open source platform for sharing geospatial data and maps.

If you have any questions about the software or service, join our | ng
Need help? C¢ arted

No Layers

Click to sea atia sublished by other users,
standard format

BO® &= @ @ @ @ Right Ctrl

_images/map_permissions.png
Permissions

Who can view and download this data?
@ Anyone () Any registered user () Only users who can edit
Who can edit this data?

Any registered user
® Only the following users or groups:

x barbara
'Who can manage and edit this data?

x barbara

Apply Changes

_images/style_rule_basic.png

_images/manage_styles.png
yers Maps

Manage Styles

Documents Upload

Manage Available Styles for geonode:soilp

Layer Default Style

Available styles

Click on an available style in the
upper box to assign it to this layer.
Selected styles appear in the lower
box.

soilp ¥

Default Polygon 5
Default Line

Default Raster

Default Point

jamaica_geology_forms

201_geosbg
belize airstrins wes84 ¥
« — y

e Available Styles

&

soilp

srinaldo

_images/style_rule_advanced.png

_images/mapname.png
Maps / San Andreas

_images/styledlayer.png
HOME LAYERS MAPS

DOCUMENTS ~ PEOPLE SEARCH

| [usp- (Syprnt || @ denty| d Query F=essure - et -

Layers

©-0s,9

4 Overlays

[Clsan andres ¥ Providencia Water

san_andres_y_providencia_poi
.

[Clsan andres Y Providencia Natural

[Clsan andres Y Providencia Location
Dlsan andres v Providencia Hghway
[Clsan andres Y Providencia Coastine

[Dsan_anares_y_providencia_aaministrative.
Base Maps

bluemarble
Bing Acrial Wih Labels
MapQuest magery

© mapQuest Openstrestitap
Openstreetiiap

No background

S[d] L % 3 ==37

O]
(OND)
[C]

AEROPUERTO
3] INTERNACIONAL
GUSTAVOROUAS

LA

P'S b

Parking.
]

erE .

_LaLoma

Flace of Worshipilglesia

Museun:Casa Museo Isled. ® Bautista de fa Loma

2

7 HotelHotel Marazul

Beach:Evans Point.
4

LfRER.]

CafecLa Heladeria
£
San Andrés
)

Hotel:Royal Decameron

gt
-

Maps / San Andreas

Beach:Punta Hansa (
Chapman Point)

_images/mapcomposition.png
Layers

©- 049
4 Overlays
[Clsan andres ¥ Providencia Water

san_andres_y_providencia_poi
.

[Clsan Andres Y Providencia Natural
[Clsan andres Y Providencia Location

San Andres Y Providencia Highway

4

[Clsan andres Y Providencia Coastine

[Dsan_andres_y_providencia_aaministrative.
Base Maps

© buemarble

© Bing Aerial Wih Labels

Flace of Worshipiglesia
Museun;Coss Miseo Isled ' Bautista de la Loma.

Bu{h.‘fvaé:w 7

Hote Hotel Marazul

AQuariin) @ peach:punta Hansa (
Chapman Point)

_images/style_rule_label.png

_images/maps.png
Explore Maps

Total: 67
Cart

Add resources through the "Add to
cart” buttons

Filters

‘

Clear

Search by text

ATEGORIES

>«

>

> REGIONS
> EXTENT

TE

no image

Ay
z
”
test
: &edmin f128Jun2017 @3 0 %O 9 ViewMap
”
Red de aguay cloaca
1
&admin P1210un2017 @23 A0 k5 @ ViewMap

_images/styling_vector1.png
Styles

Manage the Styles published by Geoserver
© Add 3 new style
© Removed selected styie(s)

<)<z Results 1 t0 25 (out of 41 1
" style ame

I areandmarks

[areatandmarks_pt
0 buidings

[cemetery_graphics

™ cemetery_mark

_images/mapname1.png
0 johnsmith v

_images/styles.png
Layers » san_andres_y_providencia_poi

[-Styles A

Choose style: san_andres_y_providencia_

@Ads @ remove PEdt P Dupicate

Rules A

® Untited 1

@ Ada @ Remove (P Et §f Dupicate

_images/maps_quickstart.png
1$GeoNode o v s v Aot v CEEEE (O oo -

Explore Maps

Selected Maps 0 MapS found 2

Add maps through the
neheckboxes”

_images/maps1.png
GeoNode

S GINOIFVELEN SEARCH MAPS

Signin | @

EXPLORE MAPS

MostRecent | MostPopular | Most Shared

v CATEGORIE! <

Al Categories

No data found

Biota

Boundaries

Climatology Meteorology Atmosphere

Economy

Elevation

Environment

Farming

Geoscientific Information

Health

e e e M B T s

_images/styling_vector2.png
New style

Type a new SLD defiition, or use an existing one as 3 template, or upload a rearly mark
the "validate” button to verify the style is 3 valid SLD document,

Name

landmarks
Copy from existing style

Sceglieme una =l coor

12pt 7|

_images/marlin.png
Label | #Samples|_Average Max [Std Dev. | Emor% [Througnpui
T 100 5 @ s 5708 0.00%| foisec
z 100 o] 42 247 4145 0.00%| Toisec
i 200 29 50| 424 6050 0.00%| Zo.disec
g 200 76| 42 450 77.44] 0.00%| 382isec
1 400401 51| 117 19152 0.00%| 3ooisec
2 34 790 78] 1900 35650 0.00%| 3ddisec
54 708 7538 95| 3500 617.92] 0.00%| 37aisec
TOTAL 2152 802 42 3595 71743 0.00% 30 tiseq|

_images/style6.png
Layers

Hanage the layers beng pubished by Geoserver
© Add 3 new resource.
© Remove seiected resources.

- Resuks 1t 17 (out of 17 tems)

T Twe Workspace store Layer tame

r ‘geasolutions. boulder_shapefies. bbuldings.
rom gecsoitins bouker_shapefies blkes

(=l] geosoltions boukder_shapefies Bouderctytimts
rom geosoitons boulder_snapefies bpsndmarks
() geosoitins boukler_shapefies bptindraris
r o geosoitons boulder_shapefies bptandraris_2876
ru gecsoitons boulder_stapefies orvers

=7} geosoitions bouker_shapefies butrsets

r ‘geosolutions. boulder_shapefies. ccounties.
rom gecsoitions bouker_shapefies parces

ru geasolutions. boulder_shapefies. Traks.

rom geosoitons boulder_snapefies Wetnds_regubtory_area
r e geosoitions dem stm

r® geosoitons nisnade hihace.

(i] gecsoutins NaturakarthCountries WorkiCountres
=} geosoitions states states

ru

i i rts

_images/logoutlink.png

_images/style8.png
WMS Settings
P queryable

outer
Label
/ iner

Additional Styles
Available Styles

arealandmarks
arealandmarks_pt
buildings

_images/style7.png
Edit Layer

Edit ayer data and pubishing

geosolutions:Mainrd

Configure the resource and pubiishing information for the current yer

Dimensions | Tile Caching

Basic Resource Info

Name.
Mainrd

P Enabled

W Advertised

_images/layerstoolbar_quickstart.png
9,
Si{GeoNode outa v Maps v Avout v CEEEE (O oo -

Explore Layers

Selected Layers 0 Layers found oIv

_images/sqlviews_postgrestore.png
GeoServer

New Layer

About & Status Add 3 new layer

& seversous
[= Geoserver Logs Add layer from [Sceglieme uno
ontact Information Eereooo
@ About GeoServer
e
[Laver Preview
[Workspaces
@ stores el
[Layers geosolutions:sfdem
Layer Groups geosolutions'shape.
G e —
Services geosolutions:usa
& wes geosol‘msw:ndz
(& wrs.

& wms
& wes

_images/layerstoolbar.png
EXPLORE [VA{=E UPLOAD LAYERS

_images/sqlviews_plainsql_refresh_srid.png
the_route Linestring EN

_images/listing-screen.png
Pull requests Labels Milestones Filters v is:open is:issue

@® 104 Open 9,660 Closed Author v Labels v Milestones v Assignee v Sort ~

© .form-group-sm .form-group-Ig shrink textarea css | LT
#13989 opened 11 hours ago by limitstudios v3.2.1

® Tooltip unnecessarily breaks into multiple lines when positioned to the right s
#13987 opened 15 hours ago by hnrch02 v3.2.1

® Tooltip Arrows in Modal example facing wrong way (3 Ps
#13981 opened a day ago by SDCore

® Table improvement &3
#13978 opened a day ago by Tjoosten

©® docs/dist files [T123 .7
#13977 opened 2 days ago by XhmikosR v3.2.1

@ Potential solution to #4647 [js [I
#13976 opened 2 days ago by julioarmandof

O Bootstrap site: right-hand navigation text becomes rasterized after scrolling (23 (223 [I
#13974 opened 2 days ago by mg1075 v3.2.1

® Dropdown toggle requires two clicks [js| [B
#13972 opened 2 days ago by Kizmar

_images/style1.png
About & Status

@\ server status

[5) Geoserver Logs
Contact Information
© About Geoserver

Data

Layer Preview
& Workspaces
@ stores

W Layers

.

_images/layersunchecked.png
Layers

©- 049

4 Overlays
[Clsan andres ¥ Providencia Water

/san_andres_y_providencia_poi
.

[Clsan andres Y Providencia Natural

[Clsan andres Y Providencia Location
[Clsan andres v Providencia Highway
[Clsan andres Y Providencia Coastine

[Clsan_anares_y_providencia_asmiistrative
Base Maps

_images/style.png
 Labels (deprecated)

e [RKoema]

ospiay | ([Metacate | i actons

unit Miimeter |
Transparency 0% G——

o mow]

Saved styles

&= &=

senenerit | Losdstye ..

reb

_images/login.png
GeoNode - Training [Running] - Oracle VM VirtualBox

Help

Q ty B) 1554 3%

GeoNode Training

=

Guest Session

ubuntu® 14.04 LTS

_images/style3.png
New style

/P2 2 new SLD dsfinten, o use an sxsting one = 3 fampste, o upload resdy mads sy rom your is system. The adar can provids
yntex ighight snd be Erought t ful scraen, Cick on the vaidsts button o vardy the sy & vaid SLD docurmant,

Workspace
=

Copy from existing style

Seegiemeuo 2] cony

120t =

EXEE]

O ———

Stogla. | Nessunfile selezionato. Upisd

Validate Submit Cancel

_images/listing-screen1.png
Pull requests Labels Milestones Filters v is:open is:issue

@® 104 Open 9,660 Closed Author v Labels v Milestones v Assignee v Sort ~

© .form-group-sm .form-group-Ig shrink textarea css | LT
#13989 opened 11 hours ago by limitstudios v3.2.1

® Tooltip unnecessarily breaks into multiple lines when positioned to the right s
#13987 opened 15 hours ago by hnrch02 v3.2.1

® Tooltip Arrows in Modal example facing wrong way (3 Ps
#13981 opened a day ago by SDCore

® Table improvement &3
#13978 opened a day ago by Tjoosten

©® docs/dist files [T123 .7
#13977 opened 2 days ago by XhmikosR v3.2.1

@ Potential solution to #4647 [js [I
#13976 opened 2 days ago by julioarmandof

O Bootstrap site: right-hand navigation text becomes rasterized after scrolling (23 (223 [I
#13974 opened 2 days ago by mg1075 v3.2.1

® Dropdown toggle requires two clicks [js| [B
#13972 opened 2 days ago by Kizmar

_images/style2.png
Styles

‘Manage the Styles published by GeoServer
© Add 2 new style
© Removed selected style(s)

_images/logo_override.png
CEED - o

HOME LAYERS MAPS DOCUMENTS PEOPLE SEARCH BCE

GeoNode is an open source platform for sharing geospatial data and maps. If Explore Layers

you have any questions about the software or service, join our

LATEST LAYERS LATEST MAPS

Powered by GeoNode version 2.0.dev20130207195320 | Developers | About

_images/style5.png
About & Status

(8 server status

=) GeoServer Logs

2| Contact Information
) About GeoServer

Data

[caver preview
5 Workspaces

_images/login_setup.png
Global Settings

Settings that apply to the entire server.

I Verbose Messages

O Verbose Exception Reporting

‘Number of Dacimals
0

Character set
[z

Proxy Base URL

Logging Profile
[DEFAULT LOGGING properties

|GEOTOOLS DEVELOPER LOGGING.propeties
|GEOSERVER DEVELOPER_LOGGING,properties

Log to stdout

Log Location
Togsigeoserveriog

_images/style4.png
GeoServer

Styles

Manage the Styles publshed by GeosServer
© Add anew style
© Removed selected seyifs)

About & Status

L server status
Geaserver Logs
=) Contact Informatian

© About GeoServer <l 2 5] Rests 11025 ot o 34)
pate I styleName
LayerPreview T aredandnarts
= etpaces T et
Layers I buidngs
- Lever Grous T cometery_grapics
D styles -
T cometery mark
Services
I ctyins
] wes !
s I contours
& v T counties
Settings. T county
8 Gobal O i
B
BT Coverage Access I g
Tie Caching I dem_elevation
 Tie Layers I s
@ Caching Dot =
 Grickets
= DiskQueta
Securty EE3
T -

_images/logoutconfirm.png
LOGOUT

Are you sure you want to log out?

_images/logo_override1.png
CEED - o

HOME LAYERS MAPS DOCUMENTS PEOPLE SEARCH BCE

GeoNode is an open source platform for sharing geospatial data and maps. If Explore Layers

you have any questions about the software or service, join our

LATEST LAYERS LATEST MAPS

Powered by GeoNode version 2.0.dev20130207195320 | Developers | About

_images/ubuntu_vm_setup_11.png
[# Geollode - Training - 2.7 [Running] - Oracle VM VirtualBox - o X
File Machine View Input Devices Help

Install (as superuser)

Keyboard layout

Choose your keyboard layout:

Icelandic
Indian
Iragi
irish

Italian - Georgian (Italy)
Italian - Italian (1BM 142)
Italian - Italian (Macintosh)

Italian - talian (US keyboard with Italian letters)
Japanese Italian - Italian (Winkeys)

Japanese (PC-98xx Series) Italian - Italian (eliminate dead keys)
Kazakh

Khmer (Cambodia)

[Type here to test your keyboard

Detect Keyboard Layout

Continue

B R = @ 3 [#) CTRL(DESTRA)

_images/ubuntu_vm_setup_10.png
[Geotode - Training - 2.7 [Running] - Oracle VM VirtualBox

Devices Help

Machine View

File Input

© Install (as superuser)

Installation type

This computer currently has no detected operating systems. What would you like to do?

O [Erase disk and install Ubuntu
Warning: This will delete all your programs, documents, photos, music, and any other files in all operating systems.

Encrypt the new Ubuntu installation for security
You will choose 3 security key in the next step.

Use LVM with the new Ubuntu installation
“This will set up Logical Volume Management. It allows taking snapshots and easier partition resizing.

Something else
You can create or resize partitions yourselr, or choose multiple partitions for Ubuntu.

Install Now

&P & = @ {0 (#) CTRL (DESTRA)

_images/migrate_mode1_018.jpg
©® @ geo@geonode: ~/Desktop/backup

geo@geonode: ~/Desktop/backup$ cd /home/geo/Desktop/backup/
geo@geonode: ~/Desktop/backup$ wget --user=admin --password=admin -0 san_andres_y
_providencia_coastline.xnl "http://localhost/catalogue/csw?outputschema=http%3A%
2F%2Fwww. 150tc211.0rg%2F2005%2Fgndéservice=CSWarequest=GetRecordByIdaversion=2.0
.28elementsetname=fullaid=3236a2e0-f023-11e5-86e3-08002779b53d"

-2016-03-29 12:39:25-- http://localhost/catalogue/csw?outputschema=http%3A%2Fy
2Fwww . 1s0tc211. 0r g%2F2005%2Fgndaservice=CSWarequest=GetRecordByIdaversion=2.0. 28
elementsetnane=fullaid=3236a2e0-f023-11e5-86e3-08002779b53d

Resolving localhost (localhost)... 127.0.6.1

Connecting to localhost (localhost)|127.0.0.1]:86... connected.

HTTP request sent, awaiting response... 200 OK

Length: unspecified [application/xml]

saving to: ‘san_andres_y_providencia_coastline.xml’

[<>] 27.943 --.-K[s ines

2016-03-29 12:39:25 (59,0 MB/s) - ‘san_andres_y_providencia_coastline.xml’ saved
[27943]

geo@geonode

/esktop/backup$

_images/ubuntu_vm_setup_12.png
[BA GeoNode - Training - 2.7 [Running] - Oracle VM VirtualBox - o x

File Machine View Input Devices Help

Install (as superuser)

Who are you?

Your name: | GeoSolutions

Your computer's name: | geo v

‘The name it uses when it talks to other computers.

Pick a username: | geo 4
choose a password: | @ short password

Confirm your password: | @@@| <

Log in automatically
© Regquire my password to log in
" Encrypt my home folder

Continue

B R = @ 3 [#) CTRL(DESTRA)

_images/migrate_mode1_017.jpg
Download Metadata

6
FG OpenLinkinNewTab

ebl OpenLinkin NewWindow

Du OpenlLinkinNew Private Window
DIl

At Bookmark This Link

Save Link As...
Copy Link Location
Search Google for "ISO”

Inspect Element (Q) Close

_images/ubuntu_vm_setup_11a.png
L e IED)RECY

Install (as superuser)

Where are you?

Continue

_images/firebug-net.png
G [@ s mrseanatears

GeoNode

WELCOME

GeoNode is an open source platform for sharing geospatial data and maps. If

Explore Layer|
you have any questions about the software or service, join our mailing list.

Need help Getting Staried? Explore Map;;

EST LAYERS LATEST MAPS

irrigated_areas Dowmmn San Diego School
gatec Districts Map
rom admin, 10 hours, 13 minutes ago

No abstract provided

0 views | Average rating # 1 % ¢ & No Image Available

Console HTML Script DOM | Net v | Cookies

U | Clar et | AL WML C55 5 o (mge] s Meda

alpha.dev.geonode.org 4.1KB 54.235.204.189:80 1245
alpha.dev.geonode.org 985 B 54.235.204.189:80 1255
alpha.dev.geonode.org 2.4 KB 54.235.204.189:80 1245
alpha.dev.geonode.org 2.9 KB 54.235.204.189:80

GET facebook.pni alpha.dev.geonode.org 2.7 KB 54.235.204.189:80

GET twitterpng alpha.dev.geonode.org 2.9 KB 54.235.204.189:80 306ms.

GET google_plus. alpha.dev.geonode.org 2.7 KB 54.235.204.189:80 M ums

GET arrows_gr_sn alpha.dev.geonode.org 1.2 KB 54.235.204.189:80 M s24ms

GET select2.png alpha.dev.geonode.org 396 B 54.235.204.189:80 B s62ms

10 requests. 24.3KB (12.8 KB from cache)

_images/migrate_mode1_020.jpg
Remove Layers

Are you sure you want to remove geonode:san_andres_y_providencia_coastline?

BN No, don't remove it

_images/ubuntu_vm_setup_14.png
© Installation Complete

e. You need to re: puterin order to use the new ins

_images/firebug-html.png
(@ aloha cev.geonode.org

GeoNode

Bike Plan Map

hat_po

from admin, 14 hours, 14 minutes ago
No Image Available

No abstract provided
0 views | Average rating % % % % %

Bike Plan Map

from admin, 3 days, 18 hours ago

3 views | Average rating 1Y f & 7

haiti_location

(<]

B

& | Edit | < article - sectionwidget - divspang - divrow - divspan2 - divrow - div.container > | | Style ¥

@ <article> [A] -1ist article { base.css (line 9)
E border-botton: Tpx solid #CCCCCC;
margin-botton: 20px;

5 <a Wef="/lavers
/3t | ftmlody/ivi2)divciv/iv] vi2) di/section/articlel3] (ttp/ w3,/ 1999/t |
<Ing Src="Rttp:/7aTphadev. geonode -or gl P
Igeoserver

Position: relative;

/ums/reflect?layers=it.geosolutions:hg |: ¥
i_naturalawidth=1598height=63& article, aside, details, base.css (line 9)
Format-inage/png Figeaption, figure,

<> footer, header, hgroup,

nav, section {
display: block;

details™>
tn ben-info

data- ol y
Moad-azvowniond <1an article, aside, detoils, bootstrap.css (ine 10)
Tiayers Tigcapcion, figure,
Ti geosolutions hatti_natural®s foster, neader hgroup,
nav, section {

sisplay: bleck;

_images/migrate_mode1_019.jpg
©®©® geo@geonode: ~/Desktop/backup
/Desktop/backups s -la

geo@geonode
total 76
druxrwxr-x 2
druxr-xr-x 6
-rWerwer-- 1
-rWerWer- 1
rWerWere- 1
rWerwer-- 1
1
1
1
A

-rW-rWer-
rW-re-r-
rW-rW-r-
rW-rW-r-
SrW-rwer-- 1
geo@geonod:

geo
geo
geo
geo
geo
geo
geo
geo
geo
geo
geo

geo
geo
geo
geo
geo
geo
geo
geo
geo
geo
geo

4096
4096
10
1115
335
5604
116
1407
27943
5598
161

mar
mar
mar
mar
mar
mar
mar
mar
mar
mar
mar

29
29
29
29
29
29
29
29
29
29
29

/Desktop/backups I

12:39
11:32
11:48
11:48
11:48
11:48
11:48

12:39
11:48
11:48

san_andres_y_providencia_coastline.cst
san_andres_y_providencia_coastline.dbf
san_andres_y_providencia_coastline.prj
san_andres_y_providencia_coastline.shp
san_andres_y_providencia_coastline.shx
san_andres_y_providencia_coastline.sld
san_andres_y_providencia_coastline.xnl
san_andres_y_providencia_coastline.zip
wfsrequest. txt

_images/ubuntu_vm_setup_13.png
B o

Install (as superuser)

Welcome to Ubuntu

Fast and full of new features, the latest
version of Ubuntu makes computing easier
than ever. Here are just a few cool new things
to look out for...

» Copying files... [sk]

_images/filtering1.png
eoslstorsrtm atm Opertayers o

eoslsorsine shaded Nt Bt 1 v Shaced et Opentarers o

P S oo LG
ssobtiors o bo,_optmized bouker b cptined e
oo Openaes o
st E—

Results 110 22 (out of 22 tems)

_images/migrate_mode1_011.jpg
Menu

& Upload Layers

& Profile
@ Recent Activity
Q Inbox
+ Announcements

@ Remote Services

@ InviteUser

_images/ubuntu_admin_6.png
GeoNode - Tr:

ing [Running] - Oracle VM VirtualBox - 8 x

File Machine View Input Devices Help
Authenticate

All software By Relevance

VLC media player ek sk [

Read, capture, broadcast your multimedia streams

% More Info

Screensaver Control
Automatically pause music and video players when locking your screen, and prevent screensaver when audio i playing.

8
=
©

Authenticate

To install or remove software, you need to authenticate.

Anapplicationis attempting to perform an action that requires privileges.
Authentication s required to perform this action.

Password:

» Details

Authenticate

ow 41 technical items

BO® 5 = @@ 0 66 Right ctrt

_images/files_to_be_uploaded.png
{
2:{GeoNode noata v maps v avout v

: Drop files here

or select them one by one:

[Choose Files

Files to be uploaded

san_andres_y_providencia_administrative

ESRI Shapefile

« san_andres_y_providencia_administrative.dbf Remove
« san_andres_y_providencia_administrative.prj Remove
« san_andres_y_providencia_administrative:shp Remove
« san_andres_y_providencia_administrative.shx Remove

Select the charset or leave default

_images/migrate_mode1_010.jpg
@ ® @ geo@geonode: ~/Desktop/backup

geo@geonode : ~/Desktop/backup$
total 44

drwxrWxr-X 2 geo geo 4696 mar
drwxr-Xr-x 6 geo geo 4696 mar
-rw-rW-r-- 1 geo geo 10 mar
-rw-rw-r-- 1 geo geo 1115 mar
-rw-rW-r-- 1 geo geo 335 mar
-rW-rW-r-- 1 geo geo 5604 mar
-rw-rW-r-- 1 geo geo 116 mar
-rW-rW-r-- 1 geo geo 5598 mar
-rw-rW-r-- 1 geo geo 161 mar
geo@geonode : ~/Desktop/backup$

1s

29
29
29
29
29
29
29
29
29

-la

11:58

11:48
11:48
11:48
11:48
11:48
11:48
11:48

san_andres_y_providencia_coastline.cst
san_andres_y_providencia_coastline.dbf
san_andres_y_providencia_coastline.prj
san_andres_y_providencia_coastline.shp
san_andres_y_providencia_coastline.shx
san_andres_y_providencia_coastline.zip
wfsrequest. txt

_images/ubuntu_admin_5.png
File Machine View Input Devices Help

Ubuntu Software Center

®

[Ubuntu Software Center

<

ogress
All software By Relevance

VLC media player
S Read, capture, broadcast your multimeda streams
Screensaver Control
Automatically pause music and video players when locking your screen, and prevent screensaver when audio s playing.

oV OMm

B O &= @ @@ [Right Ctrl

_images/filtering3.png
Scale = 1:270M 189.22266, 98.09570

_images/migrate_mode1_013.jpg
GeoServer

Server Status

Summary of server configuration and status

About & Status

Server Status
GeoServer Logs

23/ Contact Information
© About GeoServer

4 Process status Data directory

Data Locks 0
Layer Preview Connections 2

[import Data

1 Workspaces Memory Usage T

3 stores

JVM Version Oracle Corporation: 1.7.0_95 (OpenJDK Se

_images/ubuntu_admin_8.png
GeoNode - Training [Running] - Oracle VM VirtualBox

d Help
Terminal t B o) 1816 B
™ ® @ geo@geonode: ~

geo@geonode:~$

@

oD =D DB O Mm

_images/filtering2.png
Scale = 1: 270 191.87109, 9385743
Click on the map to get feature info

_images/migrate_mode1_012.jpg
About & Status

Server Status
N e e

_images/ubuntu_admin_7.png
R

Applications

Terminal

it

i Reference

— m

GNOME Terminal see more scopes...

Filter results »

_images/filtering5.png
Scale

Z7om

50.68350, 112.46288

_images/migrate_mode1_015.jpg
'®® () geo@geonode: ~/Desktop/backup
-la

geo@geonode
total 48
druxrwxr-x 2
druxr-xr-x 6
-rWerwer-- 1
-rWerWer- 1
rWerWere- 1
rWerwer-- 1
1
1
1
A

-rWerWer-
rWer-er-
rW- W
rW- W
geo@geonod

/esktop/backup$

geo
geo
geo
geo
geo
geo
geo
geo
geo
geo

geo
geo
geo
geo
geo
geo
geo
geo
geo
geo

4096
4096
10
1115
335
5604
116
1407
5598
161

mar
mar
mar
mar
mar
mar
mar
mar
mar
mar

Jesktop/backup$

1s

29
29
29
29
29
29
29
29
29
29

11:48
11:48

11:48
11:48

san_andres_y_providencia_coastline.cst
san_andres_y_providencia_coastline.dbf
san_andres_y_providencia_coastline.prj
san_andres_y_providencia_coastline.shp
san_andres_y_providencia_coastline.shx
san_andres_y_providencia_coastline.sld
san_andres_y_providencia_coastline.zip
wfsrequest. txt

_images/filtering4.png
Scale

270M 91.48828, 112.46288

_images/migrate_mode1_014.jpg
©®® @ geo@geonode: ~/Desktop/backup
geoggeonode : ~/Desktop/backup$

total 44

druxrwxr-x 2 geo
druxr-xr-x 6 geo
-rW-rw-r-- 1 geo
-rW-rw-r-- 1 geo
-rw-rw-r-- 1 geo
-rw-rw-r-- 1 geo
-rW-rw-r-- 1 geo
-rW-rw-r-- 1 geo
-rW-rw-r-- 1 geo

geo
geo
geo
geo
geo
geo
geo
geo
geo

4096
4096
10
1115
335
5604
116
5598
161

mar
mar
mar
mar
mar
mar
mar
mar
mar

geo@geonode: ~/Desktop/backup$

an_andres

geo@geonode: ~/Desktop/backup$

geo@geonode: ~/Desktop/backup$

1s

-la

11:58
11:32
11:48
11:48

11:48
11:48
11:48
11:48

san_andres_y_providencia_coastline.cst
san_andres_y_providencia_coastline.dbf
san_andres_y_providencia_coastline.prj
san_andres_y_providencia_coastline.shp
san_andres_y_providencia_coastline.shx
san_andres_y_providencia_coastline.zip
wfsrequest. txt

geo/Desktop/backup

_images/ubuntu_vm_setup_1.png
Create Virtual Machine

Name and operating system

Please choose a descriptive name for the new virtual machine and
select the type of operating system you intend to install on it. The
name you choose will be used throughout VirtualBox to identify

this machine.

Name: |Ubuntu

Type: |Linux

Version: |Ubuntu (32-bit)

Expert Mode Next > Cancel

_images/firebug-debug.png
G [@ 2o oo geonode.org earch o) Q& =~

GeoNode

SEARCH

Search for:
Alloftewos | oy
Exclude words from your search
| categories O Maps only O Layers only O Users only
Metadata: 5 B
Since thisdate v mm dq B
yyyy-mm-dd =)

Readalphadeveonode)

° % ¢ Gonsele b css [e+ | poM_ercoskics [r _ lee=@

Ib | v | wisis « | [<] @ < fie < frewith < ready < DOMGo> | @ b T @ ¢ | Watch v | Stack reskpoints
e L New waich expression
A amar Sctave tab support e [——

@ 3 s(.mein-nav 11%).removeClass("current®); clas: [“adv_search®, "search" 1
5
5 /7 $('[rel=tooltip]').tooltip({placement:*left"}); arguments [function()]
g T e
7 var class_[ist = §("body").attr("class").split(/\s+/);

> e s.each(class [)
s e) feem:
I prilictesppeien
W
1) Wornoptnetime) crackcruncione 1
3 i
i e TS actrConrer s
15 if (href[0] Rt
16 $.post(href, {}, function(d,s,x) {
I o et rentaes
18 n
5 et ¢

I

_images/filtering6.png

_images/migrate_mode1_016.jpg
Download Metadata

150
FGDC
ebRIM
Dublin Core
DIF

Atom

Close

_images/firebug-dom.png
& (@ oo sevoronsdearglayerscgeosouionsirigated sess

HOME LAYERS MAPS DOCUMENTS PEOPLE SEARCH [)]

IRRIGATED_AREAS

@ g@er- +x-=-nEe

zetizjon @ Turkmentasy Y

(e N samari
& % i b %
Turkmenistan 5 ¢ A
e pataner o
T cbntaronn " mien i e
(s B2, o
o ol 2 Mashhad g X
ol e Tehran @ 1 5
(=R o M
oL ?,vw iz .,{ B 0™ i o ¢
etahan e 3 L s
il i bl 3
At o O i ¥
s o © pibore
Lan g b
e Pakistan
o ~ Sadcuind (

#2 %[¢ H V| console HTML s script [poM v | Net |2 | eea
window
Lang Object {_registerLinks=function() }
Opentayers Object { VERSION_NUMBER="Release 2.13 dev", singleFlle=true, ImgPath="/static
7geoexplorer/ext...ayers/thene/default/ing", more..}
Select2 Object { query={..}, uti

styler Object { ColorManager=function() }

e Ul pert, i Wi, SW,SA,SM,F Wctg,cl,h,u, hee, fp,dpo,us,cu,cd,sws,ah,H,CPwatt,_fm,RPMQ,] {
1T, eis10, FW-Z1, more}

__gapi jstiming_ Object { load=a, Ppk={...}
_callback OpenLayers_Layer Bing 181 undefined
_callback OpenLayers_Layer Bing 25 undefined
undefined

undefined

_eventCachelD “ext-gen2_eventCacheID_1"
Object { mapltems=[21, events={...

[Object {_handiers:
.}, more..} 1

. layerSources={...}, more...}
. displayClass="01ControlNavigation", zoomWheelOptions=

_images/tx_secondary_style_buffer.png
Default Style
mainrd =l

/
/

Additional Styles
Available Styles Selected Styles

mainrd B mainrd_transform
parcels ‘mainrd_buffer
point

point_landmark
point_landmark_ds |
point_landmark_ds_ns
polygon A
raster

Tiver_armow

tivers .

_images/migrate_mode1_007.jpg
cd /home/geo/Desktop/
geo@geonode: ~/Desktops mkdir backup
geo@geonode: ~/Desktops cd backup/
geo@geonode: ~ /Desktop/backup$ pwd
/home/geo/Desktop/backup
geo@geonode: ~/Desktop/backup$

_images/ubuntu_admin_2.png
G

oNode - Training [Running] - Oracle VM VirtualBox

Ubuntu Desktop

”
B

N
%

oD

B o) 1746 B

_images/ubuntu_admin_1.png
GeoNode - Training [Running] - Oracle VM VirtualBox

Q ty B) 1744 I

geonode

GeoNode Training

T

Guest Session

ubuntu® 14.04 LTS

_images/externallayersadded.png
HOME LAYERS

DOCUMENTS ~ PEOPLE SEARCH

[Evap~ Syt @ aentty g

Layers

©- 04,9
4 Overlays

T measure - (35

0!

9]San Andres Y Providencia Natural

9] San Andres Y Providencia Water

9] San Andres Y Providencia Administrative

4

9]San Andres Y Providencia Coastiine

4

9]San Andres Y Providencia Highway

New weighon

Zzealand

Tasmania

© MapQuest Opentreetiap.

No background

1:60885143 |,

Thos Courtesy of Vapcuest [

_images/migrate_mode1_009.jpg
©© @ geo@geonode: ~/Desktop/backup

Connecting to localhost (localhost)[127.6.6.1]:80... connected.
HTTP request sent, awaiting response... 200 OK

Length: unspecified [application/zip]

saving to: ‘san_andres_y_providencia_coastline.zip’

1 5.598 --.-K/s in es

2016-03-29 11:48:57 (215 MB/s) - ‘san_andres_y_providencia_coastline.zip’ saved

[5598]

geo@geonode : ~/Desktop/backup$
total 16

druxrwxr-x 2 geo geo 4696 mar
drwxr-xr-x 6 geo geo 4696 mar
-rw-rw-r-- 1 geo geo 5598 mar
geo@geonode : ~/Desktop/backup$

u

29 11:48 ./

2ofi1:35 80

29 11:48 san_andres_y_providencia_coastline.zip
unzip san_andres_y_providencia_coastline.zip

archive: san_andres_y_providencia_coastline.zip
inflating: san_andres_y_providencia_coastline.dbf

inflating: wfsrequest.txt
inflatin

san_andres_y_providencia_coastline.prj
san_andres_y_providencia_coastline.shp

san_andres_y_providencia_coastline.shx

inflating: san_andres_y_providencia_coastline.cst

geo@geonod

/Desktop/backups I

_images/ubuntu_admin_4.png
Jbuntu Desktop

Searchyour computer and online sources

=
]
2]

_images/migrate_mode1_008.jpg
©© @ geo@geonode: ~/Desktop/backup

geo@geonode: ~/Desktop/backup$ rm *
geo@geonode: ~/Desktop/backups 11
total 8

drwxrWxr-X 2 geo geo 4696 mar 29 11:48 ./
drwxr-xr-x 6 geo geo 4096 mar 29 11:32
geo@geonode : ~/Desktop/backup$ wget --user=admin --password=admin -0 san_andres_y
_providencia_coastline.zip "http://localhost/geoserver/geonode/ows?service=WFSav
ersion=1.0.0&request=GetFeature&typeNane=geonode:san andres y providencia coastl
ne&outputFormat=SHAPE-ZIP

-2016-03-29 11:48:57-- http://localhost/geoserver/geonode/ows?service=WFSavers
ion=1.0.0&request=GetFeatureatypeName=geonode:san_andres_y_providencia_coastline
RoutputFormat=SHAPE-ZIP

Resolving localhost (localhost)... 127.6.0.1

Connecting to localhost (localhost)|127.6.0.1|:80... connected.

HTTP request sent, awaiting response... 200 OK

Length: unspecified [application/zip]

saving to: ‘san_andres_y_providencia_coastline.zip’

1 5.598 --.-K/s 1in es

2016-03-29 11:48:57 (215 MB/s) - ‘san_andres_y_providencia_coastline.zip’ saved
[5598]

geo@geonode: ~/Desktop/backups I

_images/ubuntu_admin_3.png
GeoNode - Tr:

File Machine View Input Devices Help

System Settings

Allsettings

System Settings

8
=
©
Personal

B

Brightness &

Appearance
Lock

Hardware

%)

Bluetooth

v 3

Printers

Backups

ing [Running] - Oracle VM VirtualBox

ey

Security &
Privacy

Language
Ssupport

@

online
Accounts

}
U

Mouse &
Touchpad

Displays

Keyboard

=y
Wacom Tablet

®

Software &
Updates

Landscape
Service

Time & Date

B o) 175
About This Computer
Ubuntu Help

Lock/Switch Account.
2 Guest Session
2 GeoNode Training
2 geonode

Log Out.

suspend

Shut Do

Text Entry

Universal User Accounts

Access

FEEEEE R

_images/metadataformats.png
. Download Metadata >

ATOM >

DIF >

DUBLIN CORE >
EBRIM >

FGDC >

TC211 3

_images/toolbar.png
3} GeoNode Lo

Document:

_images/merge-button1.png
This pull request can be automatically merged. "M - Merge pull request
You can also merge branches on the command line.

_images/test_geoserver2.png
GeoNode - Training [Running] - Oracle VM VirtualBox - 8 x

File Machine View Input Devices Help
Firefox Web Browser 1y B) 163
GeoServer: Welcome - Mozilla Firefox r.war /v

& Geoserver: Welcome x

€ @ localhost,

osemame

Welcome

This Geoserver belongs to

This GeoServer instance is running version 2.7-SNAPSHOT. For more information
please contact the

& @ L= @ @ @ @ Right Ctrl

_images/migrate_mode1_002.jpg
Edit Layer

é

Styles
Edit

Manage

Ga)

Thumbnail
set
Editdata

Ren

_images/toolbar_search.png
3CGeONOde Loves toss Documens Peosle Grows El

_images/migrate_mode1_001.jpg
Explore Layers

Cart
Add resources through the "Add to

cart” buttons.

Set Permissions Createamap

Filters Clear

Total: 3

g
2
4 - " »
san_andres_y_providencia_administrative
No abstract provided
& admin 921Mar2016 ®0 0 %0 9 CreateaMap
" s i »
Inventaire des puits d'eau potable a Ambanja
Inventaire des puits d'eau potable dans la Commune Urbaine d’Ambania, 2012
&admin 921Mar2016 ®0 0 %0 @ CreateaMap
»
STRUCTURE
San Andreas Coastlines

Inventaire des puits d'eau potable dans la Commune Urbaine d/Ambanja, 2012

& admin f421Mar2016 ®0 M0 * 0 @ CreateaMap

_images/toolbar_quickstart.png
'.sGeoNode Data v Maps v About v _ 0 johnsmith

Layegs
Documents

_images/migrate_mode1_004.jpg
Menu

& Upload Layers

& Profile

@ Recent Activity

Q Inbox
® Announcements
@ Remote Services

@ Invite User

4

_images/tx_secondary_style.png
WMS Settings

@ Queryable

Default Style
mainrd =l

/
/

Additional Styles

Available Styles

dem

dem2
dem_elevation
hillshade

lakes

line

mainrd

parcels

point
point_landmark

‘mainrd_transform

Selected Styles.

_images/migrate_mode1_003.jpg
Edit Metadata

Editing details for

No

supports a subset of IS0, FGDC, and Dublin Core metadata elements. Some of your origi

s layer's orginal metadata was populated by importing a metadata XML file. GeoNode's metadata import

al metadata may have been lost.

_images/toolbox.png
Search,

Tecenty ueed dgorime

&0 GDAL/OGR [15 geoalgorithms]

¥ GRASS commands [140 geoalgorithms]

[E Geoserver/PostGIS tools [8 geoalgorithms]
Modeler [geosiorithms]
o Toabox (mage anays) (65 geoslarithms]
QGIS gevalgorithms [55 geoalgorithms]
R scrpts [15 geodlgoritms]
SAGA (240 geodlgorits]

B scrpts s geoagorits]

X ro0s for AR dat [geosigrts]

_images/migrate_mode1_006.jpg
geo@geonode:~$ cd /home/geo/Desktop/ll

_images/migrate_mode1_005.jpg
BY & ceoserver: welcome

geoserver/web/

GeoServer

Welcome

Welcome

About & Status.

(8L server status

| GeoServer Logs.

a5 Contact Information
© About GeoServer
%& Process status

This Geoserver belongs to

3 Layers © Add layers

Data 2 Stores © Add stores

b 1 vorkapaces @ chissnrigiees

[l Workspaces.

J Stores /4, Please read the file /var/lib/tomcat7/webapps/geoserver/data/security
Layers Jmasterpw.info and remove it afterwards. This file is a security risk.

@ Layer Groups.

D styles /i The default user/group service should use digest password encoding.
Services /\ The administrator password for this server has not been changed from the
(& wes default. It is highly recommended that you change it now. Change it

& wrs

ﬁ WMS @ strong cryptography available

wes

This GeoServer instance is running version 2.7-SNAPSHOT. For more information
Settings please contact the administrator.

_images/wfs-t1.png
% oo N o=~

Select
Import a spatial data services into the catalog

Select an import source:

type filter text

» & General
4 G Other

& Import imagery folder as mosaic
& KML/KMZ Import

o e |

Finish

E

_images/virtualbox_install_win_7.png
Setup

Oracle VM tualBox 5.0.6
installation is complete.

Click the Finish button to extt the Setup Wizard,

¥ Stert Oracle ¥ VitualBox 5.0.6 after installation

versin5.0.6 e Gl

_images/virtualbox_install_win_6.png
i Oracle VM VirtualBox 5.0.6 Setup =107]x]

Oracle YM VirtualBox 5.0.6

Please wait whils the Setup Wizard nstalls Oracle WM VituslBox 5.0.6. This may
take several minutes.

Status:

Vrion 508 <wi | wes

_images/osm_river9.png
(- Downloads

fHome Downloads

Recent
Home ||

Desktop

= | C]

Documents

&

Music

o]

Pictures

_images/web-admin.png
GeoServer - ==

_images/osm_river8.png
~ Data

download/copy as GeoJSON
download/copy as GPX
download/copy as KML

raw data

raw data directly from Overpass API %

Ioad data into an OSM editor: JOSM,
Levelo?

save GeoJSON to gist?

> Map

> Query

_images/virtualbox_started.png
Oracle VM VirtualBox Manager - B x
File Machine Help
o
W@ O D I © s
New Settings Discard Start
Welcome to VirtualBox!

The left part of this window is a list of all virtual machines on your computer. The list is empty
now because you haven't created any virtual machines yet. =

In order to create a new virtual machine, press the New button in the
main tool bar located at the top of the window.

You can press the F1 key to get instant help, or visit
www.virtualbox.org for the latest information and news.

_images/palette2.png

_images/welcome_documents_documents.png
Home

Layers Maps

_images/palette1.png

_images/welcome.png
Maps Documents People Groups

g gec

209 Layers 66 Maps 33 Users

Click to search for geospatial data published by other Data s available for browsing, aggregating and styling to GeoNode allows registered users to easily upload
users, organizations and public sources. Download datain generate maps which can be shared publicly or restricted geospatial data in several formats including shapefile and
standard formats, t0 specific users only. GeoTiff.
Explorelayers » Explore maps » Seeusers»

Powered by GeoNode version 2.4.1 | Developers | About English v

_images/palette4.png
canyon B Boulder

S & ‘ArapahoeAv: 5
‘ ‘!ﬁ
- [% \ %@u

Boulder
Mountain Par}
S| \‘%
I
I

_images/welcome_documents_maps.png
vocumenss [<

_images/palette3.png

_images/welcome_documents_layers.png

_images/palette6.png

_images/welcome_toolbar.png
Welcome

GeoNode is an open source platform for sharing geospatial data and maps.

If you have any questions about the software or service, join our mailing list
Need help? Getting Started

_images/palette5.png

_images/welcome_logged_in.png
GeoServer

Server
(5 server status
Contact Information
(8 Giobal Settings

[a1 Settings

@ about GeoServer

Services

@ wes WHS
(& wrs 111
(& wis

Data

[Workspares
@ stores
9 Layers
0 Layer Groups

D styes
Demos

Layer Preview

_images/palette8.png

_images/palette7.png

_images/vector4.png
—

New Vector Data Source

I
o
ot)
s stre o
(Dot racony =] it e vk
ok Sz s
C [ST 0
o weaso S
Gornecton arametes bacsto sroz0s o1
T — =y i
o abouiaini s o | * g
Ee= svoesao =
o 2010 s et sz o
F—— 250 3 et SegmRie o
s i e T
(el e 4_2010_02013_portinshp. 1M 2012 1045 Bx
P cache and reuse memary s 12010_08_county10.shp. 15:mag2012 1045 2
o Srgmzue o
[T S
[srmznn o

_images/vector6.png
Edit Layer
o e

geosolutions:Mainrd
PO AP —

Data | Publshing

Basic Resource Info

Name.
e

e
Vo

Absteact

Keywords
Current Keywords

o
=] Ramovs salected

New Keywrord

Vocsbulary

Add Kapword

Metadata links
Mo mtadta ks s0 o

RG] Mo ol FSOC s TC211 o b om0 WHS 111 coblee
Coordinate Reference Systems

ONIOWN —]NAD 1583 AR StaaanCoksdeorh FIPS 051,

< TITETT Find.. | €956 1A08X-4ARN) | Colorado Norh (rUS).

S b

Wﬂ Set the declared CRS to
“EPSG:2876".

_images/vector5.png
New Layer
Addanew boer

You an creats now fetur type by manualy Conung the attte s and types. Create new feature type.
Here 1 3 6t of resources contaned thestore Marr Cck on the are you weh 0 confiare

Resuls 1101 (out o 1 ors) « Seach

Rosts 1101 (out of 1 oms) ! -

_images/vector8.png
Feature Type Details

Property Type Nllable:
the_geom Mukiesivng e
LaBEL NAME Sng e

Relosd Fesurs type ..

Save Button
-

Min/Max Occurences
ot
o

_images/vector7.png
Bounding Boxes
Native Bounding Box

Minx Miny Maex My

aomarete [1amow0n 20w 12790005

Carpre o dta

Lat/Lon Bounding Box Use the links to
Min X Min ¥ Maxx Max ¥ autopopulate the
108027 RVETT 305038010315 -105. 150537650 4 DOATT RIS

‘Compute from native bound: W——————— boundlng boxes.
Feature Type Details

Property e Nalable Min M Occrences
thegeom Mbinasing e o

e v S . o

_images/virtualbox_install_1.png
Ubuntu Software Center - o x
File Edit View Help
4
< & . O <.
s = ey s
Oracle VM VirtualBox
virtualbox-5.0
Please install "virtualbox-5.0" via your normal software channels. Only install this file if you trust the)

origin.

VirtualBox is a powerful PC virtualization solution allowing you to run a wide range of PC

operating systems on your Linux system. This includes Windows, Linux, FreeBSD, DOS,
OpenBSD and others. VirtualBox comes with a broad feature set and excellent
performance, making it the premier virtualization software solution on the market.

Version
Total size

License

Updates

Reviews

virtualbox-5.0 5.0.4-102546-Ubuntu-trusty
63,2 MB to download, 155,0 MB when installed
Unknown

Unknown

English

% Checking for reviews...

Most helpful first v

_images/vector9.png
Layers
Mange the ayers bengpubishe by Geoserver
© Add a new resource.

@ Remove selected resources.

Resuks 1to1 (outof 1 irems)

+ Search
I Type Workspace Store. LayerName Enabled? Native SRS
(7} ‘geosalutions Mainrd Mainrd v EPSGi2876.

Resuks 1to 1 (outof 1 irems)

_images/virtualbox_install_win_2.png
i Oracle M VirtualBox 5.0.6 Setup

Custom Setup

Select the way you want features to be installd,

Clck on the cons inthe tres below o change the way features wil be nstalled

Oracle Vi1 VirtuaBox 5.0.6.
=3~ VrtuslBox USB Support | appication.
/3] vituslBox Networking

3+ rtualbox Bridger
= This eature reqies 1611 on
S ituslbox Host-C | youy hard drive. It has 3 of 3
53+ Virtualbox Python 2.x S| subfeatures selected, The
subfeatures require 5348 on .
‘ | |

Location: Ci{program FlesiOracelyirtualox)

Verson 5.0.6 Disk Usage <gack Concel

_images/virtualbox_install_win_1.png
Welcome to the Oracle VM
VirtualBox 5.0.6 Setup Wizard

The Setup Wizard wil nstall Oracle Y VirtuslBx 5.0.6 on
your computer. Click Next to continue or Cancel to it the.
Setup Wizard

_images/virtualbox_install_win_5.png
i Oracle M VirtualBox 5.0.6 Setup

Ready to Install

The Setup Wizard is ready to begin the Custom installation,

ClckInstallto begin the installation. I you want to review or change any of your
installaton settings, clck Back. Cick Cance to et the wizard

Verson 5.0.6 <gack [l] Concel

_images/wfs-t_geonode6.png
[SlMap~ SyPrint | @ ldentty &8 Query {=Measure - |[Z]Edt = |

Bs =i

oy 44 Create
0 0/9 ey
4 Overlays 1 2
¥ streams_1 a
Ve +)
pr— U

MapQuest Imagery

 MapQuest Opentreettlap
Openstreetiap
Nobackground

A0k

o potom Oeos-

ill
2
£
3

&l

_images/preview3b.png
L A

O G IR

geosolutions:stm
‘geosolutions:BoulderCityLimits
geosolutions:bplandmarks
geosolutionsiblakes
geosolutionsibrivers

‘geosolutions: Trals
‘geosolutions:Wetknds_regulatory_area
geosolutions:Parcels
geosolutions:bbuidings
jeosolutions:bstreets

geosolutions:bptiandmarks_2876

parcels

streets

point_landmark_

_images/wfs-t_geonode8.png

_images/wfs-t_geonode7.png

_images/postgis_lay5.png
Edit Layer

it sy Gt anc st

geosolutions:main_roads

P —
oata | Pt |

Basic Resource nfo

[mai_osts
e
man_mste
Abstract

Keywords

Cuen eyworss
festues 2]
man_rosc

| Romovs selcted

NewKeyword

Vocobulary

A K

_images/wfs-t_geonode1.png
Layers

Explore Layers

Total: 26 Most recent L

Your selections Clear allfilters

Set permissions

_2014_cc_omega_2 select
by u0899xga

(8]
@
R
*
<

_2014_cc_omega_1 Select
by u0899xga

9 90ct2015 |@ 2 [O | %k Q Create
_2014_cc_omega Select

by u0899pfe

_images/postgis_lay4.png
New Layer
addarewiorr

Yacancrate e et typ by nanialy o the ottt nanesand ypes. Creote new feature type..
O dtsbsss s con oo et i sty b cenfurg ke S sateent.Configure e S0 view..
Foro 316 o rosmrces coreaad o sor S’ ik th o 10U W 3 corfgre

e et 1t o 1) ~searnn

_images/wfs-t9.png
Layer Map Data

PO KN A R

@ '

el P TP

I~

_images/postgis_lay7.png
Feature Type Details

Property. Tyve Nilable: Min/Max Dccurences
kel e sing e ot
the_geam Miiinesting e ot

Reloadfeatire type .

&

_images/wfs-t_geonode11.png
Scale = 1: 35K
streams_1

fid cat label
Streams_1.1052 CREATED

603245.69363, 4927849.27091

_images/postgis_lay6.png
Metadata links
o metadata nks 5o far
GHIINK| rote onk FGOC and TC211 metadsts ks shom o 1 WP 1.1.1 capabites

Coordinate Reference Systems.
Natie sk

4 sus

] £ NACE AR Colrada ot (5,

SRS handling \ Set the Declared CRS to

T — .

Force declared EPSG:2876 and after use the
Bounding Boxes links to autopopulate the
v _ o bounding boxes

Compute rom data

Lat/Lon Bounding Box

108 3271087527 38.85357551 060, -10,15953745:
Compute rom natve boueds

_images/wfs-t_geonode10.png
 [ogEdt x|
Q@4 2 s =122

_images/postgis_start.png
New data source

Chose the type of data source you wih to confiure
Vector Data Sources

3 Drectory of spatd s (hapefs) - Takes 3 drectary of shapsflss and sxposes it 3 3 dta store

e S acen 10 Tva Fiopery fes contain Festure formaton
3 Shapefie - ESRI(tm) Shapefies (*.shp)

_images/wfs-t_geonode3.png
Edit Layer

é

Metadata Styles
Edit Edit

Manage

Ga)

Thumbnail

et

O

e

_images/postgis_lay8.png
Layers

Vg the layers b publshed by Geoserver
© Addanewresource
© Remove sebcodesauces

) Resite o2 ok of 220m)

« searen
[Type Workspace store Layerhame Enabled? Native SRS
=Nz sosolatons shape e roads v esazers

- |Resubs 1to2 (ouk o 2 kems)

_images/wfs-t_geonode2.png
GeoNode

streams_1

Download Layer

Edit Layer

Download Metadata
Legend

7

Maps using this layer

‘This layer is not currently used in any maps.

Create a map using this layer

@lnfo SAttributes MShare KRatings O Comments Click the button below to generate a new map based
on this layer.

Abstract No abstract provided

Publication Date Oct.8, 2015, 6:59 am.
o Styles
Type VectorData ty
Owner admin ‘The following styles are associated with this layer.
Choose astyle toview it in the preview map.

Moreinfo -
O streams_1

_images/pr-form1.png
Create a new pull request by comparing changes across two branches. If you need to, you can also compare across fork

1 | base master~ compare: add_logo~ | ¥ Able to merge. These branches can be automatically merged.

.
L J Adding a new logo to the custom GeoNode

Write | Preview 3 Styling with Markdown is supported

Leave a comment

Attach files by dragging & dropping, selecting them, or pasting from the clipboard.

_images/wfs-t_geonode5.png
(SJuap- yprt | @ sty g Query {=easure - [[Ect 3]

Loyers godd koseoin
©-0+,® Modity (;?
2 Overiaye g
= i
2 Siso potom Ceer ||
4 Base Maps 3

MapQuest Imagery

 MapQuest Opentreettlap
Opensirestiap
Nobackground

‘
s

_images/pr-form.png
Create a new pull request by comparing changes across two branches. If you need to, you can also compare across fork

1 | base master~ compare: add_logo~ | ¥ Able to merge. These branches can be automatically merged.

.
L J Adding a new logo to the custom GeoNode

Write | Preview 3 Styling with Markdown is supported

Leave a comment

Attach files by dragging & dropping, selecting them, or pasting from the clipboard.

_images/wfs-t_geonode4.png
B e I EE—
541 Inbox (34) - alessio.fabian X | X Resources - GeoNode -Dc X |) geosolutions-it/doc-geon X | [Pattems and Hatches— C X | [*) Documentation de forma! X

[GeoExplorer - GeoNode X OpenLayers map preview X fA=m - X
€ > € # |[) demo.geonode.org/maps/new?layer=geonode:streams_1

App % Bookmarks 1) Digitaly Imported -... [Facebook | CNIMobile [Insrcssss On line [J] Portafogiio personsl.. [’ Pestelslsne - Cont... @ Conto deposito, con... 2 Banca va Intemet -..) @time, Ihome bank.. [db Interactive @ Vocidaliestero [B) CHICAGO BLOG » [Al Preferti

[Svap- Syprt | @ centty 8 Query |~ Measure -

Layers.

Maps. T map s current unsaved
2 x =00
©- 0,9 n (;;. 7
4 Overtays alD i3
¥ streams_1 = ‘f
V2 5 oo potom et |
4 Base Maps. T

MapQuest imagery
© MapQuest Openstreetiap.
Opensreethiap

No background

£

N

Latrel St

o,

swn | 7 5
[

U

_images/preview3.png

_images/preview1.png
About & Status
[E——

7 Geoserver Logs

21 Contact Informaton
@ About GeoServer

Data

I8 Laver Previen g
Workspaces

5 stores

o e

@ Layer Groups

@ stjes

_images/wfs-t8.png
“tralette b

Qe
100 s
selection “

1 Box
Selection

—\/ © Feature
Selection
[l Area of
Interest

Add Vertex
W% Remove
Vertex
+/Edit Geometry No Snappir Hmz.utj‘ NADB3(..(US) EEEE EE
mxce=0

te!

_images/wfs-t7.png
KOQR» 2
[Mainr

[r2smae <] naosacus)
@ Catalog 52 |5 Web| #” Search| I Table! R
b & Decoration

FOSS4G 2011 styling examples (WFS 1.0.

_images/palette9.png

_images/wfs-t11.png
R -

- wap Data window elp

Axaases

@i & ~2

Grdae >

EE3

rry—

Tt

TN oo
e

Clox
Selecton

© Feature
selecton

Elareaor
ncerest
Selection

| [e T

B Catalog| 5 Web Searh bl 1 Cemm-t
I [search L

Mained 10

Mainrd.1141 Gardst

_images/wfs-t10.png
QT gD &

Sean= 119K E)
Clik onthe map o get feature info

_images/peoplepage.png
GeoNode Bl O johnsmith

admin

‘admin@geonode org
5Layers

0 Maps

0 Documents

jiohnson
jjohnson@opengeo org
0 Layers

0 Maps

0 Documents

_images/wfs-t14.png
SemoTTER TGS, 127 R0 SHTT

« Type: Mainrd 0
o LABEL NaE|

_images/parameters1.png
Resource consumption

Max rendering memory (KB)

65536
Max rendering time (s)

60

Max rendering errors (count)

1000

_images/wfs-t13.png
| sl 5

info
tinto

~ Distance
Selection 4|

T6ox
Selection
© Faature

selection
Dl areaof
interest
selection

Coxssectonrz0s87 ~ | naomsi e

@ Cotaoo] 5 web eareh 1 Table 1

|y v fsearch
FeaturesSelcted: 1

o

Maind. 1140
Mained. 141

LABEL NAVE

eardst

_images/permissions_django_admin.png
@ Active

"Designates whether tis user should be treated as acive. Unselecttis instead of dleting accounts.

@ Staff status
Designates whether the user can og nto this adrin ste.

@ Superuser status
Designates that this user has all permissions wihout explcity assigning them.

_images/wfs-t3.png
Bl uog L
e 5t e vap Do w5 J

_images/permission.png
Permissions
‘Who can view it?

& Anyone

The following users:

Choose users...

The following groups:

Choose groups...

The following groups:

Choose groups...

Who can edit data for this layer?
Who can edit styles for this layer?

Who can manage it? (update, delete, change
permissions, publish/unpublish it)

_images/wfs-t2.png
oL

e

e G Ly vap o yindew

oL
@ s 5]
o

teladn

e e

I
o

Sasen

scat

s

vt

F——

et | v || o

_images/postgis_conf.png
Edit Vector Data Source

6t an existing vector dotasource

Posts1s (1D1)
PostIS Database (NDI)

Basic Store Info

Workspace *
tost v
Dts Sourco Name *

=
Description
Enatled

Connection Parameters
fndieferenceName *
Java complenvidbcipostares

schema

Exposs prary kers

ey met

Session startup SQL

Session ose-up SQL

@ Loosetbox
@ Esinated estends
preparedstatemerts

encods functions

_images/wfs-t5.png
B

uDig.

Pl S saiaton Layr b D Vindow 1l

v HelElesonxanas

@oees 5] 4 = =0 e 5] e —
> @it aew

Weicome to udi

* cetung started

EEEDEE S| =

= offcit wabsite

S eloaz oo
IECTET.

]| oo

& coroog 5 e sewr v

> Bpwcaraton

» @ soder bl
» @aoudsciyinis

Gettingsanad oty
———

[P TT—

E I

_images/point_of_contact.png
Point Of Contact

Metadata Author

bobby (None)

bobby (None)

_images/wfs-t4.png
[} Add Data E——
Resource Selection
Please select aresource.

)+ search|] Tat

fing examples (WF
ings

mits

onal landmarks

|~ @1 FOS54G 2011 styling examples (WFS 1.0.0)
0 Boulder buildings
O Boulder polygonal landmarks
O Boulder streets
O M BoulderCityLimits
] & Lakes and other polygonal water entities

O M parcels

O = point landmarks

D)V Rivers and other linear water entities
O N Trails

1 Wetlands_regulatory_area

O countries

OV main_roads
1 nnintands =
Resources Selected: 1

<k || News || cancel || ensn |

Gettingstarted Offical W
[oe—— z

_images/postgis_lay2.png
New Vector Data Source

‘Add 2 new vector data source.

Postals.
POSEGIS Database.

Basic Store Info

Workspace *
‘geosolutions [v
Data Source Name *

shape.
.

Enabled

Connection Parameters

host*

localhost

valdate connections
Test while idle

Evictor run periodicity

300

300

Evictor tests per run

B

_images/postgis_lay1.png
New data source

Choose the type of data source you wish to configure

Vector Data Sources

G Directory of spatial files - Takes a directory of spatial data files and exposes it as a data store
&LFosGIS - PostGlS Database)
{4 PostGIS (JNDI) - PostGIS Database (JNDI)
[Properties - Allows access to Java Property files containing Feature information
3 Shapefile - ESRI(tm) Shapefiles (+.shp)
(£ web Feature Server - The WFSDataStore represents a connection to a Web Feature Server. This
published by the server, and the abilty to perform transactions on the server (when supported / a

Raster Data Sources

8 ArcGrid - Arc Grid Coverage Format
8 DTED - DTED Coverage Format

8 EHdr - EHdr Coverage Format

B ERDASIMg - Erdas Imagine Coverage Format

B GeoTIFF - Tagged Image File Format with Geographic information

_images/wfs-t6.png
I Mainrd £

[r713ac »] navsscus

< pale

(3 catalog %2

O web

|+ Search

E Table|

|

b

FOSS4(

Decoration

ing examples (WFS

_images/postgis_lay2b.png
Primary key metadata table

Session startup SQL

Session close-up SQL

() preparedstatements

Max open prepared statements

50

O encode functions
@' Support on the fiy geometry simplfication
O create database

create database params

_images/ubuntu_vm_setup_5.png
B [<fmee)

Please choose a virtual optical disk file

-

Location ‘uhlmu—ld.()d.li—deskloyi:i!is.iso

Places
Q search
@ Recently Used
& alpa

[& Desktop

(L File System
=1

(& FACTORY_.I

[& Documents
[Music

[Pictures
[Videos

[Downloads

Name
[8 VBoxGuestAdditions_5.0.4.is0

ubuntu-12.04.5-desktop-i386.is0

B ubuntu

ubuntu-14.04.3-custom-amd64.iso
8 ubuntu-12.04.5-desktop-amd64.iso
ubuntu-14.04.3-desktop-amd64.iso
8 ubuntu-15.04-desktop-amd64.iso
archlinux-2015.07.01-dual.iso

[Cent0s-7-x86_64-Minimal-1503-0L.iso

Modified A
588MB mercoledi

792,7 MB. mercoledi

14GB martedi

794,8MB 28/09/2015
11GB 28/09/2015
12GB 10/07/2015
677.4MB 10/07/2015
666,9MB 01/04/2015

All virtual optical disk files
Cancel Open

_images/ubuntu_vm_setup_4.png
= General

System

E] Display

P Audio

BP Network

£ Serial Ports

& uss

Shared Folders
=] User Interface

[e

Ubuntu - Settings

Storage
Storage Tree Attributes
@ Controller: IDE Optical Drive: |IDE Secondary Master

e oo

@ Controller: SATA
Ubuntu.vdi

BBee

| cancel

[v| @~

_images/ubuntu_vm_setup_7.png
Input

Ubuntu 16.04

_images/ubuntu_vm_setup_6.png
File Machine

@ & J

New Settings d

Ubuntu
© Powered Off

Help

2 .

Start.

Oracle VM VirtualBox Manager - @

{=3 Details

(D snapshots

E General B Preview

Name: Ubuntu

Operating System: Ubuntu (32-bit)

System Ubuntu

Base Memory: 4096 MB

Boot Order: Floppy, Optical, Hard Disk

Acceleration: VT-x/AMD-V, Nested Paging, PAE/NX,
KVM Paravirtualization

Display
Video Memory: 12M8
Remote Desktop Server: Disabled
Video Capture: Disabled
Storage
Controller: IDE
IDE Secondary Master: [Optical Drive] Empty

Controller: SATA

SATA Port O; Ubuntu.vdi (Normal, 30,00 GB)

B Audio

Host Driver:
Controller:

PulseAudio
ICH AC97

& Network
Adapter 1: Intel PRO/100O MT Desktop (NAT)
& uss

USB Controller:
Device Filters:

OHCI, EHCI
0 (0 active)

Shared folders

None
@ Description

None

_images/ubuntu_vm_setup_9.png
[Geotode - Training - 2.7 [Running] - Oracle VM VirtualBox

File Machine View Input Devices Help

© Install (as superuser)

Preparing to install Ubuntu

2 Download updates while installing Ubuntu
This saves time after installation.

Install third-party software for graphics and Wi-Fi hardware, Flash, MP3 and other media
‘This software is subject to license terms included with its documentation. Some is proprietary.

Fluendo MP3 plugin includes MPEG Layer-3 audio decoding technology licensed from Fraunhofer lis and Technicolor SA.

Back || Conflnue

&P & = @ {0 (#) CTRL (DESTRA)

_images/ubuntu_vm_setup_8.png
[# Geollode - Training - 2.7 [Running] - Oracle VM VirtualBox - o X

© Install (as superuser)

Welcome

Espaniol
Esperanto
Euskara
Frangais
Gaeilge
Galego
Hrvatski
islenska
Italiano

Kurdi

Latviski
Lietuviskai
Magyar
Nederlands
Norsk bokmal
Norsk nynorsk
Polski

Try Ubuntu Install Ubuntu
You can try Ubuntu without making any changes to your computer, directly from this CD.
orif you're ready, you can install Ubuntu alongside (or instead of) your current operating system.

This shouldn't take too long.

You may wish to read the

&P @ = @ {0 (#) CTRL (DESTRA)

_images/uom-zoom2.png

_images/uom-zoom1.png

_images/upload2.png
IEGEIERERY L1000 LAvers |
UPLOAD LAYERS e sttt

© Anyone () Any registered user
Only users who can edit
Who can edit this data?

@ Any registered user
Only the following users or groups:

Choose one or more users.

'Who can manage and edit this data?

Choose one or more users.
FILES TO BE UPLOAD!

SAN_ANDRES_Y_PROVIDENCIA_POI ESRISHAPEFILE

+ san_andres_y_providencia_poidbf Remove.
 san_andres_y_providencia_poiprj Remove.
+ san_andres_y_providencia_poishp Remove.
« san_andres_y_providencia_poishx Remove.
Select the charset or leave default
UTF-8/Unicode v

_images/updateprofilelink.png
address of the electronic mailbox of the responsible organization or individual
Keywords

A space or comma-separated list of keywords

Update profile

_images/using_layerlistchecked.png
Import 0

status Creatod Last Updated
PENDING 8 minues ago 8 minues ago

-4 /Usersfody/Datarnatural_earthv110m_cuttural Saect Al | Nono | Ficady
m Layer Status ‘Actions

| 3 ne_110m_admin_0_counties & Roady ‘Advanced.

@3 me_110m_admin_0_boundary_ins_land Roagy Advanced.
©3e_110m_admin_0_tny_countis » Roady Advanced.

© |3 ne_110m_populaed._places Roagy Advanced.

() 3 me_110m_admin_0_pacifc_groupings » Roady Advanced.

(3 me_110m_admin_1_states_provincas shp @ Roady Advanced.

Resuls 110 6 (outof 6 tems)

_images/using_layerlist.png
Import 0

Status. Created Last Updated
PENDING moments ago moments ago

4 lUsersiiody/Datanatural_earth/110m_cultural Select: Al None | Ready
u Layer Status. Actions

|3 ne_110m_admin_ Ready Advanced.

| ne_110m_admin_0_boundary_lines_land Ready Advances.

() |3 ne_110m_admin_0_tiny_countries » Roady Advanced.

© 3 ne_110m_popuiated._places Ready Advances.

(|3 ne_t10m_admin_0_pacific._groupings » Roady Advanced.

|3 ne_110m_admin_1_states.provinces_shp » Ready Advances.

Resuls 110 6 (outof 6 tems)

_images/using_workspace.png
3. Specify the target for the import

Workspace

Graato now 8 ne

Store

_images/using_recent.png
Recent Imports © Remove

Import Statu Last Updated
oo PENDING. & minutes ago

Resuls 110 1 (outof 1 tems)

_images/vector10.png
Layers

Manage the layers being publshed by GeoServer
© Add 3 new resource.
@ Remove selected resources.

<1211 Resuts 1t 16 (out of 16 tems) + Search

I~ Type workspace Store Layer Name Enabled? Native SRS
™ 1 geosoltions Mainrd Mainrd v EPSGi2876.
[T M geosolutions BoulderCityLimit BoulderCityLimits. v EPSGi2876.
™ M geosolutions Buidings0S0714 Buildings050714. v EPSGi2876.
T M geosolutions Parcels Parcels v EPSGi2876.
™ o geosolutions pointim pointim v EPSGi2876.
T U1 gessolutions streets Strests v EpsG:2876
™ 1 geosolutions Streets Strests. v EPSGi2876.
r geosolutions Strests Strests. v EPSGi2876.
™ M geosolutions t_2010_08013_arealm t_2010_08013_arealm v EPSGi2876.
[T M geosolutions t|_2010_08013_areawater t|_2010_08013_areawater o EPSGi2876.
™ V1 geosolutions t_2010_08013 linearwater t_2010_08013_linearwater EPSGi2876.
[T o geoslutions t_2010_08013_pointim +_2010_08013_pointim v EPSGi2876.
™ M geosolutions H_2010_08_countyl0 t_2010_08_county10 v EPSGi2876.
U1 gessobtions Trails Trails v EpsG:2876
™ M geosolutions Wetlands_requlstory_area Wetlands_requlstory_area o EPSGi2876.
7 M geosolutions Zoning Zoning v EPSGi2876.
<1211 Resuts 1t 16 (out of 16 tems)

_images/vector1.png
Welcome

i I -
N A ————
i

[

_images/vector2.png
Welcome
‘Welcome

“This GeoServer belongs to GeaSolusions.

_images/vector1bis.png
renenber ne 1 | & Logn |

GeoServer

Welcome

welzome

About & Status

© #bout GeoServer
“This GeoServer belongs to Service Capabilities

Data

B Layer Preview This GeoServer instance i runing version 2.4-RC2. For more information plesse contact
the adrmiristrator.

wes
100
110
111
11
WFS
100
110
200
Wi
111
130
™
100
WHS-C
111
WHTS
100

Demos

_images/vector3.png
New data source
Choose the ypeof datasorceyo wish to configure

Vector Data Sources

3 Diectory of spatal s - Tkes drctory of spatal tafiles and exposes 25 dta store
1 PostGIS - PostIS Database
5 PostGIS (DD - PostTS Database ONDY)

fles containing Festure information

reresens 2 conction t a Wi Festure Senver, This connaction provices scces o the
Festures publishe by the save, and th ablty peorm tansactions onthe saver (when supportad allowed).

Raster Data Sources

5 A - Grd overage Format

B GeoTIFF - Tagged Image Fle Fomat with Geographicinformation
B G0p030 - G0po30 Coverage Fomat

8 ImageNossi - Image mossicking phigin

B ImageNosscIOBC Image mosscking/pyramidal b pugin

5 Imagepyrami - Image pyamida pugin

B 2K (Direct) 2K (Direct) Coverage Format

1 Worldiage - A aste e accompanied by a spatal dtafle

_images/vector2bis.png
Welcome
‘Welcome:

This GeoServer belongs to

30 Layers © add layers

18 Stores [3

1 Workspaces © Create workspaces

_images/upload_layer.png
PERMISSIONS
Who can view and download this data?
® Anyone () Any registered user

1 I) Only users who can edit

1 Drop files here ! Whocanedit s dats?

[| @ Any registered user
o [—.

or select them one by

| browse... |

Choose one or more users.

'Who can manage and edit this data?

Choose one or more users.

FIL|

BE UPLOAD

[E= Upload files

_images/uploadform.png
i GeoNode gearch

HOME LAYERS MAPS DOCUMENTS PEOPLE SEARCH [fREN-]

IEGEIERERY L1000 LAvers |
UPLOAD LAYERS e sttt

" | © Anyone O Any registered user
1 Only users who can edit

i Drop files here | Whocaneditths dats?

1 1 © Any registereduser

L _ __ _ __ _ [P Crr——

Choose one or more users.

'Who can manage and edit this data?

Choose one or more users.
FILES TO BE UPLOAD!

Select the charset or leave default

UTF-8/Unicode v

_images/upload_shapefile.png
M O admin ~

MAPS ~ DOCUMENTS PEOPLE SEARCH

PERMISSIONS

U P LOA D LAY E RS 'Who can view and download this data?

© Anyone () Any registered user
Only users who can edit

1
i Drop files here b o canaat et
1

© Any registered user
Only the following users or groups:

or select them one by one: Choose one or more users.

‘Choose Files [oulilii
Who can manage and edit this data?

Choose one or more users
FILES TO BE UPLOADED

POSTCODE_POLYGON ESRISHAPEFILE

 postcode_polygon.dbf Remove
 postcode_polygon.prj Remove.
 postcode_polygon.shp Remove
 postcode_polygon.shx Remove

Select the charset or leave default

UTF-8/Unicode v

_images/uploadformfilled.png
PERMISSIONS

Who can view and download this data?

UPLOAD LAYERS

1 1 © Anyone Any registered user
1 1 Only users who can edit

i Drop files here | Whocaneditths dats?

1 1 @® Any registered user

P e e e e e e e e e = e = = = = = 0 () Only the following users or groups:
or select them one by one:

Choose one or more users.

Choose Files Rl
Who can manage and edit this data?

Choose one or more users.
FILES TO BE UPLOAD!

SAN_ANDRES_Y_PROVIDENCIA ADMINISTRATIVE ESRISHAPEFILE

 san_andres_y_providencia_administrative.dbf Remove

 san_andres_y_providencia_administrative.prj Remove.

 san_andres_y_providencia_administrative.shp Remove

 san_andres_y_providencia_administrative.shx Remove
Select the charset or leave default

UTF-8/Unicode v

R Upload files

_images/uploadform_new_quickstart.png
si{GeoNode obata v Maps v Avout v

Upload Layers

! Permissions
E Who canview it?
Drop files here : @ anyone
- - i The following users:

orselect them one by or Choose users.

Choose Files The following groups:

Choose groups

Files to be uploaded
Select the charset or leave default Who can download it?
UTF-8/Unicode A
: Who can change metadata for it?

Clear [V

‘Who can edit data for this layer?
‘Who can edit styles for this layer?

'Who can manage it? (update, delete,
change permissions, publish/unpublish it)

_images/uploadpermissions.png
PERMISSIONS

Who can view and download this data?

Anyone @ Any registered user
Only users who can edit
Who can edit this data?

Any registered user
 Only the following users or groups:

x admin

'Who can manage and edit

_images/uploading.png
Your upload has started

EE— 20 0

~

_images/using_datasource.png
1. Choose a data source to import from

‘Spatial Files - Fils from a diectory or archive
8 Mosaic - Raster fies from a directory composing a mosalc.

> ¥ PostGIS - Tables from PostGIS database
4 Oraclo - Tables from Oracle catabase (Instal plugin and drivers)
4 SQL Sorver - Tables from Microsolt SQL Server database (Instal plugin and orvers)

_images/using_advanced.png
Advanced Import Settings

Reprojection

@ Enablea
From
Find
o
EPSGi4326 Find... EPSGIWGS 84.

Attribute Remapping

© Add

(=]

_images/using_directory.png
2. Configure the data source

Choose a e o directory
natural_earth_guickstart/1 10m_cultural Browse.

_images/edit_and_manage.png
Edit Layer ~

EDIT METADATA >
EDIT PERMISSIONS >
MANAGE STYLES >
EDITSTYLES >
REPLACE THIS LAYER >
REMOVE THIS LAYER >

_images/editprofilelink.png
Edit profile

Change password

Upload new layers

Create anew map

My Activities

_images/edit_map.png
EDIT MAP METADATA >
SET MAP THUMBNAIL >
EDIT MAP PERMISSIONS >
REMOVE THISMAP >

_images/editrulelink.png
® Untited 1

@ Ads @ Remove | Eat| §f Dupicate

_images/editrulebasic.png
Name: Symbol:
Foints of Interest L4

Symbol: circle

size: 10

Style: solid
o]
Width: 1

[P — -

_images/example-issue.png
The no-conflict mode should be the default
behaviour #12395

thewebdreamer opened this issue 3 days ago - 10 comments

: thewebdreamer commented 3 days ago

‘The no-conflict mode should be the default behaviour. Why would a Bootstrap client need to implement
this?

cmebertcommentad 3 days a0

1 believe no-confict-is-not-the-defautt is the norm for jQuery plugins?

: thewebdreamer commented 3 days ago

Itis true that it is the norm for jQuery plugins.

Couldn't there be a clash with other jQuery plugins with the current implementation of Bootstrap though?

Labels

Milestone

No milestone

Assignee

No one assigned

Notifications.

G Subscribe

3 participants.

v]

_images/embed1.png
© OpenStreetiap contrbutors, admin

_images/explore_layers.png
Home Layers Ma

Explore Layers

Your selections. Clearall filters

Enter your text here.. B

HydroMet
Risks
Environment
Ocean

Land
Agriculture

Water

Economy
Vector (2]
3

Ll

P S

Document:

Total: 27

Mostrecent Lessrecent A-Z Z-A Mostpopular

Domi

a soil survey|
Land Cover and Land Use

Land Cover and Land Use

by srinaldo

Digf

Dominica development control boundaries

Land Cover and Land Use
Protected areas and parks
by srinaldo

Belize ecosystem

Geographical and BioPhysical Environment
Ecosystem and Biodiversity (Terrestrizl)

by srinaldo

Ambereric Cave shoreline

_images/example-issue1.png
The no-conflict mode should be the default
behaviour #12395

thewebdreamer opened this issue 3 days ago - 10 comments

: thewebdreamer commented 3 days ago

‘The no-conflict mode should be the default behaviour. Why would a Bootstrap client need to implement
this?

cmebertcommentad 3 days a0

1 believe no-confict-is-not-the-defautt is the norm for jQuery plugins?

: thewebdreamer commented 3 days ago

Itis true that it is the norm for jQuery plugins.

Couldn't there be a clash with other jQuery plugins with the current implementation of Bootstrap though?

Labels

Milestone

No milestone

Assignee

No one assigned

Notifications.

G Subscribe

3 participants.

v]

_images/externallayersadd.png
| [Emap~ Eyprint | @ ientty iy o Measure -,
Layers » Available Layers

View avaiable data from:
o-Allss Server v

Title 1d
Coast100k-Australian... ea:Coast100k-...
Coast100k-Australian... ea:Coast100k-...
CorallD-14_Acropora... ea:CorallD-14_..
CorallD-15_Acropora... ea:CorallD-15_..
CorallD-ecoregions_... ea:CorallD-eco...
EPA_cassowary-habitat ea:EPA_casso...
GBRMPA_TUMRA ea:GBRMPA_T...
GBRMPA_reefs-dry_... ea:GBRMPAr...
GBRMPA _reefs-gbr_f... ea:GBRMPA ...

3

©Addtayers Done

_images/dyn_symb4.png
FEMALE

MLLE!

MF

rgmgi

_images/dyn_symb3.png
53.03742, 40.66125

Scale = 1:45M

_images/dyn_symb6.png

_images/dyn_symb5.png

_images/ecw0.png
Edit Raster Data Source

Description

Eaw
ECW/ Coverage Format.

Basic Store Info

Workspace *

geosolutions [+

Data Source lame *
Terracolor_Sydney_AU_15m
o

Enabled

Connection Parameters

URL*

dataluser_dataitc_sydney_au_scwiTerracolor_Sydney_

_images/ecw.png
Raster Data Sources

8 ArcGrid - Arc Grid Coverage Format

8 ERDASImG - Erdas Imagine Coverage Format
8 GeoTIFF - Tagged Image File Format with Geographic information
8 Gtopo30 - Gtopo30 Coverage Format

8 ImageMosaic - Image mosaicking plugin

8 ImagePyramid - Image pyramidal plugin

8 JP2ECW - JP2K (ECW) Coverage Format

8 JP2K (Direct) - JP2K (Direct) Coverage Format

B P2MISID - JP2K (MrSID) Coverage Format

8 MrSID - MISID Coverage Format.

8 NITF - NITF Coverage Format

_images/ecw3.png
Results 1 to 18 (out of 18 ftems) \ Search

Type Hame Title Common Formats _ All Formats
J geosolutions:bbuidings Bouider buidings OpenLayers KML GHL | Select one
M geosolutionsiblakes t::::' ae""dn:’;:” POVOOMEL o etayers kL GHL | Select one
M geosolutions:BoulderCityLimits BoulderCityLimics OpenLayers KML GHL | Select one
M geosolutions:bplandmarks Boulder polygonal landmarks Openlayers KML GHL | Select one
@ geosoltionsibptiandmarks Poit ndmarks OpenLayers KML GML | Select ane
@ geosoltionsibptiandmarks 2876 pointim OpenLayers KML GML | Select ane
W geosolutionsibrivers 5”:: :’;‘:;::” fneat OpenLayers KL GML | Select one
1 geosolutionsibstreets Boulder strests OpenLayers KML GHL | Select one
M geosolutions:Parcels Parcels OpenLayers KML GHL | Select one
1 geosolutions: Trais Trais OpenLayers KML GHL | Select one
3 geosolutions:Wetlands_requistory_area Wetiands_reguiatory_area Openayers KHL GML | Select one
B geosolutionsistm stm Opentayers KL Select one
J geosolutions:WorldCountries countries OpenLayers KML GHL | Select one
M geosolutionsistates states OpenLayers KML GHL | Select one
B geosolutions:wind wind Opentayers KL Select one
B geosolutionswind2 wind2 Opentayers KL Select one

boulder

Results 1 o 18 (out of 18 items)

OpenLayers KiL

Select one

_images/ecw1.png
Edit Layer

Edt layer data and publshing
geosolutions:Terracolor_Sydney_AU_15m
Configure the resource and publishing information for the current fayer

Data | Publishing | Dimensions | Tie Caching

Basic Resource Info

Name
Terracolor_Syaney_AU_15m
Title
Terracolor_Syaney_AU_15m
Abstract

Keywords

Current Keywords
wes. N
Eow

Terracolor_Sydney_AU_15m

Metadata finks

No metadata inks so far

[Addlink] Note only FGDC and Tc211 metadata bnks show up in WHIS 1.1.1 capabiltes

Coordinate Reference Systems

Native SRS
EPSG4328 EPSGIWGS 84...

Deciared SRS,

_images/edit_and_download_layer.png
HYDROLOGY

_images/ecw4.png

_images/dyn_symb2.png
» GeoServer

Logged in as admin. m

Server

& Server status

22 Contact Information
@ Global Settings.

B JA Settings

@ About Geoserver

Services

@ owc
(3 wes
& wrs
& wms

Data
Workspaces
J Stores
| Layers
@ Layer Groups
@D styles

Security

8 users
(3 Data security

B Service security
2 catalog security

Demos

Layer Preview

geosolutions:states

Configure the resource and publishing information for the current layer

pata | Publishing |

Basic Settings
Name

| states.

Enabled

HTTP Settings
[Response Cache Headers
Cache Time (seconds)

WEFS Settings
Per-Request Feature Limit
o
=
o

um number of decimals

Default Title
Default style

Statespiepss -]

_images/layer_styles_010.jpg
GeoServer

About & Status.

(8 server status

. Geoserver Logs

2 Contact Information
@ About GeoServer
4 Process status

Dpata

Layer Preview
Import Data
Workspaces
@ stores

9 Layers

@ Layer Groups
D styles

Services
@ wes
& wrs
& wms
& wes

Settings
@ Global
B

B! Coverage Access

AT

Welcome

Welcome

This Geoserver belongs to .

3 Layers © Add layers
1 stores © Add stores i
1 Workspaces © Create workspaces

/A, Please read the file jvar/lib/tomcat7/webapps/geoserver/data/security
Jmasterpw.info and remove it afterwards. This file is a security risk.

A\ The default user/group service should use digest password encoding.

A\ The administrator password for this server has not been changed from the
default. It is highly recommended that you change it now. Change it

@ strong cryptography available

This Geoserver instance is running version 2.7-SNAPSHOT. For more information
please contact the administrator.

Logged in as admin. "

Service Capabilities
wes
100
110
3.3
11
201
WFs
100
110
200
ws
2.1
130
wes
100
™
100
WMs-C
1t
wMTS
100

_images/data_stores_type3.png

_images/layer_styles_012.jpg
Style Editor

Edit the current SLD style. The editor can provide syntax highlight and be brought to full screen. Click on the "validate

Name

san_andres_y_providencia_coastline

Workspace

Format

SLD ~| @ Format only editable for new styles

Copy from existing style

button to verify the style is a valid SLD document.

Choose One | copy
2¢e @= 12t o
1 <?xml version="1.8" encoding="UTF-8"?><sld:! (y\em(emesmnmr xmlns="htt;
xmlns:ogc="http://ww.opengis.net/ogc” xmlns:gmi tp://ww.0pengis.net/gm!

<s1d:RanedLayer>
<sid:Nane>san_andres_y_providencia_coastline</sld:Nane>
<sld:Userstyle>
‘<sid:Nane>san_andres y providencia_coastline</sld:Nane>
<SUdiTitlemsan andres y providencia coastline</sld:Title»
g

<sld:IsDefault>1</sldzTsDefault>
8 <sld:FeatureTypestyle>
9 <s1d:Nane>nane</s1d: Nane>
10 <sld:Rule>

itlesExternal Border</sld:Title>

S(3l:stroke
<(ld:binesymbotizer>
(G Rile
</sld:FeatureTypestyle>
<s1d;FeatureTypeStyle>

ssParameter name="stroke">#EA10E3</s1d: CssParameter>
ssParameter name="stroke-width">4</sld: CssParameter>

o

1d="http://www. opengis. net/sld"

//ww opengis.net/sld" xalns::
Version="1.0.0">

2 ‘<s1d:Nane>nane</51d: Name>

2 <sld:Rule>

2 <sld:Title-Internal Border</sld:Title> g
Style file

Browse... | No file selected. Upload

_images/layer_styles_011.jpg
GeoServer

Styles

Manage the Styles published by GeoServer

© Add a new style
© Removed selected style(s)

About & Status.

(2L Server status

=/ Geoserver Logs
Contact Information
© About GeoServer
4 Process status

<)=EG - | Results 1 to 7 (out of 7 items)

Data (] style Name
Layer Preview O e
[import Data
(55 workspaces O point
O stores
01 polygon
[H Layers LA ER!
@ Layer Groups 1 puits_vovo_ambanja
@ styles ST

_images/data_style.png
Styles

Manage th Sty pubished by Geoserver
© addanewsie
© Removed selctedsyets)

S0 Remts 11022 (outof 2 ems)

L sean

P
aptas

s s
sopmtcn
esces

e ot
Ra—
oo

00000000000

_images/layer_styles_014.jpg
San Andreas Coastlines

Download Layer

Download Metadata

Legend

/ External Border
Internal Border

Maps using this layer

This layer is not currently used in any maps.
=0 1:68247 ka

TiesCouneyorvipaue 5

_images/data_stores_type5.png

_images/layer_styles_013.jpg
S¢e @= 12t o

1<l version="1,0" encodin zsldistylediayerbescriptor xnlnserhty
xmins:0gc="http: //wwe. 0pengis.net/ogc” xmlns:gml="http: //w.opengis.net/gn
<s1d: NanedLayer>
<sid:Nanesgan andres_y_providencia_coastline</sld:Nane>
<sld:Userstyla
‘<sid:Nane=san_andres y providencia_coastline</sld:Nane>
<sld:Title=san_andres y providencia_coastlines/sld:Titles
<s1d:IsDefaul t>1</sld7Isbetaul t>
<sld:FeatureTypestyles
‘<s1d:Nane>name</51d: Name>
<sld:Rules
<sid:TitlesExternal Border</sld:Titles
<sld: Linesynbolizer>
<sid:stroke>
<sidicssparaneter name=stroke">#g8000</5
e e i i

9

S(0:stroke
s

<AlE et rerypestyie
sld:FeatureTypestyle
<510 Namesname</51d Name>
Sld:Rules
<sld:TitleInternal Border</sld:Title>

Style file
Browse... | No fileselected. Upload

/ External Border
Internal Border

_images/data_style_delete.png

_images/layer_upload_browse_button.jpg
Upload Layers

or select them one by one:

Browse. No files selected.

Files to be uploaded
Select the charset or leave default

UTF-8/Unicode]

_images/data_style_add_delete.png
Styles

onge the St puisnd by Gesenver
©#ssanewsie
S Removed sected stets)

_images/layer_styles_userstyle.png
User Style: sollp. x|

Name: solp

s
Apstract:

@cancal @sove

_images/data_style_editor_copy.png

_images/layer_upload_upload_files.jpg
san_andres_y_providencia_coastline

ESRI Shapefile

 san_andres_y_providencia_coastline.dbf Remove
 san_andres_y_providencia_coastline.prj Remove
 san_andres_y_providencia_coastline:shp Remove
 san_andres_y_providencia_coastline.shx Remove

Select the charset or leave default

UTF-8/Unicode

_images/data_style_editor.png
Style Editor

Edit the current SLD style. The editor can provide syntax highlight and be brought to full screen. Click on the "validate” button to verify the
style is a valid SLD document.

Name
giant_polygon

Workspace
itgeosolutons =]

Format
S ~| @ Format only editable for new styles

Generate a default style
Ghoose One -] Generate ...

Copy from existing style

Ghoose One

150-8859-
2 <styledLayerDescriptor version="1.0.0"
3 chemaLocation="http://mw.opengis.net/sld http://schemas.opengis.net/s1d/1.0.0
/styledLayerbescriptor.xsd"
4 xmlns="http://www.opengis.net/sld" xmlns:ogc="http://www.opengis.net/ogc"
5 xmlns:xlink="http://www.w3.org/1999/xlink" xmins:xsi="http://www.w3.org/2001/XMLSchena~
instance">
6
7 <NamedLayer>
8 <Name>giant_polygon</Name>
9 <Userstyle>
10 <Title>A violet polygon style</Title>
1 <FeatureTypeStyle>
12 <Rule>
13 <Title>violet polygon</Title>
1 <Polygonsymbolizer>
15 <Fill>
16 <CssParameter name="fill">#3300£f
17 </CssParameter>
18 </Fill>
19 <stroke>
20 <CssParameter name="stroke">#000000</CssParameter>
21 <CssParameter name="stroke-width'>0.5</CssParameter>
22 </Stroke>
2 </PolvaonSvmbolizer>
Style file
Browse... N file selected. Upload ...

Validate Previewlegend Submit Cancel

_images/layer_upload_coastline.jpg
le Upload

geo | B Desktop | gisdata | data | good | vector|

Places Name - size Modified

Qsearch [xmicest 16.102015
@ Recently Used L] readme.txt 1,9kB 12.05.2012
(8 geo 1 san_andres_y_providencia_administrative.dbF 308bytes 16.12.2011
i Desktop 7 san_andres_y_providencia_administrative.prj 280 bytes 16.12.2011
LI File System 7 san_andres_y_providencia_administrative.shp 1,4kB 16.12.2011

[Documents /| san_andres_y_providencia_administrative.shp.xml 29,2kB talata

@8 Music

Pictures
8 videos san_andres_y_providencia_coastline.prj 280bytes 16.12.2011

san_andres_y_providei esl 5, 16.12.2011
san_andres_y_providencia_coastline.shp.xml

7 san_andres_y_providencia_administrative.shx 140 bytes 16.12.2011
san_andres_y_providencia_coastline.dbf 182 bytes 16.12.2011

i Downloads

16.12.2011

| san_andres_y_providencia_coastline.xml talata

_“1 san_andres_y_providencia_highway.dbf 193kB 16.12.2011
7 san_andres_y_providencia_highway.prj 280bytes 16.12.2011
7 san_andres_y_providencia_highway.shp 44,5kB 16.12.2011
7 san_andres_y_providencia_highway.shx 18kB 16.12.2011
| san_andres_y_providencia_location.dbf 158kB 16.12.2011

7 san_andres y providencia location.prj 280 bytes 16.12.2011

| AllFiles 3

(o | EEED

_images/data_stores_edit.png
Edit Raster Data Source

frcsrd
e Grd Coverage Format

Basic Store Info

Workspace
| crcam—

Data Source Name
sreCrdsamele

Descrption

™ enaties

‘Connection Parameters

R
e coverages/arc_sample/precip3omin asc

_images/layer_styles_009.jpg
Menu %

& Upload Layers

& Profile
@ Recent Activity
Q Inbox
& Announcements
@ Remote Services

@ Invite User

o GeoServer
& Admin

© Help

_images/data_stores_delete_confirm.png
ConfirmObjectRemoval

About 10 remae: workimgesample, e

The alowing objecs wilberemves:

+ : Img_Sampl, poy._iandmarks, o, oes.roads, g povgon
o gy

VACKET A DEBUG

_images/layer_styles_008.jpg
L

_images/data_stores_type2.png

_images/data_stores_type1.png

_images/layer_styles_001.jpg
Download Metadata

Legend

Maps using this layer

This layer is not currently used in any maps.

_images/layer_styles.png
Layer Styles: Dominica soil survey
Stytes
Choose style: s ®
@Ak @rerore JES POupicae

Rules

® untited 1

@48 @Remove P Et P Dupicate

_images/data_stores.png
Stores

Manage the stoes providng 6t to Geoserver
© Addnew e
© Remove sokected Stores

Type

> Resuts 1107 (ot of 3 ems)

L sean

O000O0O0OCO0OO0oO0I;
00 e ok e

§§€"‘§§i§{

- Resuts 1109 (ot of 9 ems)

arcridsample
mg_sampie2
mosac

wordimagesamie

e

sates shapefie

L R R S SRR

_images/layer_styles_003.jpg
Layer Default Style

Available styles

Click on an available style in the upper
box to assign it to this layer. Selected
styles appear in the lower box.

Default Point

san_andres_y_providenci

Default Polygon

puits_vovo_ambanja
Default Line

_images/data_sort.png
style Name
by

gant povgen
captats
pophatcn

resrces

e ronds
[——
green

by
antas
cre s
dem

ogs

9ot pohygon

s

green

_images/layer_styles_002.jpg
Edit Layer

é

Metadata Styles
Edit Edit
Manage

adb
Thumbnail

Set

&

Layer
Replace

Editdata

Close

_images/data_stores_add_remove.png
Stores

Manage the stores providing data to GeoServer
© Add new Store.
© Remove selected Stores

_images/layer_styles_005.jpg
St

_images/data_stores_add.png
Add Raster Data Source

Festies

‘Connection Parameters

R
e datajexample extension

_images/layer_styles_004.jpg
San Andreas Coastlines

=- 840 sF-QaQ - KMo

Layer Styles: San Andreas Coastlines x

Styles.
Choose style: san_andres_y_p

©rni © et Duplean

Rules

A Extemal Border

TiesCourtsyot MapQuest (] Internal Border

Qnrid @7 SEit @
@®info SAttributes @*Share W Ratings O Comm

_images/data_stores_delete.png
Stores

Manage the stoes providing dtato Geoserver
© Addnew store
© Remove selected Sores:

(<1010 Rt 1105 (ostof 9 ems) L sewch

o ™ rcridsample &
=] e mosaic @&
) e woridimagesampie v
B = e
0 e o0 states_shapefle v
0 @ o0 taz_shapes. v
‘

_images/layer_styles_007.jpg
‘Style Rule: External Border x

External Border ~

@cancel @ Save

_images/data_stores_chooser.png
New Store chooser

Vector Data Sources

1@ Dictory of spat fles Tokes a ety of spotil dtafls and exposes .5 8 ok stre
@ PosGIS G - PostGIS Datanse

13 PosG15 NG (D) - st Dotabase (ND1)

1@ Properes - Alows access o Jve Property s contlning Festse formaton

@ Shaefic - ESRI(o) Shapefes (*sho)

e Fsture Serves - The VIFSDWTaStore represents 3 connection 10 3 Web Feture Server: T conection rovides acce
10 perforn ansactions onthe seve (when suppurte alones).

Raster Data Sources

8 A - Arc Grd Coverage Format
5 GeoTIFF - Togged image Fe Format with Geogaphic formaton
5 Gio9030- Giopo30 Coverage ormat

5 Imagetiosac - Inage mossicing pgin

5 Wordimage - A aster e accompanied by spatldaa e

_images/layer_styles_006.jpg
v Extemal Border
Internal Border

©Adt @Remove PEGH Duplcat

_images/data_layers_meta.png
Metadata links.

e Format -
[EEBET] [texypiain

_images/layer_metadata_008.jpg
Bookmark This Link
SaveLink As...
Copy Link Location

_images/data_layers_feature.png
Feature Type Details

Property
the_geom

at
a1

Type
pont
Long
sting

Nilable
e
e
e

Min/Max Occurences.
o1
o
o

_images/layer_metadata_007.jpg
Download Metadata

OpenLink in New Tab
Open Link in New Window
Open Link in New Private Window

Bookmark This Link
Save Link As...
CopyLink Location
Search Google for "ISO”

Inspect Element (Q)

_images/data_layers_type2.png

_images/data_layers_type1.png

_images/layer_metadata_009.jpg
Enter name of file to save to.

Name:)
saveinfolder: | « | @geo | Downloads| Create Folder
Places Name

Q search

@ Recently Used

8 geo

& Desktop

X File system
7 Documents
@8 Music

@ Pictures
@ videos

& Downloads

| XML document =

e |

_images/data_search_results.jpg
Layers

Manage the layers being published by GeoServer
© Add a new resource
© Remove selected resources

_images/data_workspaces_rename_confirm.png

_images/django_debug_toolbar.png
€) @ localhost: vej[e w8 + A

a
‘THE UNIVERSITY OF THE WEST INDIE! _

AT ST. AUGUSTINE, TRINIDAD AND TOBAGO Versions
DIANGO 1.6.1

Settings

Headers

Request

ar

Static files

UWI GEOGRAPHICAL

SOCIETY
@

Templates

UWI's GeoNode is setup for students and faculty to collaboratively create and share maps for their clas
maintained by the UWI Geographical Society.

For more information about the UWI Geographical society, visit our website

/™ \L o~

_images/decoration2.png
scaleline

= =70 3082934.44102, 125637132910
Click on the map to get feature info

_images/docs-folder1.png
P branch: master + | bootstrap /®

Merge pull request #12696 from twbs/rm-browserstack =

evrabertauthored an hour ago latest comit 2667439980 B
. gist Merge branch master'into pr/12412 2hours ago
. docs Merge pull request #12695 from martikeljuve/offcanvas-transition 2hours ago

. fonts Remove execute permission on font files 13 hours ago

_images/docs-folder.png
P branch: master + | bootstrap /®

Merge pull request #12696 from twbs/rm-browserstack =

evrabertauthored an hour ago latest comit 2667439980 B
. gist Merge branch master'into pr/12412 2hours ago
. docs Merge pull request #12695 from martikeljuve/offcanvas-transition 2hours ago

. fonts Remove execute permission on font files 13 hours ago

_images/download_kmz.png
HOME LAYERS MAPS DOCUMENTS PEOPLE SEARCH | fHEN-1]

HAITI_ADMINISTRAT |V EEm =

@ QWor-ts== ‘ TILES > o
(=hia croz éateur o E 2 | view ngooaLe earm >
ool Bayamo/ f KML >
it - ‘
PNG >
e 4

" \

By
geliic e “”m,
e gt vom

- nge 0"

Fhanonal GRS

=]

Wontego B,
QMonteso Bay

o e

somi 1:4367821 Y

T Courteny o et [, i

@ Info trributes [Share % Ratings ~ ® Comments MAPS USING THIS LAYER

_images/download_kml.png
HOME LAYERS MAPS DOCUMENTS PEOPLE SEARCH [tHEN-]

HAITI_ADMINISTRAT |V EEm =

‘ TLES >

@ BEor- t ==

Fhecumen {9 u = VIEW IN GOOGLE EARTH >
3o~ o
y g
Bovano e
s
S T e P
% ambs tsto Mayor
: e ey,
SRS e anto Domingo €
3 3 =i 5 Baranona QMM
ingston s edernales
Loghe

S 1:4367821 ¥

T Courteny o et [, i

@ info

eoserver/wms/kmiZlayer

trributes [Share % Ratings ~ ® GComments MAPS USING THIS LAYER

: geosolutions%3Ahaiti_administrative&mox

jownload

_images/dyn_symb1.png
Logged in as admin. “

GeoServer

Style Editor

Edit the current SLD style. The editor can provide syntax highlight and be brought to full screen. Click on the "validate" button to verify the style
(& Server Status is a valid SLD document.

=2 Contact Information

@ Global Settings.

Serve

I JAi settings. Name
@ About GeoServer [Statespiepss
Services Copy from existing style
@ owc e
Choose One | copy
@& wes —_—
gms ®odl xS F2e
WMs 1 [<7xml version="1.0" encoding="IS0-885¢ B
pata T e e T m—
| B e
Workspaces 5| xmlns:xlink="http://www.w3.0rg/1999/xlink" xmlns:x: http://www.w3.0rg/2001/XM Schema-ir
J stores <NamedlLayer>
i A
vavees prrtevi
‘@ Layer Groups. <Name>Pie charts</Name>
D styles <Rule>
- Sl gyt
Security <Al
B atiparmeter ~SAAMAMAS/CosParaneters
[Data security Stroke />
B service security q;‘/ﬂpz\)yqnnsymbu\)ze»
[3 catalog security </FeatureTypestyle>
byt ol i
Do vy
Lpeintsymbotizers
Fo—— et
i i
xlink:href="http://chart ?cht=p&anp;chd=t :§{100 * MALE / PERSONS},${100 *
s sl e S
s ity el

_images/downloadformats.png
LfER

\/ I l Download Layer~ JA Download Meta

JPEG >

PDF >

” PNG >
ZIPPED SHAPEFILE >

GML20 >

GML3AA >

csv >

EXCEL >

GEOJSON >

KL >

VIEW IN GOOGLE EARTH >

TLES >

11436783,

_images/data_workspaces_medford.png
New Workspace

fedtord

Namespace URL

e geosrver sgimedtord
The ramespace ur assocted with s workspace

_images/data_workspaces_add_remove.png
Manage GeaServer workspaces
© Ad new workspace.
© Remove selected workspace(s)

_images/data_style_editor_noerrors.png
Noaldation erors.

Style Editor

_images/data_style_editor_goto.png

_images/data_style_editor_reformat.png

_images/data_style_editor_redo.png

_images/data_style_upload.png
SLD file.

v

_images/data_style_editor_undo.png

_images/data_workspaces_URI.jpg
Edit Workspace

Edit existing workspace

Name
‘geonode

Namespace URI
http://www.geonode.org/
The namespace uri associated with this workspace

Default Workspace
[

Settings

Enabled
o

_images/data_workspaces.jpg
GeoServer

Workspaces

Manage GeoServer workspaces

© Add new workspace
© Remove selected workspace(s)

‘About & Status
(@ Server Status
[=1 Geoserver Logs
Contact Information
@ About GeoServer
% Process status

Dpata

Layer Preview
Import Data
= Workspaces
(@ stores

9 Layers

Layer Groups
D styles

Services

@ wes
& wrs
& wms
& wes

Settings
(@ Global
B

S Coverage Access

_images/data_style_editor_fontsize.png
12pt ~|

_images/data_style_editor_error.png
Style Editor

_images/layerattributes.png
@®info | EAttributes | @Share WRatings # Comments

Attribute Name
‘The_Geom

Name

Average Median Standard Deviation

EEEE‘

Admin_Leve

_images/data_style_editor_generate.png
Generate a default style
Thooss One | +| Generate ...

_images/register.png
s1 GeoNode EXE o o 0

_images/jmeter44.png
ELEELEELEELEELLELEEEEEELEELEE

_images/rest_browser_2.png
4@ ([tocalhost:8080/geoserverrestiorkspaces/geosolutions v

‘This XML file does not appear to have any style information associated with it. The
document tree is shown below.

- <workspace>
<name>geosolutions</name>
- <dataStores>
<atom:link rel="alternate" href="http://localhost:8080/geoserverjrest/workspaces
Jgeosolutions/datastores.xml" type="application/xml’/>
</dataStores>

—<coverageStores>
<atom:link rel="alternate" href="http://localhost:8080/geoserver/rest/workspaces

Jgeosolutions/coveragestores.xml" type="application/xml"/>
</coverageStores>

—<wmsStores>
<atom:link rel="alternate" href="http://localhost:8080/geoserver/rest/workspaces

Jgeosolutions/wmsstores xml" type="application/xml'/>

</wmsStores>
<fworkspace>

_images/rest_browser_1.png
Geoserver Configuration APT

workspaces

‘namespaces
steles

reset
about/manifest
aboutversion
seftings
settings/contact
services/wms/seftings
services/wf/seftings
services/wes/settings
templates

D I I I I

_images/css_point_map2.png

_images/jmeter46.png

_images/savemapdialog1.png
About this Map.

Title:
‘San Andres
Abstract:

s map contains los of good information about San Andres|

SaveasCopy Spe Cancel

_images/jmeter45.png
T

_images/savemapdialog.png
=)

About this Hap.

Title:

San Andreas

Abstract:

This map contains lots of good information about San Andreas.
Highway, coastine, points of interest, you name .

Save s Copy Save| Cancel

_images/css_poly_map1.png

_images/jmeter5.png
cut cux
Ccopy cuic Access Log Sampler
Paste

-~ Post Processors »| AJPI1.3 Sampler
Duplicate Citesninc | Assertions ¥ BeanShell Sampler
Reset Gui Listener

Remove Detete

Open...

Merge

e e e

_images/savemaplink1.png
WMap ~ Eprint €@ identty [} P Measure
> Pubishmap

e

v-9 s 7

_images/css_point_map3.png

_images/jmeter47.png
IAAARAAAARAAAAAAARAACAAAARAAAAAAN

EEEEPEPPEPEEPEPRPEPEPPEPEEEEPPERRED

Sampler result | Request | Response data

tate Rte 1|

_images/savemaplink.png
— -
it
Publn mep

Save map.

_images/css_mainrd.png
Choose name for new style x

Workspace for new layer

Sceglieme uno ¥

style name
|css_mainrd]

_images/jmeter4.png
HTTP
Ele Eat fun optons elp

uest.jm;

/home/geosolutions/Desktop/HTTP Re

TG T

1=

cu

cony

Reset Gur
Remove

open.
Herge
Save Selection As.
Save Nate As Image
Save Screen Ax Image (111

Enabie
Disabie

e

T

| ThreadGrowo

Confio Eement. » 1t Contrater

Timer > nclude Controter
Sampler ’

Post rocessors

Assertions

Ustener > Once Oy Controlter

Random Controter

op-up period an se

Random Order Contraler
p Count: CIFOrevt punume Contrtter
Tivoughput Contol
“Transaction Controter
1 Contolier

_images/raster_overlay_2layers.png
osolutions:srtm,gessolutonsisrim_boulder _hsiistyies=hlshade fbbox=-105.70013585953859, 39.80013¢

_images/createmap1.png
'=GeON0de Data v Maps v About v

WMap ~ SPrint @ identty [[P Measure « (Feor - Maps | This map is currently unsaved
LavERs + Q@@ - x
©0-0 & 4 -
Overlays 4
4 Base Maps N
O oieisiieeitiap
No background
000k .
22l 1150770286

[P TR R TP © OpenStreetMap contributors

_images/jmeter39.png
cooscutionsancd
gsoscutions Boudeyiits
geoslutions bplndnarts
geoscutions bbuidings

oD ol@

“mand
atnas
rm—
bidings

_images/raster_overlay.png
agom

_images/css_mainrd_map2.png

_images/jmeter41.png
[Coordinate Reference System
EPSG2870 ind.._ | EPSGINADBI(HARN) / Colorado North (fUS)

Ui Toot_survey s
Meters per unit: 0.30480060360121924

Gridset bounds.
Min X MinY Max X Maxy.

1,999 305528579 1.082 572, 159097|3.972 520 326056¢| 1626 770,085995"
[Compute from maximum extent of CRS

‘il width in pixels *

Tile Matrix Set
Define grids based on: ® Resolutions) Scale denominators.
Level Pixel Size scale
0 [21257731519436893 | [23140605449512205 |

1 [1.062,8865750718445 1.157.030.2724756103

2 [531,4432879850223 578515, 1362378051

3 [26572164300206116 (269 257 56811890256

4 [13286082199648058 144628.78405945128
5 [56.43041099824029 1{72314,39202872564

6 [33215205499120185 1{36.157,19601486282

_images/raster_srtm.png
agom

_images/css_mainrd_map1.png

_images/jmeter40.png
wg ¥ bun
R

-2
anpenon

_images/raster_overlay_url.png
1057001388 v

_images/css_overrides.png
HOME LAYERS MAPS DOCUMENTS PEOPLE SEARCH

GeoNode is an open source platform for sharing geospatial data and maps. If Explore Layers
you have any questions about the software or service, join our

Need help Explore Maps

LATEST LAYERS LATEST MAPS

_images/jmeter43.png

_images/css_mainrd_map3.png
/o
~ S=LindenAv, ”

_images/jmeter42.png
Available gridsets

Gridset Published zoom levels
EPSG:4326 Min v |/[Max v
EPSG:900913 Min v | /[Max v
EPSG_2876 Min v/ Wax v

Add grid subsets [Scegieme o v [O]

_images/css_point_map1.png

_images/css_overrides1.png
HOME LAYERS MAPS DOCUMENTS PEOPLE SEARCH

GeoNode is an open source platform for sharing geospatial data and maps. If Explore Layers
you have any questions about the software or service, join our

Need help Explore Maps

LATEST LAYERS LATEST MAPS

_images/raster_dem_style.png
Style Editor

Edit the current SLD style. The editor can provide syntax highiight and be brought to full screen. Click on the “valdate" button to
verlty the style is valid SLD document.

Name
dem

Copy from existing style
Goozone =] Copy

D¢ ms [mal

<sld: styl edLayerDescriptor xalns=
<sld: Userlayer>
<sld: LayerFeatursConstraints>
<sld FeatureTypeconst raint/>
</51d: LayerFeatureconst raints>
<sld:Userstyle
ST Nane>srtn_boul der</sLd: Nane>
<sld: Title/>
<sld:FeatureTypestyle>
<=L Name>mame</<1 d: ane>
<Sldrie
<<1d: inScsl eDenominstor>T50¢
<sld:Rastersymbal izer>
<sld: Geonet ry>

tp: //wwe. opengis. net /sLd" xalns: SLek"http: //wew. opengis. net /514

</51d: Minscal Denominators

Colortapent ry opacit.
ColortapEnt ry opacity
ColortapEnt ry opacity
ColortapEnt ry opacity

quantit
aquantity"
aquantity"
aquantity" .
aquantity"

aquantity="
aquantity"
aquantity"
aquantity"
aquantity"

ColortapEnt ry opacity

ColortapEnt ry opacit’
ColortapEnt ry opacity
ColortapEnt ry opacity
ColortapEnt ry opacity
Colartapentry opacity"

Sio e

_images/raster7.png
Scale - 1: 146K '480336.91406, 4427050.76125
Click on the map to get feature info

_images/jmeter36.png
Layers
‘Add Layer Group.

1 13 ‘geosolutions:Mainrd

2 1l ‘geosolutions:BouiderCityLimits
31l ‘geosolutions:bplandmarks

4 1

[<el[<1[2][> >> | Results 1 to 4 (out of 4 tems)

_images/raster_hillshade_defaultstyle.png
WM Settings
& Queryable.
Defautt Style

e
X o0
w0

2560

_images/jmeter35.png

_images/raster_hillshade.png
New Layer

Add a new layer

Here s a st of resources contained i the stoe ilshade | Clck onthe layer you wish to configure
1 Resuits 1to 1 (out o 1 items) L se

Published Layer name. action

hillshade. Publsh

_images/createmap.png
HOME LAYERS ~MAPS DOCUMENTS PEOPLE SEARCH BOE

= ueasure -

" SOUTH
AMERICA

AUST

_images/jmeter38.png

_images/raster_hillshade_publishing.png
Edit Layer

Edit layer data and publishing

geosolutions:hillshade
Configure the resource and publising information fo th currrt layer

_images/create_repo1.jpg
@ o seciopeacommad O @ Explore Gist Blog Help Egiommson B % B

Owner Repository name

[Jiohnson -/ my_geonode |

Great repository names are short and memorable. Need inspiration? How about north-american-octo-cyril.

Description (optional)

My GeoNode Project
@ [| Public
Anyone can see this repository. You choose who can commit
O . Private

You ohoose who can see and comitto tis reposiory.
(] Initialize this repository with a README
his willallow you o git. clons the repository immediatey

Add gitignore: None ~

Create repository \

_images/jmeter37.png
arealandmarks
arealandmarks ot
buldings
cemetery_graphics
cemetery_mark
atylimits

contours

countries

county

dem

dem2

dem3

line_label
polygon
polygon

polygon

_images/raster_hillshade_preview.png

_images/jmeter3.png
cuv.

TestFragment ¥
Config Element)
Timer >
Pre Processors »
Dost Processors b ||

"SetUp Thread Group.
tearDown Thread Group

_images/raster5.png
Data | Publishing | Dimensions | Tile Caching |

Basic Resource Info

Name
boulder_bg

@ Enabled
@ Advertised

Title
aerial
Abstract

Keywords

Current Keywords
wes 5

Imagehosaic
~ | [Remove selected

aerial

New Keyword

Vocabulary

Add Keyword

Metadata links

No metadata links so far
Note only FGDC and TC211 metadate links show up in WS 1.1.1 capabilties

Coordinate Reference Systems

Native SRS
EPSG26913 EPSG:NADS3 / UTM zone 13N...

Declared SRS

EPSG26913 ind... | EPSG:NADS3 / UTM zone 13N...
SRS handling

Reproject native to declared

Bounding Boxes

Native Bounding Box
Min X Miny MaxX Max Y
474.000 4.425.000 483.000 4435500

Compute from data

Lat/Lon Bounding Box
Min X Miny MaxX Max Y
105.30490185247] 30,07 4758059876: | -105,19908452236 | 40,069568982396¢

Compute from native bounds

_images/jmeter29.png
Wt et o e Read rom e

Samper esun_ Rouest_Rosponsodaa

_images/raster3.png
New Layer
Add a new layer

Here s a list of resources contained in the store ‘boulder_bg. Click on the layer you wish to configure

[~/ =~ |Results 1 to 1 (out of 1 items)

[|[>> Results 1to1 (out of 1 items) /

_images/jmeter31.png
View Results Tree

Flosame e Logmispay -

au T=] | Samplrresu | Roest | Response dai

_images/raster5bis.png
Coverage Band Detalls
Band

Datatwe Nl values minkange maxkange e
RED_8AND Unsgnedsbes 00 [0 [Wm2set
‘GREEN_BAND Unsgnsdsbes 00 0 [Wm2set
BLUE_BAND nsgnedsbes 00

W25t

_images/jmeter30.png
Connection Parameters

host *
localhost

port *
5434

database
storm_track_sal
schema

public

geosolutions
passwd

Namespace *
http:/ /www.geo-solutions.it/workshop.

(5 Expose primary keys

ax connections.
1

“Tin connections
1

fetch size
1000

Connection timeout
20000000

_images/raster5b.png
Coverage Parameters

Accurate resolution computation

faise
AllowHultithreading

faise
Backgroundvalues

Filter

FootprintBehavior

None
InputTransparentColor

MaxAllowedTiles

El
MergeBehavior

FLAT
OutputTransparentColor

SORTING

SUGGESTED_TILE_SIZE

512512
USE_JAI_IMAGEREAD

e

_images/jmeter33.png
e ——

| e | et |

o e T 0 S O o b
o e 1 T e St 11+ -

_images/jmeter32.png
Raster Rendering Options

Default Interpolation

Nearest neighbor

KML Options

Default Reflector Mode
refresh i
Default Superoverlay Mode
ao v
@ Generate vector placemarks (KMATTR)
Generate raster placemarks (kmiplacemark)

Raster/vector threshold (0-100, default 40)
0

Resource consumption limits

Max rendering memory (KB)
0

Fax rendering time (s
o

Hax rendering errors (count)
o

_images/raster6.png
Layers

Manage the layers being publishe by GeoServer
© Add a new resource.
© Remove selected resources

1 Results 1to 18 (out of 18 tems) e

Type Workspace _Store. Layer Name Enabled? _ Native SRS

O M oeosolutions boulder shapefles _ bbuildios v ==
[M geosoutions boulder shapefles blakes v epsGaz60
[M geosoutions bouder shspefles BoulderCitylimits v epscase
O m geosolutions boulder_shapefiles. bplandmarks v EPSG:4269
o - geosolutions boulder_shapefiles bptlandmarks v EPSG:4269
geosoluions boulder shapefies bptandmarks 2676 v epscase
geosoluions boulder_shapefies brivers v epsGa260

[Y oeosolutions boulder shapefles bsteets v epscasTe
O M geosoutions bouier shapefies ccountes v epsca260
[G geosoutions bouder shaperies Maima v epscase
O M oeosolutions boulder shapefles Parces v epscase
O Y oeosolutions boulder shapefies Trals v epscase
M eosoiions boulder shapefies Vetlands reouatory area ¥ epscase
O @ oeosolutions cem stm v epscane
O B oeosolutons hilshace hilshade. v epscane
0O @ geosolutions NaturalEarthCountries WorldCountries. v EPSG:4326
0@ geosolutions states. states v EPSG:4326

T Results 1to 18 (out o 18 tems)

_images/jmeter34.png
s

B
s
et

_images/layer_info_vector.png
M O admin ~

GeoNode

HOME LAYERS MAPS DOCUMENTS PEOPLE SEARCH BRE

POSTCODE_POLYG

ON

@ Qo9 t3s-=1E8
wurtos e Aimaua - o /

©

@g@ o pendiso
~ Bunsiy
o
L e e
) s
P e
4 Boaufort REtor 3
o CHED p 2
7 e e e
[gounke 2 3 : £l
MELBOURNE """
1 ox o oCoengutta
Mortiake Garfield 2 1:2183910 Mg,
e
MAPS USING THIS LAYER

ttributes @ Share # Ratings 9 Comments

@ info
This layer is not currently used in any maps.

Title: postcode_polygon

_images/data_layers_add_view.png
New Layer chooser

LT cr— |

Hereisa st o resources contaned n the ‘e sore. Click on the layeryou wish to configure

2| Resuts 0100 (out of 0 ems)

Layer with amespace and prefix Published
gart_ogon v
o v
o londmaris v
tger.oads v

<1151 Resuts 0100 outof O tems)

_images/layer_metadata_002.jpg
Download Metadata

150
FGDC
ebRIM
Dublin Core
DIF

Atom

Close

_images/layer_metadata_001.jpg
i GeoNode

Tis Coutemyorvipauet £

®info

= Attributes

Title
Abstract

Publication Date

Type
Keywords
Category

Owner
Moreinfo

Restrictions

Purpose

Language
Data Quality
Supplemental
Information

1:68247

Pshare dRatings O Comments

San Andreas Coastlines
Inventaire des puits d'eau potable dans la Commune Urbaine dAmbanja, 2012.

March 21,2016, 3:36 am.
Vector Data
Hydraulique, GPS
Structure @

admin

Creative Commons / Attribution / Partage dans les mémes conditions (CC BY-5A):
Attribution + Partage dans les mémes conditions (BY SA) : Le titulaire des droits autorise
toute utilisation de Ieuvre originale (y compris 4 des fins commerciales) ainsi que la
création diceuvres dérivées, 3 condition quelles soient distribuées sous une licence identique
& celle qui régit I'euvre originale. Cette licence est souvent comparée aux licences « copyleft
» des logiciels libres. Cest la licence utilisée par Wikipedia. (http://creativecommons.org
Jlicenses/by-sa/3.0/fr/)

Etat zéro "Eau potable & Assainissement de base” 2012 -

Union des Communes du Sambirano

English
Précision planimétrique: 5 métres Précision altimétrique: 2,50 métres
Enlien avec la couche "Batiments 3 Ambanja’

_images/data_layers_delete_all.png
Resuits 110 1

N
H

2w wiw oww

RN B R

PDERREREE

ger

_images/layer_metadata_004.jpg
Explore Layers

Cart

Add resources through the "Add to
cart” buttons.

Set Permissions Createamap

Filters Clear

Total: 3

san_andres_y_proy str:

No abstract provided

lencia_admi

& admin f421Mar2016 ®0 M0 * 0 @ CreateaMap

Inventaire des puits d'eau potable a Ambanja

Inventaire des puits d'eau potable dans la Commune Urbaine d/Ambanja, 2012

& admin [921Mar2016 ®0 M0 * 0 @ CreateaMap

STRUCTURE

P 1 A

_images/data_layers_delete.png
Layers
Hanage e yers g susisnd by Gessener

© Addaew resurce
' Remove sclcted resourees

S s Rt 11010 ot of 18 kams) sewen
O Twe workspace store. Layer Name. Enabied? Natve SRS
o8 e img_sampie2 PRSO009S. v €psG:32633
(=] e mossic: mosaic. v PSG4326
I e woridimagesamie Ing Samgle: v ErsGi432s.
0@ « « snstns v ers 26713
=] « B ougstes v se2e0
o « « e i epscaems
0@ “« « oads v se2e1
¥ a « o P v f—
oe « stem sn v wssae
=] toer me gt otgen v ersciaszs
<) (<)[1)(2)(>) > Resuns 110 10 (o of 18 ems)

_images/layer_metadata_003.jpg
It 2% 3A%2F%2Fwww.isotc211.0rg%2F2005%2Fgmd&service=CSWarequest=GetRecordByldaversion=2.0.28elementsetnal | € |

€) O localhost/cat.

ogue/csw?outputschema:

This XML file does not appear to have any style information associated with it. The document tree is shown below.

- pycsw 1.10.3 -->
- <csw:GetRecordByldResponse xsi:schemaLocation="http://www.opengis.net/cat/csw/2.0.2 http://schemas.opengis.net/csw/2.0.2/CSW-discovery.xsc
-<gmd:MD_Metadata xsi:schemaLocation="http://www.isotc211.0rg/2005/gmd http://www.isotc211.0rg/2005/gmd/gmd.xsd">
- <gmd:fileIdentifier>
<gco:CharacterString>3236a2e0-f023-11e5-86e3-08002779b53d</gco:CharacterString>
</gmd:fileldentifier>
-<gmd:language>
<gco:CharacterString>eng</gco:CharacterString>
</gmd:language>
- <gmd:characterSet>
<gmd:MD_CharacterSetCode codeSpace="1SOTC211/19115" codeList="http://www.isotc211.0rg/2005/resources/Codelist/gmxCodelists.xml4
codeListValue="utf8">utf8</gmd:MD_CharacterSetCode>
</gmd:characterSet>
- <gmd:hierarchyLevel>
<gmd:MD_ScopeCode codeSpace="TSOTC211/19115" codeList="http://www.isotc211.0rg/2005/resources/Codelist/gmxCodelists xml#MD_Sc
</gmd:hierarchyLevel>
- <gmd:contact>
- <gmd:CI_ResponsibleParty>
<gmd:individualName gco:nilReason="missing"> </gmd:individualName>
<gmd:organisationName gco:nilReason="missing"> </gmd:organisationName>
<gmd:positionName gco:nilReason="missing"> </gmd:positionName>
- <gmd:contactInfo>
-<gmd:CI_Contact>
~<gmd:phone>
~<gmd:CI_Telephone>
<gmd:voice gco:nilReason="missing"> </gmd:voice>
<gmd:facsimile gco:nilReason="missing"> </gmd:facsimile>
</gmd:CI_Telephone>
</gmd:phone>
- <gmd:address>
- <gmd:CI_Address>
<gmd:deliveryPoint gco:nilReason="missing"> </gmd:deliveryPoint>
<gmd:city gco:milReason="missing"> </gmd:city>
<gmd:administrativeArea gco:nilReason="missing"> </gmd:administrativeArea>
<gmd:postalCode gco:nilReason="missing"> </gmd:postalCode>
<gmd:country gco:nilReason="missing"> </gmd:country>
- <gmd:electronicMailAddress>
<gco:CharacterString>admin@adm.in</gco:CharacterString>
</gmd:electronicMailAddress>
</gmd:CI_Address>

_images/data_layers_edit_publish.png
nurc:Arc_Sample

Confurethe resurce and pusishing nformaton forth current yer
bata | publishing | Dimensions |

Edit Layer

(Arc_sample

¥ Enabled

¥ Advertised

HTTP Se

U Response Cache Headers

Cache Time (seconds)

WCS Settings
Request SRS

Current Request SRS List
EPSG4326 -

«| [Detete selectea

New Request SRS

Add SRS

_images/layer_metadata_006.jpg
Download Layer

‘Maps using this layer

_images/data_layers_edit_data.png
nurc:Arc_Sample

ot e resoesand g tomacin o b et mer
Data | publishing |

Basic Resource Info

ame

wesimoic

e

Asample Arcrd e

_images/layer_metadata_005.jpg
Si¢ GeoNode

San Andreas Coastlines

=-B+0/F-QQ--XMO)

Download Layer

Download Metadata

Legend

Maps using this layer

This layer is not currently used in any maps.

'm_MI_| 1:68247 4
=

TiesCoutemyothipauen £

Create amap using this layer

@®info | SAttributes (Share JRatings O Comments Click the button below to generate a new map based

on this layer.

Abstract

Inventaire des puits d'eau potable dans la Commune Urbaine d/Ambanja, 2012

Publication Date March 21,2016, 3:36 am.

Type Vector Data Styles
Keywords Hydraulique, GPS The following styles are associated with this layer.
Category Structure @ Choose a style to view it in the preview map.

Owner admin -
san_andres_y_providencia_coastline

Permissions

_images/data_layers_CRS.png
Coordinate Reference Systems

Natve sk
B @senoz U e 10
Decirsases

B (i) ErsGD27 Ui o 4
SRS handing

Force dedared =

_images/layer_edit_button.jpg

_images/data_layers_BB.png
Bounding Boxes

Native Bounding Box
Minx iy

oo eST e ank 05 oo 456 4 ST

Compute from data

Lat/Lon Bounding Box
Minx iy

Fiman e Tasen i

Compute fom natve bounds

_images/layer_add_layers_button.jpg
3Layers

Click to search for geospatial data published by other
users, organizations and public sources. Download data in
standard formats.

Addlayers »

_images/data_layers_WMS.png
'WMS Attribution

Atribution Text

Logo Image Width
foge e

Logo Image Height

Auto-detect image sze and tyoe

_images/layer_gs_datadir_001.jpg
GeoServer

Server Status

Summary of server configuration and status

About & Status.

(8L Server status

= Geoserver Logs

=3 Contact Information
© About Geoserver
&k Process status

Data directory varflibjtomcat7/webapps/geoserver/data

i Locks o

_images/data_layers_WFS.png
'WFS Settings

Per-Request Feature Limit

Maximum number of decimals
o

Extra SRS codes for WFS capabilities generation

9] Override WS wide SRS list

32632

_images/layer_edit_metadata_001.jpg
3i¢ GeoNode

Editing details for geonode:san_andres_y_providencia_coastline

Note: this layer's orginal metadata was populated by impor
supports a subset of IO, FGDC, and Dublin Core metadata elements. Some of your origi

'8 ametadata XML file. GeoNode's metadata import.
al metadata may have been lost.

Owner
admin

Title

San Andreas Coastlines

Date
2016-03-2103:36 AM =]

Date type
Publication J

Edition

Abstract

Inventaire des puits d'eau potable dans la Commune
Urbaine dAmbanja, 2012.

_images/data_layers_add_remove.png
Layers

Manage the layers being published by GeoServer
© Add a new resource
@ Remove selected resources

_images/data_layers_add_chooser.png
New Layer chooser

dd a ayerfrom|

SreCrgsample

i samie2

_images/jpeg2k3.png
Metadata links

No metadata ks 5o far

Add link | Note ol FGDC and TC211 metadsts liks show up i WIS 1.1.1 capabilties

Coordinate Reference Systems

Native SRS

EPSG14326 EPSGIWGS B4
Declared SR

EPSG.4328 Find.._ | ePsGiwes 84,

SRS handiing

Reproject native to declared x|

Bounding Boxes

Native Bounding Box

Min % Min¥ Max X Max ¥
150,38160451736 -34,35941680639 | 151,38171971736]-33,35950360639
Compute from data

Lat/Lon Bounding Box
MinX MinY Masx Mas ¥
150,38180451736|-34,35041880639 | 151,38171971736 -33,35050360838

Compute from native bounds

Coverage Parameters
SUGGESTED_TILE_SIZE
512512
USE_JAI_IMAGEREAD

ftue
USE_MULTITHREADING
false

_images/jpeg2k2.png
Edit Layer

Exit layer data and publshing

geosolutions:TerraColor_Sydney_AU_15m

Configure the resource and publishing informtion for the current layer
Data | Publishing | Dimensions | Tile Caching

Basic Resource Info

Name
TerraColor_Sydney_AU_15m_JP2K

¥ Enabled

W advertised

Title
TerraColor_Sydney_AU_15m_JP2K
Abstract

Keywords

Current Keywords

wos =]

JP2ECH

TemaColor_Syney_AU_15m
2| _Remove selected

New Keyword

Vocabulary

Add Keyword

_images/d3-wiki1.png
O - This repository ~ ® Explore Gist Blog Help ujlord +- X @

mbostock / d3 @5 Watch ~ 1,903 9 Star 22157 | Fork 4,521

Home Pages History

<>
Edit P P Hist Cl URL
H ome it Page age History one o
Wiki 3]
D3.js is a JavaScript library for manipulating documents based on data. D3 helps you bring data to life using HTML, SVG and CSS. D3’s
emphasis on web standards gives you the full capabilities of modern browsers without tying yourself to a proprietary framework, combining
powerful visualization components and a data-driven approach to DOM manipulation. ”~
fah
Resources
p
¢ Introduction

Examples Gallery
Tutorials and Talks

* API Reference

¢ Release Notes

¢ Plugins

* d3.js on Stack Overflow

_images/landmark_crossing_trails.png
Scale = 1: 89K
Click on the map to get feature info

~105.27858, 40.08612

_images/d3-wiki.png
O - This repository ~ ® Explore Gist Blog Help ujlord +- X @

mbostock / d3 @5 Watch ~ 1,903 9 Star 22157 | Fork 4,521

Home Pages History

<>
Edit P P Hist Cl URL
H ome it Page age History one o
Wiki 3]
D3.js is a JavaScript library for manipulating documents based on data. D3 helps you bring data to life using HTML, SVG and CSS. D3’s
emphasis on web standards gives you the full capabilities of modern browsers without tying yourself to a proprietary framework, combining
powerful visualization components and a data-driven approach to DOM manipulation. ”~
fah
Resources
p
¢ Introduction

Examples Gallery
Tutorials and Talks

* API Reference

¢ Release Notes

¢ Plugins

* d3.js on Stack Overflow

_images/kmz_ge.png
ex: pizza near NYC

Get Directions Hi e

h Guantananie,,

v Places
v /& My Places b
> Vi
Make sure 3D Buildings
layer is checked
v /& Temporary Places
¥ (VA haiti_administrative.kmz
v /& it.geosolutions:haiti_.
V& it.geosolutions:hait...

K

Earth Gallery

v Layers

v =@ Primary Database
» /P Borders and Labels
B Places
» = Photos
= Roads
€0 30 Buildings
Ocean
4§ Weather
Gallery
© Global Awareness
[More

Tour Guide

rth

Google

Q& (2 = |= sign in
o
Hispaniola Plain
Greater Antilles Ridge. A’
-) 75
o Z CGentre
g 3 San Juan
X San Juanyde lajMaguana o c
GanaldujSud z A §
Port-augPrince ¥l ‘v
W y
" 2 Bdoruco
Independencia . 8% T
: e || nY,
3 SUd=ESt, | () T e
©2013 €nes/Spot Image 2 &

© 2013 Google
US Dept of State Geographer

Data SIO, NOAA, U.S. Navy, NGA, GEBCO (;OOSIC earth
»

W elev-3463 ft eyealt 243.80 mi O

19°26'46.76" N 73°13'20.3:

_images/data_layers.png
Layers

Mansge th layers bing pudisned by Gesserver
© Addanew resuce.

3 e st s

<< 102 > >> Results 110 10 (out of 19 tems) & Search

O e workspace store Layer Name enabledr Native srs.
o8 e Jct— e Sample v Escin2s
e - ing_sampe2 Psoms v [
os e messc rosse v esans
s e woridimagesampe. 1mg_Sampe v EPSGi4326
=] « « o v erscaes
=] N « sgses v erscass
=] « « e S escaens
Q@ « « oy v [
0@ « « sveans v a2
o® « stem stem v [

> | > Resuts 110 10 out o 19 ems)

_images/layer2.png
3}¢ GeoNode

HOME LAYERS MAPS DOCUMENTS PEOPLE SEARCH

[fHER.]

SAN ANDRES Y
PROVIDENCIA POI

@ Qo9 2t s~

S @
= &
UEg E
=
savavones
i

Ties Courtsy o apQuest [i

@ info

Attributes @ Share rRatings @ Comments

MAPS USING THIS LAYER

Title:San Ances Y Providencia Poi This layer is not currently used in any maps.

_images/data_layers.jpg
Logged in as admin. i

GeoServer

Layers

. ‘s.""“’ Manage the layers being published by GeoServer

,szersmus @ Add a new resource

GeoServer Logs © Remove selected resources
23| Contact Information

© About Geoserver
%8 Process status

Dpata

Layer Preview
Import Data
) Workspaces
(@ stores

9 Layers

W Layer Groups
D styles

Services

(& wes
(& wrs
(& wms
& wes

Settings
@ Global

Coverage Access

_images/landmark_trails.png
wws version: (113] v | Tiing: (Singleile| ¥| Transition eftect: (None | v| Antiaia

Fit

e v

Scale = 1 : 60K -105.32082, 40.02447
Click on the map to get feature info

_images/css_ras_map1.png

_images/jmeter9.png
HTTP Request
Name: [HTTP Request

Comments:

Web Server
Server Name or IP: [lacalnost
HTTP Request

Implementation: -

GET ~| contentent

Path: [geoserveriows

_images/screen_pyramid.png

_images/css_poly_map2.png

_images/jmeter7.png
>
>
>
>
>

Threads (Users)
Paste cuy. Test Fragment
Reset Gui Config Element
o Timer

e Pre Processors
ey Post Processors »

Save Node AsImage <<
Save Screen As Image Cr-1sivse &

Assertions.

>

[Estener T Aasregate rapn

Enable
Disable

Togale T

Help

Aggregate Report
Assertion Results

Beanhell Listener

BSF Listener

Comparison Assertion Visualizer
Distribution Graph (alpha)
Generate Summary Results
Graph Results

JSR223 Listener

Mailer Visualizer

Monitor Results

Response Time Graph

Save Responses to a file

Simple Data Writer

Spiine Visualizer

‘Summary Report
View Results in Table
View Resuts Tree

_images/screen_overview.png

_images/ctr_palette_ovr.png

_images/jpeg2k0.png
— e\ TR EEEEEEEE AT
3 Properties - Allows access to Java Property files containing Feature information
3 Shapefile - ESRI(tm) Shapefiles (*.shp)
5 Web Feature Server - The WFSDataStore represents a connection to a Web Feature Server. This connect
published by the server, and the ability to perform transactions on the server (when supported / allowed).

Raster Data Sources

B AIG - Arc/Info Binary Grid (AIG) Coverage Format
B ArcGrid - Arc Grid Coverage Format
B DTED - DTED Coverage Format
B ECW - ECW Coverage Format.
B EHar - EHar Coverage Format.
8 ENVIHdr - ENVIHdr Coverage Format
B8 ERDASIMg - Erdas Imagine Coverage Format
B GeoTIFF - Tagged Image File Format with Geographic information
B Gtopo30 - Gtopo30 Coverage Format
8 ImageMosaic - Image mosaicking plugin
ramidal plus

8 JP2K (Direct) - JP2K (Direct) Coverage Format.
B JP2MrSID - JP2K (MrSID) Coverage Format

B MrSID - MrSID Coverage Format

B NITF - NITF Coverage Format.

B Worldimage - A raster file accompanied by a spatial data file

Other Data Sources

& wMs - Cascades a remote Web Map Service

_images/css_ras_map2.png

_images/jmeter_request_params.png
Parameters | Post Body
‘Send Parameters Wit the Request:
Tame: Vaiue
D (cetiap
envice s
EX]
T Bhuidngs
stes
s ePsc2a7s
oboc 13062098 0067867, 1757158 6003078 3065595 2047731
a 750
eignt 500
== imagefong

_images/search.png
Search:

Cart

Add resources through the "Add to
cart” buttons

Filters Clear

Total: 286

test

& sdmin

(3 28un2017 @3

#0 ko

@ View Map

A
z

_images/ctr_screen_ovr.png
A%
17565, 660648.73789

Scale = 1 5410 50151
Cick on the map to get featurs info

_images/ctr_palette_pyr.png
sc 210 601312,
Click on the map to et featurs info

_images/jpeg2k1.png
Add Raster Data Source

Description

P2ECW
P2K (ECW) Coverage Format

Basic Store Info
Workspace *

geosolutions x|
Data Source Name *
TeraColor_Sydney_AU_15m_IPIK
Description
TeraColor_Sydney_AU_15m_IPIK

¥ Enabled

Connection Parameters
uRL*

fledataiuser_datale_sydney ay_p2eraColoy_Sydn Browse.

_images/ctr_screen_pyr.png

_static/comment-bright.png

_images/pyramid2.png
Add Raster Data Source

Description

ImagePyramid
Image pyramidal plugin

Basic Store Info
Workspace *

geosolutions [~

Data Source Name *
bm_pyramid
Description
bm_pyramid

¥ Enabled

Connection Parameters
uRL*

fle:datauser_datalbmpyramid

_static/comment.png

_static/comment-close.png

_images/infotab.png
@ info ttributes 22 Share

Title: san_andres_y_providencia_administrative

Abstract:
No abstract provided

Publication Date: Dec. 27, 2013, 654 pm
Type: Vector Data

Topic Category: location

Owner: johnsmith

Point of Contact: johnsmith

ShowHide

* Ratings

® Comments

_images/pyramid4.png
Coverage Parameters
AllowMultithreading

false
Backgroundvalues

Fading

false
InputTransparentColor

MaxnllowedTiles

A
OutputTransparentColor

SUGGESTED_TILE_SIZE

512512
USE_JAI_IMAGEREAD

false

_static/down.png

_images/pyramid3.png
New Layer chooser

‘Add layer from [GEGs0IUtions:bm_pyramid,

Here is a list of resources contained in the store 'om_pyramid'. Click on the layer you wish to configure

() Resuits 0 t00 (out of 0 tems) L search
e Pubisn

(=) Resuits 0 t00 (out o 0 tems)

_static/down-pressed.png

_images/html_embed3.png
File Edit View Search Tools Documents Help
New

Open
Open Recent >

Save bs/22/embed" />
Save As.

New Window

_images/publishmap2.png
tpocalnostimaps/22/embed"><fiframe>

_images/workspace2.png
Workspaces

Wanage Geascrver workspaces
© Add new workspice
© Remove seiected workspace(s)

- Resus 1102 (ot of 2 tams)
O Workspace Name.

4 search
default

O geosohtions
O myworkpsce

Resus 102 fout of 2 items)

_images/html_embed2.png
<htnl>
<body>
<H1>This is my new Mapl</H1>
<p align="center">
<iframe
src="http://localhost/maps/22/embed"
width=800
height=450
style="border:0">
</iframe>

<i>This is cool, isn't it?</i>
</p>
</body>
< /tms!

_images/publishmap1.png
WMap - EpPrint @ ldentty flQuery

> Publish map

Save map

]

_images/workspace1.png
* About to connect() to localhost port 8086 (#9)
+Trying ::1... comected

* Comnected to localhost (::1) port 8080 (#9)

* Server auth using Basic with user ‘adnin’

> POST /geaserver/rest/workspaces HTP/1.1

> Authorization: Basic YWRtaWAGR2VvCw==

> User-Agent: curl/7.19.5 (1486-pc-inux-gnu) Libcurl/7.19.5 OpenssL/o.9.8g z1ib/1.2.3.3 libidn/1.15
> Host: Localhost:8680

> Accept: */*

> Content-type: text/xnl

< HITP/1.1 201 Created
< Server: Apache-Coyote/1.1

< Date: Thu, 61 Apr 2610 15:22:57 GHT

/localhost 8080/ geoserver/ rest workspaces/myworkspace
< Server: Noelios-Restlet-Engine/1.0..8

< Transfer-Encoding: chunked

* Connection #0 to host localhost left intact

 Closing connection #0

_images/html_embed5.png

_images/push_branch.png
igeo@geonode: /home /geonode /geonode_custom$ sudo git push origin add_logo
Username for 'https://github.com': afabiant

Password for 'https://afabiani@github.com':

Total 6 (delta 8), reused 6 (delta @)

To https://github.com/afabiant/geonode_custom.git

* [new branch] add_logo -> add_logo

laeo@aeonode : /home /aeonode /aconode customs B

_images/zoomedin.png

_images/html_embed4.png
oswee

Name: [html_test1.htm|

. @ Home 4 fgeo [WDesktop »
[Desktop Name
D Documents data

¥ Downloads
dd Music

@ Pictures

_images/publishmaplink.png
[Siso | e (@
Pubisn msp
E savemap

4 Overlays

_images/workspace3.png
workspace>
<naneomyworkspaces/nane>
<datastores>
<aton: Link xalns:atos="http://wwn.#3.0rg/2005/Aton" re]
spaces myworkspace/ Gatastores. nl* type="application/xal”/>
</datastores>
<coverageStores>
<aton: Link xmlns:aton="http: //wn.i3.0r/2005/Aton" rel="alternate" href="http://localhost:8088/geoserver/rest/uo
Kspaces/mpworkspace/ coveragestores. a1 type="application/xal”/>
<lcougragestores>
aworkspace>

Lternate" href="http://localhost:8080/geoserver/rest/uo

_images/html_embed7.png
is my new Map!

S+O/F-QQ -

foml | gess -

This is cool, isn't it?

_images/push_logo.png
geo(@geonode: /home/geonode/geonode_customs sudo git commit -m “Adding a new logo to the custom LeoNode
[add_logo ava1da1] Adding a new logo to the custom GeoNode

2 files changed, 6 insertions(+)

create mode 100644 geonode_custon/static/ing/UWI-logo.IPG

geo@geonode:: /home/geonode/geonode_custom$ sudo git push origin add_logo
Username for 'https://github.com': afabiani

Password for 'https://afabiani@github.con':

Counting objects: 14, done.

Compressing objects: 100% (7/7), done.

Writing objects: 106% (8/8), 9.28 KiB | 0 bytes/s, done

Total 8 (delta 2), reused © (delta 0)

To https://github.con/afabiani/geonode_custom.git

4fbs9e2..a9a1dal add_logo -> add_logo
geo@geonode : /home /geonode /geonode_custom$ |

_images/html_embed6.png

_images/push_branch1.png
igeo@geonode: /home /geonode /geonode_custom$ sudo git push origin add_logo
Username for 'https://github.com': afabiant

Password for 'https://afabiani@github.com':

Total 6 (delta 8), reused 6 (delta @)

To https://github.com/afabiant/geonode_custom.git

* [new branch] add_logo -> add_logo

laeo@aeonode : /home /aeonode /aconode customs B

_static/ajax-loader.gif

_images/importer_link.png
- Layer Groups
D styles

_images/pyramid1.png
Raster Data Sources.

B Arcrid - Ave Grid Coverage Format
8 OTED - DTED Coverage Formt
B - e Coverage Format
8 ERDASIMg - Erdas Imagine Coverage Format
8 GeoTIFF - Tagged Image File Forma with Geographic informaton
B Gtopos0 - Gtopo30 Coverage Fomat

Imageossc - image mosicking plugin

g romid_image pyramidal plugin

872K (Orect) - P2 (Drect) Coverage Format
B 7200510 - JP2K (MrSID) Coverage Format
B SID - SID Coverage Formt
B I - NITF Coverage Format
B iordimage - A raster le accompanid by a spatial data le

_images/icons.png
4 airport.p.16.png

]m amenity_prison.p.20.png.
(ampirg.n.lﬁ.prg

% christian3.p.14.png

==/ gate2.png

T museum.p.16.png.

A peak.png

& picnic.p.16.png

AY, school.png

% shop_supermarket.p.16.png
@ theatre.p.20.png
nwalking.n.lz.png

_images/push_logo1.png
geo(@geonode: /home/geonode/geonode_customs sudo git commit -m “Adding a new logo to the custom LeoNode
[add_logo ava1da1] Adding a new logo to the custom GeoNode

2 files changed, 6 insertions(+)

create mode 100644 geonode_custon/static/ing/UWI-logo.IPG

geo@geonode:: /home/geonode/geonode_custom$ sudo git push origin add_logo
Username for 'https://github.com': afabiani

Password for 'https://afabiani@github.con':

Counting objects: 14, done.

Compressing objects: 100% (7/7), done.

Writing objects: 106% (8/8), 9.28 KiB | 0 bytes/s, done

Total 8 (delta 2), reused © (delta 0)

To https://github.con/afabiani/geonode_custom.git

4fbs9e2..a9a1dal add_logo -> add_logo
geo@geonode : /home /geonode /geonode_custom$ |

_images/info2.png
S .

Scale = 1: 470K -105.10514, 39.91187

« Type: bplandmarks (id: bpiandmarks.2);
© STATEFP: 08

COUNTYFP: 013

ANSICODE

AREAID: 110707447699

FULLNAWE: Rocky Mountain Natl Pk

MTFCC: K2181

ALAND: 107636350

AWATER; 1075466

INTPTLAT: +40,2132445

INTPTLON: -105.6068521

_images/info1.png
°

Scale = 1 : 470K
BPLANDMARKS

FID STATEFP COUNTYFP ANSICODE

bplandmarks.2 08

013

-105.56515, 40.23262

AREAID FULLNAME MTFCC ALAND AWATER INTPTLAT INTPTLON
110707447699 Rocky Mountain Natl Pk k2181 107636350 1075466 +40.2132445 -105.6068521,

_images/wmscascade_store.png
New WMS Connection

Edit the connecton to a remate WIS Connection
Basic Store Info
‘Workspace *

igessoiions 5]
W Source ome

gevserver-enterprise
Description

P Enabied

Connection Info
‘Copabties URL *

o idemo1 geo-solutions itgeosenver-enterpriselows?
ser Name.

¥ Use HTTP connection pooing
Max concurrent connections *
6
Connect timeout n seconds *
£
Read timeout in seconds *
0

_images/wmscascade_sources.png
& serverstans

et Vector Data Sources
© oo essarvr 3 econy f st e (shapties) - Take ety o shpetlessnd cxposes .3t s

e ————
S 3 rperes - s ccss 1 v Progerty s containogFetrs omston
e e St () 1
e S T WMo s crnecion o s Wb FsreSer T cornecton s
s o ks .o o o s, e Sy 5 Pt i 1 o vt (e B
ety
Raster Data Sources
i e g e et s e s
i ai—
2 naperiase nsge e i
s et e oy el s e

Other Data Sources

Secuny
8 e

3 o secarry
B Servce sy
3 g sty

_images/publishmap.png
Publish HMap

MapSize |gge v Meight 4y Width 5o

Your map s ready to be publshed to the webl Simply copy the foloning
HTML to embed the map in your websie:

<iframe style="border: none;" height="400" widt’
src="http://ec2-50-19-158-121.compute-
1.amazonaws.com/maps/1/embed"> </frame>

T T ~J

_images/wmscascading_publish.png
dves

5w

&

8 o

@ Geomercare
o

[—
securty

8 users

3 ooasecury
B sarve sy
5 ot sty

GeoSolutions: Raster_50000_Scale_index
Cocsohains i b
Corsohions e i e
Geosotons oy
L —
Geosotons spezs-seconou
Geosotons spe - depconcor
[E—————
Censehar e seonions
[P ——
Censotars i e setonch depres
[———
PRR——

25 o el 11025 (o o 47 ems)

_images/pt_landmark_style.png
¢ m= [12pt |

v
<sld:Rotation>
<ogc:Literal>0.0</ogc: Literal>
</s1d:Rotation>
</51d:PointPlacenent>
</51d:LabelPlacenent>
<sld:Fill>
<s1d:CssParaneter name="fill">#000033</51d: CssParaneter>
</s1d:Fill>
<s1d:Priority>200000</s1d: Priority>
<s1d: VendorOption name="autoNrap*>100</s1d: VendorOption>
</51d: Textsynbolizer>
</s1d:Rule>

<sld:Rule>
<s1d:Nane>school</s1d: Name>
<oge:Filter
<ogc:PropertyIsEqualTox
<ogc:PropertyNane>MTFCC</0gc : PropertyNane>
<ogc:LiteralKBSM8</ogc: Literal>
</ogc:PropertyIsEqualTo>
</oge:Filters
<s1d: MaxscaleDenoninator>100000</s1d: MaxScaleDenoninator>
<Vendor0ption name="1abel0bstacle">true</VendorOption>
<sld:Pointsynbolizers
<s1d;Graphic>
<sld:ExternalGraphic>
<sld:OnlineResource xlink: type="sinple" xlink:href=
<s1d:Fornat>inage/png</sld:Fornat>
</51d: ExternalGraphic>

/ing/landnarks/school.png* />

_images/wmscascading_preview.png
Scale - 1:279M ~224.29666, 104.06250

_images/preview_shapefile1.png
Layer Preview

List of all layers configured in GeoServer and provides previews in various formats for each.

[<< [<1[1][=][>~ Results 1020 (out of 0 matches from 20 items)

1 geosolutions:Mainrd Mainrd OpenLayers KML GML Select one -
[<</ <1[1][=][>~ Results 1020 (out of 0 matches from 20 items)

_images/wfscascade_bbox.png
Coordinate Reference Systems

Native SRS

EPSG4326 EPSGIWGS B4
Declared SRS

EPSGA328 Find... |EPsGiwGs 24,

SRS handiing

Force declared

Bounding Boxes

Native Bounding Box

Min % Min¥ Max X Max ¥
-179,9999999999: 90 180,00000000000] 83534100653000

Compute from data

Lat/Lon Bounding Box
MinX MinY Mas X Mas ¥
-179,9999999999: 90 180,0000000000083,634100653000

Compute from native bounds

_images/preview4.png
Boulder
Mountain Park

_images/wfs-t_geonode9.png
b

L
Scale = 1: 35K 603843.88948, 4927829.65’
streams_1
fid cat label
streams_1.132 this is a test

793

_images/profileedit.png
Edit Your Profile

Change your avatar

First name
John

Last name
Smith

Email address

mail@example.com

Organization Name
Smith & Co.

name of the responsible organization

Profile
Manager of geospatial data for Smith & Co.

introduce yourself

B

e

_images/wfscascading_preview.png
8
® = - =,
A

/5
#" el

Scale = 11 279M 5421875, 60.07941
Click on the map to get feature info

_images/preview_shapefile2.png
Scale — 1: 740K 3046920.86926, 1281152.19562

_images/wfscascade_store.png
New Vector Data Source

'Add 2 new vector data source

Web Feature Server
The WFSDataStore represents a connection o 2 Web Feature Server. This connection provides access t the
and the abilfty o perform transactions on the sarver (when supported / allowed).

Basic Store Info
Workspace *
‘geosolutions [v]
Data Source ame
icascade

Pescrvtio Use version 1

¥ Enabled

Connection Parameters
WFS GetCapabiities URL <
pRee——
] Favor HTTP POST method over GET

HITP Authentication user name —

uest-GetCapabilties

Leave these fields empty

HTTP Authentication user password —

_images/profilepage.png
GeoNode

Type Title: Date johnsmith

Actions

Edit profile information
Account Settings
Change password
Upload new layers
Create a new map

Manage Connections

Following
Blocking
Following

Followers

_images/wms_settings.png
WMS Settings

Default Style|
polygon =l
=]

Additional Styles

Available Styles

Selected Styles.

burg
capitals

cite lakes
colors

dem

distance
giant_polygon
grass

green

fine

Default Rendering Buffer

5
Default WMs Path

_images/profilelink.png

_images/wfscascading_publish.png
New Layer
satane e
P e —

You an e new festur type by manually configuring the aibuts rames d ypes. Create new feature type...
Hora 53 15 of raources condined In th o wfs-cascade’. ik on he ayer You wih t confgure

| Resos 0 0 (outof 0 ms) Search

_images/pt_landmark_ds.png
=

Whitier Elem
= School
Mapleton Elem
School m
Souider Courty
Courhouse
oyt &
SouiderHgh
S
=
Frat rons Elem &>
Sl
=
=

Univ of Colorado

_images/pt_attribute_table.png
Feature Type Details

Property Type Nillable Min/Max Occurences
the_geom Point true on
sTaTERP String true o
counTvee string true on
ANSICODE String true o
POINTID string true on
FULLNAME String true o

MTFCC String true o1

_images/wmscascade_bbox.png
Coordinate Reference Systems

Native SRS
EPSG:4326
Declared SRS
EPSG:4326
SRS handling
Force declared

Bounding Boxes
Native Bounding Box

EPSG:WGS 84...

Fi EPSGIWGS 84...

|

Compute from native bounds

Minx Min Y Max x Max Y
180 o0 [180 foo
Compute from data

Lat/Lon Bounding Box

Minx Min Y max x Max Y
180 Foo 180 oo

_images/pt_landmark_map.png
A
Baid Min

&
Poorman HI

Tram HI

= —

Centennial Ir HS

LN
. &
Mt Sanitas. Foothill Elem 1
Tenoo!
& puiezen | W
o &
d m bl
Gkt ™ prapahn Vilage

Shapping Center

Fatrm =
a Schoal
a Univ ofColorado

Flagstaff Mtn Baseline Jr HS

r
a 1 £

_images/qgis_wms_metadata.jpg
ae#ee@ta'»ﬂa“mq

Layer Properties - it.geosolutions:Air_Runways0

™ Transparency =, General Metadata

Title

Abstract

OGC Web Map Service version 1.3 data provider
Server Propetes Selectad Lavers Ottr Lavers

WMS Version 13.0
Title My GeoServer WM.
Abstract This is a description of your Web Map Server.
Keywords WES

wMs

GEOSERVER

Online Resource -
Contact Person

Fees NONE
Access Constraints NONE
| Image Formats age/png

| Restore Default Style || Save As Default I Load Style

J

-
|8

_images/jmeter26.png
View Results Tree.

e Resus T
et resata ol s o

el) o] ommn o ik @ s

a7 [sompwrrosut | neaves | Responsssaa |

g
.

£x
—

EEEEEEEEEEEEEEBED!

_images/r_dialog.png
points.

it geosobtonsTrafc_Sgnal[756:2230] 4 I)
Rpos

(e s 1 —

R Console Output

(e ey 1 —

[o< J[cose |[conem |

_images/r_alg.png

_images/jmeter28.png
Label #Samples
1 100] 12| S|
2 00| 02 23]
4 200] 40| S|
TOTAL 400] 127] 23]

_images/raster2.png
Add Raster Data Source

Description

ImageMosaic
Image mosaicking plugin

Basic Store Info

Workspace *
geosalutions v|
Data Source Name *
boulder_by
Description
boulder_by

¥ Enabled

Connection Parameters

uRL*
fle:datauser_dataiaeriall Browse,

_images/jmeter27.png
View Results Tree

| Cosor.] agoopaomy: Cierors Clsuccoses

o st e
Vit esuhs o h Readrom

(333333333933333333333333333337

_images/raster1.png
New data source

Choose the type of data source you wish to configure

Vector Data Sources

(CA Directory of spatial files - Takes a directory of spatial data files and exposes it as a data store
(T4 POSIGIS - PoStGIS Database

(T3 PoStGIS (INDI) - PoSGIS Database (INDI)
3 Propertes - Allows access to Java Property files containing Feature information
3 Shapefile - ESRI(tm) Shapefiles (*.shp)
(54 Web Feature Server - The WFSDataStore represents a connection to a Web Feature Server. This connection provides access to the
Features published by the server, and the abilty to perform transactions on the server (when supported / allowed).
Raster Data Sources

B A e G Creeg

8 GeoTIFF - Tagged Image File Format with Geographic information
e

e

ICIDBC - Image mosaicking/pyramidal jdbc plugin

18 ImagePyramid - Image pyramidal plugin

18 JP2K (Direct) - JP2K (Direct) Coverage Format

1 WorldImage - A raster file accompanied by a spatial data file

_images/jmeter2.png

_images/qgis_wms_add_2.jpg
R SR A, . T 3 e e i N

AD S 0RBR ﬁ\#f\QDO

Add Layer(s) from a Server

Layer Order | Tilesets | Server Search

| GeoNode Alpha Dev Server

Create a new WMS connection

D Connection details

Name GeoNode Alpha Dev Server

URL ht

Jalpha.dev.geonode.org/geoserver/wms

optional password

If the service requires basic authentication, enter a user name and

Image encodi
User name [admin
Password .
Options [} gnore GetMap URI reported in capabilities

Layer name (I Ignore GetFeaturelnfo URI reported in capabilities

Tile size | Help | | Cancel | |

default servers

Feature limit

[Help | | Add
24061 of 24061 bytes of capabilities downloaded.

_images/jmeter19.png
Summary Report
Name: [Summary Repor:

Comments:
Writ results fofle /Read fromfile

Filename | Bouse.._| Loginisplay Only: [] Errors [] Suc
Label [#ampies | Aversge | i Wax | 5t Dev | Eror% | Throughput

TP Reau| 371 o1 Pz BE 1Hei 000E 62isec

FOTAL il 391 225 815 Atiol 0008 62isec

_images/qgis_wms_add_1.jpg
= .M = . O B Y sy sV K 0 0 W Y

"a s ¥ & 3% 4
2D 90803 EARDDC

Add Layer(s) from a Server

Layer Order | Tilesets | Server Search

B

[_Connect |(JO OO Create a new WMS connection default servers
D Connection details.
Name
URL
If the service requires basic authentication, enter a user name and
optional password
Image encodi
User name [
Password
©Options | ignore GetMap URI reported in capabilities
Layer name | Lllgnore GetFeaturelnfo URI reported in capal
Tile size. | Help | Cancel | oK |

Feature llnﬂt_—‘

[Change |

Help | | Add | Close |
Ready

_images/jmeter21.png
Save ode Asimage ciic
e

‘Access Log Sampler
AIPAS Sampler
‘Beanshel Sampier
BSF samplor

‘Debug Samplor

_images/qgis_wms_add_7.jpg
2

Load || Save Add default servers

Air_Runways
Air_Runways
Air_Safety Z.
Ambulance_.

Ambulance_....

Aquifers

 Bike Plan SD_

 Image encoding
@PNG (OJPEG ()GIF () TIFF
Options

This is a description of your Web Map Server.
No abstract provided
No abstract provided
No abstract provided
No abstract provided
No abstract provided
No abstract provided

Noabstractorovided |

Layer name |

Tile size |

Feature limit for GetFeaturelnfo

Help Add

311673 of 311673 bytes of capabilities downloaded.

_images/jmeter20.png

_images/qgis_wms_add_6.jpg
P D cn®0DBRLEANADDC
(s}

Title
My GeoServ..
Air_Runways
Air_Runways
Air_Safety_Z... No abstract provided
Ambulance_... No abstract provided
Ambulance_... No abstract provided

uifers.
Image encoding
@PNG PG ()GIF () TIFF

Coordinate Reference System (4957 available)

Layer name it.geosolutions:Air_Runways0

Tilesize |

Feature limit for GetFeaturelnfo

WGS 84

| Help | [Add |
1 Layer(s) selected

_images/jmeter23.png
CSV Data Set Config

Name: G5 Data S Gontg

Comments:

Configure the CSV Data.

Variable Names (comma-delimited):width,height bbox
‘Delimiter (use 1€ or taDY].

Allow quoted data? False

Recycle on EOF |True

Stop thread on EOF 2:[False.

‘Sharing mode:|All threads

_images/qgis_wms_layer_zoom.jpg
Quantum GIS 1.8.0-Lisboa

JEEddo RRPPRREER » 2 DRYIRI ~ 10> @> 0> > > D
Lt B0 FID OB BLENRDDC
06 Layers

™ Control rendering order
34815 of 34815 bytes of map downloaded. ¥ Coordinate: |

| Scale [1:27187 1v) & M Render EPSG:4326 @ A

y

_images/jmeter22.png
Loop Controller

FTP Request Deraurts
| HTTP Authorization Manager

Post Processors »| HTTP Cache Manager

| HTTP Cookie Manager
»| HTTP Header Manager

_images/qgis_wms_layer.jpg
Quantum GIS 1.8.0-Lisboa

BEHd S RRCPEREER ~BPAIRR » £ 8> 022 «» @
e v RO 2D a~90908EAKRDDC

(x]=) Layers '

'/ itgeosolutions:Air Ru...

™ Control rendering order
6488 of 6488 bytes of map downloaded.

-] S| @ Render EPSG:4326 (@ (A

_images/jmeter25.png
S ——————

Aoty

O M sompie a0 b samples ® M samplany O Sb-samples sy O ieerVariate
Response et st

O TextResponse) Documenttex R Samped O ResponseCode) Rasponse Message Respans Henders] gors St
patonotchag ks

@ Conans O baches O Equats O Subsivig It
patrsstoTost:

—— |

_images/jmeter24.png
Test | L
Vo AT racs s »

Paste cuy. TestFragment)
Reset Gui Config Element ¥ pts:

Timer »
Open...

Pre Processors >

Post Processors »

Save Selection As... —
e T
STy G Listener »| BSF Assertion
‘Save Screen As Image Cil+lsiusc G e
I — Gt
Disable 'HTML Assertion
Tougle e JSR223 Assertion
Help. 'MD5Hex Assertion
e
e
T
T
T
e

_images/qgis_wfs_installer.jpg
4 QGIS Python Plugin Installer

8 plugins available

T Repositories | Options |

Filter: ((all repositories =] [any staws :
Status Name Version Description

upgradeable InaSAFE 1.0.0 -> 1.0.1 InaSAFE Disaster Scenario Assessm

upgradeable Save As SLD 020 ->0.3.0 Save layer style as Styled Layer Des

new! Accuracy Assessment 03 Raster classification accuracy asses

new! Plain Geometry Editor 10 Edit geometry of features using WK

new! DimLao 002 Plugin for dimensioning. Supported

new! ShellDB 22 Pass selected feature data to the st

new! Geospatial Simulation 10 Geospatial tool for spatial extrapol,

new! Layer to labeled layer 01 Make it possible to use data-define

Help

| Upgrade all

The plugins will be installed to ~/.qgis/python/plugins

Install/upgrade plugin

Uninstall plugin

[_Close

M

_images/qgis_wfs_identify.jpg
W%

SRS 4
0.0.0 Identify Results
Feature. 4 Value
vo it.geosolutions:Traffic_Signal
v
» (Actions)
¥ (Derived)
INTERSECTI 561
SAPID 5X-005256-001
SIGNALID CT-0071
>
>
>
»
>
>
>
»
32 Help Close.

_images/jmeter18.png
‘Thread Properties-

Number of Threads (users): [1
Ramp-Up Period (in seconds}: [1
Loop Count: [] Forever |1

(] Delay Thread creation until needed

[Scheduler

_images/qgis_wfs_style.jpg
| Labels | [Fields X General | () Metadata < Actions & Joins | | Diagrams |

Legend type

_ A
le Symbol + | Transparency: 0% O New symbology |

Point Symbol

'RERXRA=

aERXEae

ERR+EE

- B804+ E0%

00000 (<] 110 map units
Label
Outline options
— Width |0.26 2
[Restore Default Style Save As Default] Load Style ... J(Save Style ...
Help | [Apply | Cancel oK

 ort. -

_images/jmeter17.png
Graphs to Display [v] Data [v] Average ledian [¢] Deviation

_images/qgis_wfs_layer.jpg
Quantum GIS 1.8.0-Lisboa

™ Control rendering order ®

6138139.04,1773669.90 : 6460430.86,1069313.32 ¥ Coordinate: | 6223201,1862828 Scale 1272200 1) |/ M Render EPSG:2230 (@) &

_images/inspect_element1.png
THE UNIVERSITY OF THE WEST INDIES

ETYSY/STINE, TRINIDAD AND TOBAGO

HOME LAYERS MAPS DOCUMENTS PEOPLE SEARCH t

Developer Tools - http://localhost:8000/

@ o @HnACaAm

Elements | Resources Network Sources Timeline Profiles Audits Console

» Computed Style Oshow inherited|
v<htnl lang="en"> ¥ Styles. + B g
» <head>..</head> elenent.style {
home hasGoogleVoiceExt"> s

“navbar navbar-fixed-top">.</div>
“ 3

ontent-wrap">
Ve<div class="containe Maiched CSS Rules
Vediv class="row"> body. home . content-wrap { base.css:9
Ve<div class="span12" background: »0;
V<div class="hero-unit"> 3
<hi>Welcome</h1>
~content-wrap { site base.css:7)

b <div class="hero-unit-content">.</div>

e Tarint T 730
» N Trassrroutscsaive) A\ N

e content-urap {
<ises bockgroondis [#tter
. padding: »30px @ @ 20px;

</6iv- width: 980p)
»<footer class="footer">.</footer> minheights 400px;
<script sre="/static/Libs/is/iauery=1.8.0.1s"></script> oot B sute 20pr
<script src="/static/libs/bootstrap/is/ 3
bootstrap.min. s"></script>
<script src="/static/libs/datatables/is/ a1 EEGT SEE G
auery.dataTables.nin. is"></script> display: block;
¥

</script>

/static/libs/is/hogan. s’

Zscript sro

_images/qgis_add_wfs.jpg
™ Control rendering order

Embed Layers and Groups...
& Add Vector Layer.
& Add Raster Layer.
Add PostGIS Layers. %D
Add SpatiaLite Layer...
Add MSSQL Spatial Layer... ©%M
© Add WMS Layer... onwW
[Add Delimited Text Layer

3 Copy style
I Paste style

1 Open Attribute Table
4 Save Edits
Toggle Editing

Save As...

Save Selection as Vector File...

R Remove Layer(s) #D
Set CRS of Layer(s) 28C
Set Project CRS from Layer
Propertes...

Query...

< Labeling

& Add to Overview 050

Add All to Overview
-® Remove All from Overview

@ Show All Layers 08U
© Hide All Layers o8H

-117.2317,32.7409

| Scale (121187 -]

[Render EPSG:4326

_static/file.png

_images/inspect_element.png
THE UNIVERSITY OF THE WEST INDIES

ETYSY/STINE, TRINIDAD AND TOBAGO

HOME LAYERS MAPS DOCUMENTS PEOPLE SEARCH t

Developer Tools - http://localhost:8000/

@ o @HnACaAm

Elements | Resources Network Sources Timeline Profiles Audits Console

» Computed Style Oshow inherited|
v<htnl lang="en"> ¥ Styles. + B g
» <head>..</head> elenent.style {
home hasGoogleVoiceExt"> s

“navbar navbar-fixed-top">.</div>
“ 3

ontent-wrap">
Ve<div class="containe Maiched CSS Rules
Vediv class="row"> body. home . content-wrap { base.css:9
Ve<div class="span12" background: »0;
V<div class="hero-unit"> 3
<hi>Welcome</h1>
~content-wrap { site base.css:7)

b <div class="hero-unit-content">.</div>

e Tarint T 730
» N Trassrroutscsaive) A\ N

e content-urap {
<ises bockgroondis [#tter
. padding: »30px @ @ 20px;

</6iv- width: 980p)
»<footer class="footer">.</footer> minheights 400px;
<script sre="/static/Libs/is/iauery=1.8.0.1s"></script> oot B sute 20pr
<script src="/static/libs/bootstrap/is/ 3
bootstrap.min. s"></script>
<script src="/static/libs/datatables/is/ a1 EEGT SEE G
auery.dataTables.nin. is"></script> display: block;
¥

</script>

/static/libs/is/hogan. s’

Zscript sro

_images/pyramid5.png

_images/issue.png
m Pull requests Labels Milestones
& Finish README

No one is assigned §} v No milestone
Write Preview Parsed as Markdown O, Edit in

So that the humans 'get' me.

_images/qgis_identify_wfs.jpg
| Identify Results

[Feature A Value]
vao it.geosolutions:Air_Runways0
¥ WMS layer
| » (Derived)
Air_Runways)
fa OBJECTID NAME (
Air_Runways0.12 12 North Island NAS Y

Feature info

[Help Close

_static/plus.png

_images/install_packages.png
Terminal B o e

©®®® geo@geonod
geo@geonode:~$ \
> sudo apt-get install

> python-virtualenv
build-essential
openssh-server
apache2

gcc

gdal-bin

gettext

gettext

git-core
Libapache2-mod-wsgi
Libgeos-dev
Llibjpeg-dev
Libpng-dev
Libpg-dev
Llibproj-dev
Libxml2-dev
Llibxslt-dev
openjdk-7-jre

e

patch

postgresql

postgis
postgresql-9.3-postgis-scripts \
postgresql-contrib \

python \

python-dev \

_images/qgis_add_wms_layer.jpg
>

Embed Layers and Groups...

™ Control rendering order

R Add Vector Layer... onv
R Add Raster Layer. %R
Add PostGIS Layers. °%D
#© Add Spatialite Layer... 8L
Add MSSQL Spatial Layer... %M
[Add Delimited Text Layer

@ Add WFS Layer...

% Copy style

aste style

= Open Attribute Table
3 Save Edits

Toggle Editing

Save As..

Save Selection as Vector File...

1 Remove Layer(s) %D

Set CRS of Layer(s) 0%C

Set Project CRS from Layer

Properties...

Query...

<& Labeling

& Add to Overview %0
% Add All to Overview
@ Remove All from Overview

 Show All Layers 08U
© Hide All Layers o%H

| Coordinate:

00

| Scale invaiid scale ||

[Render EPSG:4326

_static/minus.png

_images/java_opts.png
@ oW N e

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

set

REM
set
REM
set

REM
set
REM
set

REM
set
REM
set
set

REM
set
set
set
set
set
set
set
set

ROOT=%~dp0

variable used in documentation
TRAINING ROOT=%ROOT:
clear the user PATH
PATH=C:\Windows\System32;C:\Windows ; C:\Windows\Syswows4

Setting Java
JAVA_HOME=%ROOTH\jdk

set JAVA_HOME=C:\Java\jdk
PATH=%JAVA_HOME%\bin; SPATH%

GeoServer and GeolWebCache Options
GEOSERVER_DATA_DIR=%ROOT?\geoserver_data\

set GEOSERVER_DATA_DIR=3ROOT%#\tomcat-6.0.36\instances\instancel\webapps\geoserver\data
GEOSERVER_LOG_LOCATION=#CATALINA_HOME?\logs\ ¥ INSTANCE_NAME? .log
GEOWEBCACHE_CACHE_DIR=#ROOT:\data\gwc

Toncat Options for the JVM
JAVA_OPTS=%JAVA_OPTS® -Xns512m -Xmx512n -XX:MaxPermSize=128m -XX:Permsize=128m
JAVA_OPTS=%JAVA_OPTS® -XX:+UseConcMarkSweepGC -XX:+UseParNewGC -XX:ParallelGCThreads=4
JAVA_OPTS=%JAVA_OPTS% -DGEOSERVER_DATA_DIR=%GEOSERVER_DATA_DIRS

JAVA_OPTS=%JAVA_OPTS% -DGEOSERVER_LOG_LOCATION=%GEOSERVER_LOG_LOCATION%
JAVA_OPTS=%JAVA_OPTS% -DGEOWEBCACHE_CACHE_DIR=%GEOWEBCACHE_CACHE_DIRS
JAVA_OPTS=%JAVA_OPTS® -Djavax.servlet.request.encoding=UTF-8

JAVA_OPTS=%JAVA_OPTS% -Djavax.servlet.response.encoding=UTF-8 -Dfile.encoding=UTF-8
CATALINA_ BASE=%CATALINA_ HOMES\instances\?INSTANCE NAME:

_images/qgis_wfs_add_3.jpg
) B~ 039688 80H00DC

Server connections

| GeoNode Alpha Dev Server

[[Connect] | New | [Edit | [Delete |

Cache
Abstract Features | Filter

No abstract
No abstract

No abstract
No abstract
No abstract

[

. @

No abstract ...
z

Coordinate reference system

EPSG:2230

[Help | [Apply |

_images/issue1.png
m Pull requests Labels Milestones
& Finish README

No one is assigned §} v No milestone
Write Preview Parsed as Markdown O, Edit in

So that the humans 'get' me.

_images/qgis_wfs_add_2.jpg
2D 00RO RLNADDC

Add WES Layer from a Server

Connection details

Name |GeoNode Alpha Dev Server

URL http:/ /alpha.dev.geonode.org/ geoserver/wis

If the service requires basic authentication, enter a user name and
optional password

User name |admin

-

(] Ignore GetMap URI reported in capabilities
[l Ignore GetFeaturelnfo URI reported in capabilities

Help |

_images/jmeter14.png

_images/jmeter13.png
Remore st
Shudown cut.cons

Remote stop »
Remote Stop All 41

Remote Ext
Remote Bt

_images/qgis_wfs_fields.jpg
o|[=][~][w]

@ Actions | € Joins | [¥ Diagrams H

d Name

Type Length Precision Comment

Edit widget |

SAPID.

xsd:string | 0

0

Line edit

INTERSECTI

xsdiint |0

0

[Line edit

SIGNAL_ID

xsd:string | O

0

Save As Default

_images/jmeter15.png
i
|

& e Regquest] <] | Sampler resut
ST Reauest

& HTTP Request
& HTTP Request
& HTTP Request
& HTTP Request
& HTTP Request 1=
& HTTP Request
G e Reauest
G Request
G Reauest
ST Reauest i
ST Reauest

& HTTP Request.
& HTTP Request
& HTTP Request
& HTTP Request
& HTTP Request
& HTTP Request
& HTTP Request.
& HTTP Request.
& HTTP Request.

>,
i)

“--'."
lalan)
gk

=230
. 0o
o
[

0 EORICPOERD §OC0 QPR
AN

fomoeteesis

Boadaa:

o,
~m

Qpeeng,

o

oo

ageh

£7098°
pessannd

7.

'8 (o
g
dhow @l

feen

Y gouBon

5 oo
8

]
e
i
o

ST Reases
i easen
fogta e
fogha e (="
ST Reavest

& HTTP Request.
& HTTP Request =

